首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
IL-27 is an important and non-redundant regulator of effector T cell accumulation in non-lymphoid tissues during infection. Using malaria as a model systemic pro-inflammatory infection, we demonstrate that the aberrant accumulation of CD4+ T cells in the liver of infected IL27R−/− (WSX-1−/−) mice is a result of differences in cellular recruitment, rather than changes in T cell proliferation or cell death. We show that IL-27 both inhibits the migratory capacity of infection-derived CD4+ T cells towards infection-derived liver cells, but also suppresses the production of soluble liver-derived mediator(s) that direct CD4+ T cell movement towards the inflamed tissue. Although CCL4 and CCL5 expression was higher in livers of infected WSX-1−/− mice than infected WT mice, and hepatic CD4+ T cells from WSX-1−/− mice expressed higher levels of CCR5 than cells from WT mice, migration of CD4+ T cells to the liver of WSX-1−/− mice during infection was not controlled by chemokine (R) signalling. However, anti-IL-12p40 treatment reduced migration of CD4+ T cells towards infection-derived liver cells, primarily by abrogating the hepatotropic migratory capacity of T cells, rather than diminishing soluble tissue-derived migratory signals. These results indicate that IL-27R signalling restricts CD4+ T cell accumulation within the liver during infection primarily by suppressing T cell chemotaxis, which may be linked to its capacity to repress Th1 differentiation, as well as by inhibiting the production of soluble, tissue-derived chemotaxins.  相似文献   

2.
In malaria-naïve individuals, Plasmodium falciparum infection results in high levels of parasite-infected red blood cells (iRBCs) that trigger systemic inflammation and fever. Conversely, individuals in endemic areas who are repeatedly infected are often asymptomatic and have low levels of iRBCs, even young children. We hypothesized that febrile malaria alters the immune system such that P. falciparum re-exposure results in reduced production of pro-inflammatory cytokines/chemokines and enhanced anti-parasite effector responses compared to responses induced before malaria. To test this hypothesis we used a systems biology approach to analyze PBMCs sampled from healthy children before the six-month malaria season and the same children seven days after treatment of their first febrile malaria episode of the ensuing season. PBMCs were stimulated with iRBC in vitro and various immune parameters were measured. Before the malaria season, children''s immune cells responded to iRBCs by producing pro-inflammatory mediators such as IL-1β, IL-6 and IL-8. Following malaria there was a marked shift in the response to iRBCs with the same children''s immune cells producing lower levels of pro-inflammatory cytokines and higher levels of anti-inflammatory cytokines (IL-10, TGF-β). In addition, molecules involved in phagocytosis and activation of adaptive immunity were upregulated after malaria as compared to before. This shift was accompanied by an increase in P. falciparum-specific CD4+Foxp3 T cells that co-produce IL-10, IFN-γ and TNF; however, after the subsequent six-month dry season, a period of markedly reduced malaria transmission, P. falciparum–inducible IL-10 production remained partially upregulated only in children with persistent asymptomatic infections. These findings suggest that in the face of P. falciparum re-exposure, children acquire exposure-dependent P. falciparum–specific immunoregulatory responses that dampen pathogenic inflammation while enhancing anti-parasite effector mechanisms. These data provide mechanistic insight into the observation that P. falciparum–infected children in endemic areas are often afebrile and tend to control parasite replication.  相似文献   

3.
SerpinB2, also known as plasminogen activator inhibitor type 2, is a major product of activated monocytes/macrophages and is often strongly induced during infection and inflammation; however, its physiological function remains somewhat elusive. Herein we show that SerpinB2 is induced in peripheral blood mononuclear cells following infection of pigtail macaques with CCR5-utilizing (macrophage-tropic) SIVmac239, but not the rapidly pathogenic CXCR4-utilizing (T cell-tropic) SHIVmn229. To investigate the role of SerpinB2 in lentiviral infections, SerpinB2−/− mice were infected with EcoHIV, a chimeric HIV in which HIV gp120 has been replaced with gp80 from ecotropic murine leukemia virus. EcoHIV infected SerpinB2−/− mice produced significantly lower anti-gag IgG1 antibody titres than infected SerpinB2+/+ mice, and showed slightly delayed clearance of EcoHIV. Analyses of published microarray studies showed significantly higher levels of SerpinB2 mRNA in monocytes from HIV-1 infected patients when compared with uninfected controls, as well as a significant negative correlation between SerpinB2 and T-bet mRNA levels in peripheral blood mononuclear cells. These data illustrate that SerpinB2 can be induced by lentiviral infection in vivo and support the emerging notion that a physiological role of SerpinB2 is modulation of Th1/Th2 responses.  相似文献   

