首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 61 毫秒
1.
2.
3.
4.
DNA replication and DNA repair are essential cell cycle steps ensuring correct transmission of the genome. The feedback replication control system links mitosis to completion of DNA replication and partially overlaps the radiation checkpoint control. Deletion of the chkl/rad27 gene abolishes the radiation but not the replication feedback control. Thermosensitive mutations in the DNA polymerase λ, cdc18 or cdc20 genes lead cells to arrest in the S phase of the cell cycle. We show that strains carrying any of these mutations enter lethal mitosis in the absence of the radiation checkpoint chk1/rad27. We interpret these data as an indication that an assembled replisome is essential for replication dependent control of mitosis and we propose that the arrest of the cell cycle in the thermosensitive mutants is due to the chk1 +/rad27 + pathway, which monitors directly DNA for signs of damage.  相似文献   

5.
6.
Kulp A  Kuehn MJ 《Journal of bacteriology》2011,193(22):6179-6186
Gram-negative bacteria react to misfolded proteins in the envelope through a myriad of different stress response pathways. This cohort of pathways allows the bacteria to specifically respond to different types of damage, and many of these have been discovered to have key roles in the virulence of bacterial pathogens. Misfolded outer membrane proteins (OMPs) are typically recognized by the σ(E) pathway, a highly conserved envelope stress response pathway. We examined the features of misfolded OMPs with respect to their ability to generate envelope stress responses. We determined that the secondary structure, particularly the potential to form β strands, is critical to inducing the σ(E) response in an RseB-dependent manner. The sequence of the potential β-strand motif modulates the strength of the σ(E) response generated by the constructs. By understanding the details of how such stress response pathways are activated, we can gain a greater understanding of how bacteria survive in harsh environments.  相似文献   

7.
The small hydrophobic polypeptide PsbT is associated with the photosystem II (PSII) reaction center (D1/D2 heterodimer). Here, we report the effect of the deletion of PsbT on the biogenesis of PSII complex during light-induced greening of y-1 mutants of the green alga Chlamydomonas reinhardtii. The y-1 is unable to synthesize chlorophylls in the dark but do so in the light. The dark-grown y-1 cells accumulated no major PSII proteins but a small amount of PsbT. Upon illumination, PsbT was immediately synthesized while chlorophylls, major PSII proteins, and O(2)-evolving activity increased after a 1-h lag. The y-1 cells without PsbT accumulated chlorophylls and PSI protein at a similar rate, whereas the accumulation of PSII complex was specifically retarded during greening. The absence of PsbT did not affect the synthesis of PSII proteins. These results indicate that PsbT is required for the efficient biogenesis of PSII complex.  相似文献   

8.
In vivo and in vitro expressed N-terminal sequence of EWS (EAD) and hsRPB7 (subunit of human RNA polymerase II) were probed for protein–protein interactions using pull-down assays. In result, it was found that the proteins 57Z (residues 1–57 of EAD) and hsRPB7 interact in vitro forming a stable complex. The direct interaction between 57z and hsRPB7 indicate that DHR-related peptides and other small molecules, targeted to N-terminus of EWS might possess therapeutic potentialities as anti-cancer agents to function as inhibitors of EAD-mediated transactivation.  相似文献   

9.
The immune response to infection or injury coordinates host defense and tissue repair, but also has the capacity to damage host tissues. Recent advances in understanding protective mechanisms have found neural circuits that suppress release of damaging cytokines. Stimulation of the vagus nerve protects from excessive cytokine production and ameliorates experimental inflammatory disease. This mechanism, the inflammatory reflex, requires the α7 nicotinic acetylcholine receptor (α7nAChR), a ligand-gated ion channel expressed on macrophages, lymphocytes, neurons and other cells. To investigate cell-specific function of α7nAChR in the inflammatory reflex, we created chimeric mice by cross-transferring bone marrow between wild-type (WT) and α7nAChR-deficient mice. Deficiency of α7nAChR in bone marrow-derived cells significantly impaired vagus nerve-mediated regulation of tumor necrosis factor (TNF), whereas α7nAChR deficiency in neurons and other cells had no significant effect. In agreement with recent work, the inflammatory reflex was not functional in nude mice, because functional T cells are required for the integrity of the pathway. To investigate the role of T-cell α7nAChR, we adoptively transferred α7nAChR-deficient or WT T cells to nude mice. Transfer of WT and α7nAChR-deficient T cells restored function, indicating that α7nAChR expression on T cells is not necessary for this pathway. Together, these results indicate that α7nAChR expression in bone marrow-derived non-T cells is required for the integrity of the inflammatory reflex.  相似文献   

10.