4.
The CD200R1:CD200 axis is traditionally considered to limit tissue inflammation by down-regulating pro-inflammatory signaling in myeloid cells bearing the receptor. We generated CD200R1−/− mice and employed them to explore both the role of CD200R1 in regulating macrophage signaling via TLR2 as well as the host response to an in vivo, TLR2-dependent model, herpes simplex virus 1 (HSV-1) infection. CD200R1−/− peritoneal macrophages demonstrated a 70–75% decrease in the generation of IL-6 and CCL5 (Rantes) in response to the TLR2 agonist Pam2CSK4 and to HSV-1. CD200R1−/− macrophages could neither up-regulate the expression of TLR2, nor assemble a functional inflammasome in response to HSV-1. CD200R1−/− mice were protected from HSV-1 infection and exhibited dysfunctional TLR2 signaling. Finally, both CD200R1−/− mice and CD200R1−/− fibroblasts and macrophages showed a markedly reduced ability to support HSV-1 replication. In summary, our data demonstrate an unanticipated and novel requirement for CD200R1 in “licensing” pro-inflammatory functions of TLR2 and in limiting viral replication that are supported by ex vivo and in vivo evidence.  相似文献   

5.
Microbial sensing plays essential roles in the innate immune response to pathogens. In particular, NLRP3 forms a multiprotein inflammasome complex responsible for the maturation of interleukin (IL)-1β. Our aim was to delineate the role of the NLRP3 inflammasome in macrophages, and the contribution of IL-1β to the host defense against Citrobacter rodentium acute infection in mice. Nlrp3−/− and background C57BL/6 (WT) mice were infected by orogastric gavage, received IL-1β (0.5 µg/mouse; ip) on 0, 2, and 4 days post-infection (DPI), and assessed on 6 and 10 DPI. Infected Nlrp3−/− mice developed severe colitis; IL-1β treatments reduced colonization, abrogated dissemination of bacteria to mesenteric lymph nodes, and protected epithelial integrity of infected Nlrp3−/− mice. In contrast, IL-1β treatments of WT mice had an opposite effect with increased penetration of bacteria and barrier disruption. Microscopy showed reduced damage in Nlrp3−/− mice, and increased severity of disease in WT mice with IL-1β treatments, in particular on 10 DPI. Secretion of some pro-inflammatory plasma cytokines was dissipated in Nlrp3−/− compared to WT mice. IL-1β treatments elevated macrophage infiltration into infected crypts in Nlrp3−/− mice, suggesting that IL-1β may improve macrophage function, as exogenous administration of IL-1β increased phagocytosis of C. rodentium by peritoneal Nlrp3−/− macrophages in vitro. As well, the exogenous administration of IL-1β to WT peritoneal macrophages damaged the epithelial barrier of C. rodentium-infected polarized CMT-93 cells. Treatment of Nlrp3−/− mice with IL-1β seems to confer protection against C. rodentium infection by reducing colonization, protecting epithelial integrity, and improving macrophage activity, while extraneous IL-1β appeared to be detrimental to WT mice. Together, these findings highlight the importance of balanced cytokine responses as IL-1β improved bacterial clearance in Nlrp3−/− mice but increased tissue damage when given to WT mice.  相似文献   

6.
Lumican is an extracellular protein that associates with CD14 on the surface of macrophages and neutrophils, and promotes CD14-TLR4 mediated response to bacterial lipopolysaccharides (LPS). Lumican-deficient (Lum −/−) mice and macrophages are impaired in TLR4 signals; raising the possibility that lumican may regulate host response to live bacterial infections. In a recent study we showed that in vitro Lum −/− macrophages are impaired in phagocytosis of gram-negative bacteria and in a lung infection model the Lum −/− mice showed poor survival. The cornea is an immune privileged barrier tissue that relies primarily on innate immunity to protect against ocular infections. Lumican is a major component of the cornea, yet its role in counteracting live bacteria in the cornea remains poorly understood. Here we investigated Pseudomonas aeruginosa infections of the cornea in Lum −/− mice. By flow cytometry we found that 24 hours after infection macrophage and neutrophil counts were lower in the cornea of Lum −/− mice compared to wild types. Infected Lum −/− corneas showed lower levels of the leukocyte chemoattractant CXCL1 by 24–48 hours of infection, and increased bacterial counts up to 5 days after infection, compared to Lum+/− mice. The pro-inflammatory cytokine TNF-α was comparably low 24 hours after infection, but significantly higher in the Lum −/− compared to Lum +/− infected corneas by 2–5 days after infection. Taken together, the results indicate that lumican facilitates development of an innate immune response at the earlier stages of infection and lumican deficiency leads to poor bacterial clearance and resolution of corneal inflammation at a later stage.  相似文献   

7.
Macrophage infiltration is a critical determinant of high-fat diet induced adipose tissue inflammation and insulin resistance. The precise mechanisms underpinning the initiation of macrophage recruitment and activation are unclear. Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, displays chemokine-like properties. Circulating MIF levels are elevated during obesity however its role in high-fat diet induced adipose inflammation and insulin resistance remains elusive. Wildtype and MIF−/− C57Bl\6J mice were fed chow or high-fat diet. Body weight and food intake was assessed. Glucose homeostasis was monitored by glucose and insulin tolerance tests. Adipose tissue macrophage recruitment and adipose tissue insulin sensitivity was evaluated. Cytokine secretion from stromal vascular fraction, adipose explants and bone marrow macrophages was measured. Inflammatory signature and insulin sensitivity of 3T3-L1-adipocytes co-cultured with wildtype and MIF−/− macrophage was quantified. Hepatic triacylglyceride levels were assessed. MIF−/− exhibited reduced weight gain. Age and weight-matched obese MIF−/− mice exhibited improved glucose homeostasis coincident with reduced adipose tissue M1 macrophage infiltration. Obese MIF−/− stromal vascular fraction secreted less TNFα and greater IL-10 compared to wildtype. Activation of JNK was impaired in obese MIF−/−adipose, concomitant with pAKT expression. 3T3-L1-adipocytes cultured with MIF−/− macrophages had reduced pro-inflammatory cytokine secretion and improved insulin sensitivity, effects which were also attained with MIF inhibitor ISO-1. MIF−/− liver exhibited reduced hepatic triacyglyceride accumulation, enhanced pAKT expression and reduced NFκB activation. MIF deficiency partially protects from high-fat diet induced insulin resistance by attenuating macrophage infiltration, ameliorating adipose inflammation, which improved adipocyte insulin resistance ex vivo. MIF represents a potential therapeutic target for treatment of high-fat diet induced insulin resistance.  相似文献   

8.

Background

Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI). However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1) is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI.

Methods and Findings

Using a genetic model of tsp-1 −/− mice subjected to femoral artery excision, we report that tsp-1 −/− mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1 −/− and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1 −/− mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1 −/− mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1 −/− mice, thereby demonstrating that macrophages mediated tissue protection in these mice.

Conclusion

This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue repair during CLI. Furthermore, our data suggest that phagocytosis plays a crucial role in promoting a deleterious intra-tissular pro-inflammatory macrophage activation state during critical injuries. Finally, our results describe TSP-1 as a new relevant physiological target during critical leg ischemia.  相似文献   

9.
STAMP2 is a counterregulator of inflammation and insulin resistance. The aim of this study is to investigate whether activation of STAMP2 improves insulin resistance by regulating macrophage polarization in adipose tissues. The diabetic ApoE−/−/LDLR−/− mouse model was induced by high-fat diet and low-dose streptozotocin. Samples were obtained from epididymal, subcutaneous and brown adipose tissues. Infiltration of M1/M2 macrophages and inflammatory cytokines were investigated by immunohistochemistry. We then used gene overexpression to investigate the effect of STAMP2 on macrophages infiltration and polarization and inflammatory cytokines expression. Our results showed that infiltration of macrophages, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines were enhanced and STAMP2 was downregulated in adipose tissues of diabetic ApoE−/−/LDLR−/− mice compared with control mice. STAMP2 gene overexpression could significantly reduce macrophages infiltration, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines in epididymal and brown adipose tissues, improving insulin resistance. Our results suggested that STAMP2 gene overexpression may improve insulin resistance via regulating macrophage polarization in visceral and brown adipose tissues.  相似文献   