Background  

β-catenin is an essential mediator of canonical Wnt signaling and a central component of the cadherin-catenin epithelial adhesion complex. Dysregulation of β-catenin expression has been described in pancreatic neoplasia. Newly published studies have suggested that β-catenin is critical for normal pancreatic development although these reports reached somewhat different conclusions. In addition, the molecular mechanisms by which loss of β-catenin affects pancreas development are not well understood. The goals of this study then were; 1] to further investigate the role of β-catenin in pancreatic development using a conditional knockout approach and 2] to identify possible mechanisms by which loss of β-catenin disrupts pancreatic development. A Pdx1-cre mouse line was used to delete a floxed β-catenin allele specifically in the developing pancreas, and embryonic pancreata were studied by immunohistochemistry and microarray analysis.  相似文献   

11.
YUQINGMING  LANMA 《Cell research》1998,8(4):303-310
Human rhodopsin kinase (RK) and a carboxyl terminus-truncated mutant RK lacking the last 59 amino acids (RKC) were expressed in human embryonic kidney 293 cells to investigate the role of the carboxyl terminus of RK in recognition and phosphorylation of rhodopsin.RKC,like the wild-type RK,was detected in both plasma membranes and cytosolic fractions.The Cterminal truncated rhodopsin kinase was unable to phosphorylate photo-activated rhodopsin,but possesses kinase activity similar to the wild-type RK in phosphorylation of small peptide substrate.It suggests that the truncation did not disturb the gross structures of RK catalytic domain.Our results also show that RKC failed to translocate to photo-activated rod out segments.Taken together,our study demonstrate the carboxyl terminus of RK is required for phosphorylation of photo-activated rhodopsin and strongly indicate that carboxyl-terminus of RK may be involved in interaction with photo-activated rhodopsin.  相似文献   

12.
The essential and universal N6-threonylcarbamoyladenosine (t6A) modification at position 37 of ANN-decoding tRNAs plays a pivotal role in translational fidelity through enhancement of the cognate codon recognition and stabilization of the codon–anticodon interaction. In Escherichia coli, the YgjD (TsaD), YeaZ (TsaB), YjeE (TsaE) and YrdC (TsaC) proteins are necessary and sufficient for the in vitro biosynthesis of t6A, using tRNA, ATP, L-threonine and bicarbonate as substrates. YrdC synthesizes the short-lived L-threonylcarbamoyladenylate (TCA), and YgjD, YeaZ and YjeE cooperate to transfer the L-threonylcarbamoyl-moiety from TCA onto adenosine at position 37 of substrate tRNA. We determined the crystal structure of the heterodimer YgjD–YeaZ at 2.3 Å, revealing the presence of an unexpected molecule of ADP bound at an atypical site situated at the YgjD–YeaZ interface. We further showed that the ATPase activity of YjeE is strongly activated by the YgjD–YeaZ heterodimer. We established by binding experiments and SAXS data analysis that YgjD–YeaZ and YjeE form a compact ternary complex only in presence of ATP. The formation of the ternary YgjD–YeaZ–YjeE complex is required for the in vitro biosynthesis of t6A but not its ATPase activity.  相似文献   

13.
14.
Subunit 3 (Rpb3) of eukaryotic RNA polymerase II is a homologue of the α subunit of prokaryotic RNA polymerase, which plays a key role in subunit assembly of this complex enzyme by providing the contact surfaces for both β and β′ subunits. Previously we demonstrated that the Schizosaccharomyces pombe Rpb3 protein forms a core subassembly together with Rpb2 (the β homologue) and Rpb11 (the second α homologue) subunits, as in the case of the prokaryotic α2β complex. In order to obtain further insight into the physiological role(s) of Rpb3, we subjected the S. pombe rpb3 gene to mutagenesis. A total of nine temperature-sensitive (Ts) and three cold-sensitive (Cs) S. pombe mutants have been isolated, each (with the exception of one double mutant) carrying a single mutation in the rpb3 gene in one of the four regions (A–D) that are conserved between the homologues of eukaryotic subunit 3. The three Cs mutations were all located in region A, in agreement with the central role of the corresponding region in the assembly of prokaryotic RNA polymerase; the Ts mutations, in contrast, were found in all four regions. Growth of the Ts mutants was reduced to various extents at non-permissive temperatures. Since the metabolic stability of most Ts mutant Rpb3 proteins was markedly reduced at non-permissive temperature, we predict that these mutant Rpb3 proteins are defective in polymerase assembly or the mutant RNA polymerases containing mutant Rpb3 subunits are unstable. In accordance with this prediction, the Ts phenotype of all the mutants was suppressed to varying extents by over-expression of Rpb11, the pairing partner of Rpb3 in the core subassembly. We conclude that the majority of rpb3 mutations affect the assembly of Rpb3, even though their effects on subunit assembly vary depending on the location of the mutation considered. Received: 25 January 1999 / Accepted: 27 April 1999  相似文献   

15.
Nucleotide excision repair (NER) is distinguished from other DNA repair pathways by its ability to process various DNA lesions. In bacterial NER, UvrA is the key protein that detects damage and initiates the downstream NER cascade. Although it is known that UvrA preferentially binds to damaged DNA, the mechanism for damage recognition is unclear. A β-hairpin in the third Zn-binding module (Zn3hp) of UvrA has been suggested to undergo a conformational change upon DNA binding, and proposed to be important for damage sensing. Here, we investigate the contribution of the dynamics in the Zn3hp structural element to various activities of UvrA during the early steps of NER. By restricting the movement of the Zn3hp using disulfide crosslinking, we showed that the movement of the Zn3hp is required for damage-specific binding, UvrB loading and ATPase activities of UvrA. We individually inactivated each of the nucleotide binding sites in UvrA to investigate its role in the movement of the Zn3hp. Our results suggest that the conformational change of the Zn3hp is controlled by ATP hydrolysis at the distal nucleotide binding site. We propose a bi-phasic damage inspection model of UvrA in which movement of the Zn3hp plays a key role in damage recognition.  相似文献   

16.
Geoffrey W. Platt 《FEBS letters》2009,583(16):2623-10569
β2-microglobulin (β2m) is a 99-residue protein that aggregates to form amyloid fibrils in dialysis-related amyloidosis. The protein provides a powerful model for exploration of the structural molecular mechanisms of fibril formation from a full-length protein in vitro. Fibrils have been assembled from β2m under both low pH conditions, where the precursor is disordered, and at neutral pH where the protein is initially natively folded. Here we discuss the roles of sequence and structure in amyloid formation, the current understanding of the structural mechanisms of the early stages of aggregation of β2m at both low and neutral pH, and the common and distinct features of these assembly pathways.  相似文献   

17.
The carbon storage regulator/regulator of secondary metabolism (Csr/Rsm) type of small non-coding RNAs (sRNAs) is widespread throughout bacteria and acts by sequestering the global translation repressor protein CsrA/RsmE from the ribosome binding site of a subset of mRNAs. Although we have previously described the molecular basis of a high affinity RNA target bound to RsmE, it remains unknown how other lower affinity targets are recognized by the same protein. Here, we have determined the nuclear magnetic resonance solution structures of five separate GGA binding motifs of the sRNA RsmZ of Pseudomonas fluorescens in complex with RsmE. The structures explain how the variation of sequence and structural context of the GGA binding motifs modulate the binding affinity for RsmE by five orders of magnitude (∼10 nM to ∼3 mM, Kd). Furthermore, we see that conformational adaptation of protein side-chains and RNA enable recognition of different RNA sequences by the same protein contributing to binding affinity without conferring specificity. Overall, our findings illustrate how the variability in the Csr/Rsm protein–RNA recognition allows a fine-tuning of the competition between mRNAs and sRNAs for the CsrA/RsmE protein.  相似文献   

18.
19.
Defects in the gene encoding human Polη result in xeroderma pigmentosum variant (XP-V), an inherited cancer-prone syndrome. Polη catalyzes efficient and accurate translesion DNA synthesis (TLS) past UV-induced lesions. In addition to Polη, human cells have multiple TLS polymerases such as Polι, Polκ, Polζ and REV1. REV1 physically interacts with other TLS polymerases, but the physiological relevance of the interaction remains unclear. Here we developed an antibody that detects the endogenous REV1 protein and found that human cells contain about 60,000 of REV1 molecules per cell as well as Polη. In un-irradiated cells, formation of nuclear foci by ectopically expressed REV1 was enhanced by the co-expression of Polη. Importantly, the endogenous REV1 protein accumulated at the UV-irradiated areas of nuclei in Polη-expressing cells but not in Polη-deficient XP-V cells. UV-irradiation induced nuclear foci of REV1 and Polη proteins in both S-phase and G1 cells, suggesting that these proteins may function both during and outside S phase. We reconstituted XP-V cells with wild-type Polη or with Polη mutants harboring substitutions in phenylalanine residues critical for interaction with REV1. The REV1-interaction-deficient Polη mutant failed to promote REV1 accumulation at sites of UV-irradiation, yet (similar to wild-type Polη) corrected the UV sensitivity of XP-V cells and suppressed UV-induced mutations. Interestingly however, spontaneous mutations of XP-V cells were only partially suppressed by the REV1-interaction deficient mutant of Polη. Thus, Polη–REV1 interactions prevent spontaneous mutations, probably by promoting accurate TLS past endogenous DNA lesions, while the interaction is dispensable for accurate Polη-mediated TLS of UV-induced lesions.  相似文献   

20.
The aetiology of cervical cancer has been primarily attributed to human papillomaviruses (HPVs). These are characterized by the persistent expression of the two oncogenes, E6 and E7. Experimental studies show that E6 and E7 genes of the high risk HPVs deregulate key cell cycle controls. Recent work has uncovered new cellular partners for these proteins that throw light on many of the pathways and processes in which these viral proteins intervene. This review focuses on the regulation of host proteins by the viral oncoproteins and consequence of such interactions on cell survival, proliferation, differentiation and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号