10.
We have investigated the gross, microscopic and molecular effects of carnitine deficiency in the neonatal gut using a mouse model with a loss-of-function mutation in the OCTN2 (SLC22A5) carnitine transporter. The tissue carnitine content of neonatal homozygous (OCTN2−/−) mouse small intestine was markedly reduced; the intestine displayed signs of stunted villous growth, early signs of inflammation, lymphocytic and macrophage infiltration and villous structure breakdown. Mitochondrial β-oxidation was active throughout the GI tract in wild type newborn mice as seen by expression of 6 key enzymes involved in β-oxidation of fatty acids and genes for these 6 enzymes were up-regulated in OCTN2−/− mice. There was increased apoptosis in gut samples from OCTN2−/− mice. OCTN2−/− mice developed a severe immune phenotype, where the thymus, spleen and lymph nodes became atrophied secondary to increased apoptosis. Carnitine deficiency led to increased expression of CD45-B220+ lymphocytes with increased production of basal and anti-CD3-stimulated pro-inflammatory cytokines in immune cells. Real-time PCR array analysis in OCTN2−/− mouse gut epithelium demonstrated down-regulation of TGF-β/BMP pathway genes. We conclude that carnitine plays a major role in neonatal OCTN2−/− mouse gut development and differentiation, and that severe carnitine deficiency leads to increased apoptosis of enterocytes, villous atrophy, inflammation and gut injury.  相似文献   

11.
Toll-like receptor (TLR)-dependent pathways control the activation of various immune cells and the production of cytokines and chemokines that are important in innate immune control of viruses, including mouse cytomegalovirus (MCMV). Here we report that upon MCMV infection wild-type and TLR7−/− male mice were more resistant than their female counterparts, while TLR9−/− male and female mice showed similar susceptibility. Interestingly, 36 h upon MCMV infection TLR9 mRNA expression was higher in male than in female mouse spleens. MCMV infection led to stronger reduction of marginal zone (MZ) B cells, and higher infiltration of plasmacytoid dendritic cells and neutrophils in wild-type male than female mice, while no such sex differences were observed in TLR9−/− mice. In accordance, the serum levels of KC and MIP-2, major neutrophil chemoattractants, were higher in wild-type, but not in TLR9−/−, male versus female mice. Wild-type MCMV-infected female mice showed more severe liver inflammation, necrosis and steatosis compared to infected male mice. Our data demonstrate sex differences in susceptibility to MCMV infection, accompanied by a lower activation of the innate immune system in female mice, and can be attributed, at least in a certain degree, to the lower expression of TLR9 in female than male mice.  相似文献   

12.
Serum amyloid A (SAA) increases in response to acute inflammatory stimuli and is modestly and chronically elevated in obesity. SAA3, an inducible form of SAA, is highly expressed in adipose tissue in obese mice where it promotes monocyte chemotaxis, providing a mechanism for the macrophage accumulation that occurs with adipose tissue expansion in obesity. Humans do not express functional SAA3 protein, but instead express SAA1 and SAA2 in hepatic as well as extrahepatic tissues, making it difficult to distinguish between liver and adipose tissue-specific SAA effects. SAA3 does not circulate in plasma, but may exert local effects that impact systemic inflammation. We tested the hypothesis that SAA3 contributes to chronic systemic inflammation and adipose tissue macrophage accumulation in obesity using mice deficient for Saa3 (Saa3 −/−). Mice were rendered obese by feeding a pro-inflammatory high fat, high sucrose diet with added cholesterol (HFHSC). Both male and female Saa3 −/− mice gained less weight on the HFHSC diet compared to Saa3+/+ littermate controls, with no differences in body composition or resting metabolism. Female Saa3 −/− mice, but not males, had reduced HFHSC diet-induced adipose tissue inflammation and macrophage content. Both male and female Saa3 −/− mice had reduced liver Saa1 and Saa2 expression in association with reduced plasma SAA. Additionally, female Saa3 −/− mice, but not males, showed improved plasma cholesterol, triglycerides, and lipoprotein profiles, with no changes in glucose metabolism. Taken together, these results suggest that the absence of Saa3 attenuates liver-specific SAA (i.e., SAA1/2) secretion into plasma and blunts weight gain induced by an obesogenic diet. Furthermore, adipose tissue-specific inflammation and macrophage accumulation are attenuated in female Saa3 −/− mice, suggesting a novel sexually dimorphic role for this protein. These results also suggest that Saa3 influences liver-specific SAA1/2 expression, and that SAA3 could play a larger role in the acute phase response than previously thought.  相似文献   

13.
There is evidence indicating that invariant Natural Killer T (iNKT) cells play an important role in defense against influenza A virus (IAV). However, the effect of inhibitory receptor, programmed death-1 (PD-1), and its ligands, programmed death ligand (PD-L) 1 and 2 on iNKT cells in protection against IAV remains to be elucidated. Here we investigated the effects of these co-stimulatory molecules on iNKT cells in the response to influenza. We discovered that compare to the wild type, PD-L1 deficient mice show reduced sensitivity to IAV infection as evident by reduced weight loss, decreased pulmonary inflammation and cellular infiltration. In contrast, PD-L2 deficient mice showed augmented weight loss, pulmonary inflammation and cellular infiltration compare to the wild type mice after influenza infection. Adoptive transfer of iNKT cells from wild type, PD-L1 or PD-L2 deficient mice into iNKT cell deficient mice recapitulated these findings. Interestingly, in our transfer system PD-L1−/−-derived iNKT cells produced high levels of interferon-gamma whereas PD-L2−/−-derived iNKT cells produced high amounts of interleukin-4 and 13 suggesting a role for these cytokines in sensitivity to influenza. We identified that PD-L1 negatively regulates the frequency of iNKT cell subsets in the lungs of IAV infected mice. Altogether, these results demonstrate that lack of PD-L1 expression by iNKT cells reduces the sensitivity to IAV and that the presence of PD-L2 is important for dampening the deleterious inflammatory responses after IAV infection. Our findings potentially have clinical implications for developing new therapies for influenza.  相似文献   

14.
Tissue cholesterol accumulation, macrophage infiltration, and inflammation are features of atherosclerosis and some forms of dermatitis. HDL and its main protein, apoAI, are acceptors of excess cholesterol from macrophages; this process inhibits tissue inflammation. Recent epidemiologic and clinical trial evidence questions the role of HDL and its manipulation in cardiovascular disease. We investigated the effect of ectopic macrophage apoAI expression on atherosclerosis and dermatitis induced by the combination of hypercholesterolemia and absence of HDL in mice. Hematopoietic progenitor cells were transduced to express human apoAI and transplanted into lethally irradiated LDL receptor−/−/apoAI−/− mice, which were then placed on a high-fat diet for 16 weeks. Macrophage apoAI expression reduced aortic CD4+ T-cell levels (−39.8%), lesion size (−25%), and necrotic core area (−31.6%), without affecting serum HDL or aortic macrophage levels. Macrophage apoAI reduced skin cholesterol by 39.8%, restored skin morphology, and reduced skin CD4+ T-cell levels. Macrophage apoAI also reduced CD4+ T-cell levels (−32.9%) in skin-draining lymph nodes but had no effect on other T cells, B cells, dendritic cells, or macrophages compared with control transplanted mice. Thus, macrophage apoAI expression protects against atherosclerosis and dermatitis by reducing cholesterol accumulation and regulating CD4+ T-cell levels, without affecting serum HDL or tissue macrophage levels.  相似文献   

15.
Cyclic paroxysm and high fever are hallmarks of malaria and are associated with high levels of pyrogenic cytokines, including IL-1β. In this report, we describe a signature for the expression of inflammasome-related genes and caspase-1 activation in malaria. Indeed, when we infected mice, Plasmodium infection was sufficient to promote MyD88-mediated caspase-1 activation, dependent on IFN-γ-priming and the expression of inflammasome components ASC, P2X7R, NLRP3 and/or NLRP12. Pro-IL-1β expression required a second stimulation with LPS and was also dependent on IFN-γ-priming and functional TNFR1. As a consequence of Plasmodium-induced caspase-1 activation, mice produced extremely high levels of IL-1β upon a second microbial stimulus, and became hypersensitive to septic shock. Therapeutic intervention with IL-1 receptor antagonist prevented bacterial-induced lethality in rodents. Similar to mice, we observed a significantly increased frequency of circulating CD14+CD16Caspase-1+ and CD14dimCD16+Caspase-1+ monocytes in peripheral blood mononuclear cells from febrile malaria patients. These cells readily produced large amounts of IL-1β after stimulation with LPS. Furthermore, we observed the presence of inflammasome complexes in monocytes from malaria patients containing either NLRP3 or NLRP12 pyroptosomes. We conclude that NLRP12/NLRP3-dependent activation of caspase-1 is likely to be a key event in mediating systemic production of IL-1β and hypersensitivity to secondary bacterial infection during malaria.  相似文献   

16.
The GDVII strain of Theiler's murine encephalomyelitis virus (TMEV) causes an acute fatal polioencephalomyelitis in mice. Infection of susceptible mice with the DA strain of TMEV results in an acute polioencephalomyelitis followed by chronic immune-mediated demyelination with virus persistence in the central nervous system (CNS); DA virus infection is used as an animal model for multiple sclerosis. CD1d-restricted natural killer T (NKT) cells can contribute to viral clearance and regulation of autoimmune responses. To investigate the role of CD1d in TMEV infection, we first infected CD1d-deficient mice (CD1−/−) and wild-type BALB/c mice with GDVII virus. Wild-type mice were more resistant to virus than CD1−/− mice (50% lethal dose titers: wild-type mice, 10 PFU; CD1−/− mice, 1.6 PFU). Wild-type mice had fewer viral antigen-positive cells with greater inflammation in the CNS than CD1−/− mice. Second, an analysis of DA virus infection in CD1−/− mice was conducted. Although both wild-type and CD1−/− mice had similar clinical signs during the first 2 weeks after infection, CD1−/− mice had an increase in neurological deficits over those observed in wild-type mice at 3 to 5 weeks after infection. Although wild-type mice had no demyelination, 20 and 60% of CD1−/− mice developed demyelination at 3 and 5 weeks after infection, respectively. TMEV-specific lymphoproliferative responses, interleukin-4 (IL-4) production, and IL-4/gamma interferon ratios were higher in CD1−/− mice than in wild-type mice. Thus, CD1d-restricted NKT cells may play a protective role in TMEV-induced neurological disease by alteration of the cytokine profile and virus-specific immune responses.  相似文献   

17.
IFN-γ is a signature Th1 cell associated cytokine critical for the inflammatory response in autoimmunity with both pro-inflammatory and potentially protective functions. IL-17A is the hallmark of T helper 17 (Th17) cell subsets, produced by γδT, CD8+ T, NK and NKT cells. We have taken advantage of our colony of IL-2Rα−/− mice that spontaneously develop both autoimmune cholangitis and inflammatory bowel disease. In this model CD8+ T cells mediate biliary ductular damage, whereas CD4+ T cells mediate induction of colon-specific autoimmunity. Importantly, IL-2Rα−/− mice have high levels of interferon γ (IFN-γ), and interleukin-17A (IL-17A). We produced unique double deletions of mice that were either IL-17A−/−IL-2Rα−/− or IFN-γ−/−IL-2Rα−/− to specifically address the precise role of these two cytokines in the natural history of autoimmune cholangitis and colitis. Of note, deletion of IL-17A in IL-2Rα−/− mice led to more severe liver inflammation, but ameliorated colitis. In contrast, there were no significant changes in the immunopathology of double knock-out IFN-γ−/− IL-2Rα−/− mice, compared to single knock-out IL-2Rα−/− mice with respect to cholangitis or colitis. Furthermore, there was a significant increase in pathogenetic CD8+ T cells in the liver of IL-17A−/−IL-2Rα−/− mice. Our data suggest that while IL-17A plays a protective role in autoimmune cholangitis, it has a pro-inflammatory role in inflammatory bowel disease. These data take on particular significance in the potential use of anti-IL-17A therapy in humans with primary biliary cirrhosis.  相似文献   

18.
Helicobacter pylori are responsible for the induction of chronic gastric inflammation progressing to atrophy, metaplasia, and gastric cancer. The overexpression of Cathepsin X/Z (Ctsz) in H. pylori-infected mucosa and gastric cancer is mediated predominantly by an augmented migration of ctsz−/−positive macrophages and the up-regulation of Ctsz in tumor epithelium. To explore the Ctsz-function in the context of chronic inflammation and the development of preneoplastic lesions, we used Ctsz-deficient mice in a H. pylori gastritis model. Ctsz −/− and wild-type (wt) mice were infected with H. pylori strain SS1. The mice were sacrificed at 24, 36, and 50 weeks post infection (wpi). The stomach was removed, and gastric strips were snap-frozen or embedded and stained with H&E. Tissue sections were scored for epithelial lesions and inflammation. Ki-67 and F4/80 immunostaining were used to measure epithelial cell proliferation and macrophage infiltration, respectively. The upregulation of compensating cathepsins and cytokines were confirmed by Western blotting and quantitative RT-PCR. SS1-infected wt and ctsz −/− mice showed strong inflammation, foveolar hyperplasia, atrophy, and cystically-dilated glands. However, at 50 wpi, ctsz −/− mice developed significantly more severe spasmolytic polypeptide-expressing metaplasia (SPEM), showed enhanced epithelial proliferation, and higher levels of infiltrating macrophages. Induction of cytokines was higher and significantly prolonged in ctsz −/− mice compared to wt. Ctsz deficiency supports H. pylori-dependent development of chronic gastritis up to metaplasia, indicating a protective, but not proteolytic, function of Ctsz in inflammatory gastric disease.  相似文献   

19.
Inappropriate inflammation responses contribute to mortality during sepsis. Through Toll-like receptors (TLRs), reactive oxygen species (ROS) produced by NADPH oxidase could modulate the inflammation responses. Parkinson disease (autosomal recessive, early onset) 7 (Park7) has a cytoprotective role by eliminating ROS. However, whether Park7 could modulate inflammation responses and mortality in sepsis is unclear. Here, we show that, compared with wild-type mice, Park7−/− mice had significantly increased mortality and bacterial burdens in sepsis model along with markedly decreased systemic and local inflammation, and drastically impaired macrophage phagocytosis and bacterial killing abilities. Surprisingly, LPS and phorbol-12-myristate-13-acetate stimulation failed to induce ROS and proinflammatory cytokine production in Park7−/− macrophages and Park7-deficient RAW264.7 cells. Through its C-terminus, Park7 binds to p47phox, a subunit of the NADPH oxidase, to promote NADPH oxidase-dependent production of ROS. Restoration of Park7 expression rescues ROS production and improves survival in LPS-induced sepsis. Together, our study shows that Park7 has a protective role against sepsis by controlling macrophage activation, NADPH oxidase activation and inflammation responses.  相似文献   

20.
Resolution of neutrophilia characteristic of acute inflammation requires cessation of neutrophil recruitment and removal of tissue neutrophils. Based on in vitro studies, a role in these events was hypothesized for oxidant-generated lysophosphatidylserine (lyso-PS) on recruited neutrophils signaling via the G2A receptor on macrophages. Peritoneal exudate neutrophils harvested from wild type (WT) mice had 5-fold more lyso-PS (lyso-PShigh) than those of gp91phox−/− (lyso-PSlow) mice. Ex vivo engulfment of lyso-PShigh neutrophils (95% viable) by WT peritoneal macrophages was quantitatively similar to UV-irradiated apoptotic blood neutrophils, although the signaling pathway for the former was uniquely dependent on macrophage G2A. In contrast, lyso-PSlow neutrophils were poorly engulfed unless presented with exogenous lyso-PS. Enhanced clearance of lyso-PShigh neutrophils was also seen in vivo following their adoptive transfer into inflamed peritonea of WT but not G2A−/− mice, further supporting a requirement for signaling via G2A. To investigate downstream effects of lyso-PS/G2A signaling, antibody blockade of G2A in WT mice reduced macrophage CD206 expression and efferocytosis during peritonitis. Conversely, adoptive transfer of lyso-PShigh neutrophils early in inflammation in gp91phox−/− mice led to accelerated development of efferocytichigh and CD206high macrophages. This macrophage reprogramming was associated with suppressed production of pro-inflammatory mediators and reduced neutrophilia. These effects were not seen if G2A was blocked or lyso-PSlow neutrophils were transferred. Taken together, the results demonstrate that oxidant-generated lyso-PS made by viable tissue neutrophils is an endogenous anti-inflammatory mediator working in vivo to orchestrate the “early” and rapid clearance of recruited neutrophils as well as the reprogramming of “resolving” macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号