首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In all domains of life, proper regulation of the cell cycle is critical to coordinate genome replication, segregation and cell division. In some groups of bacteria, e.g. Alphaproteobacteria, tight regulation of the cell cycle is also necessary for the morphological and functional differentiation of cells. Sinorhizobium meliloti is an alphaproteobacterium that forms an economically and ecologically important nitrogen-fixing symbiosis with specific legume hosts. During this symbiosis S. meliloti undergoes an elaborate cellular differentiation within host root cells. The differentiation of S. meliloti results in massive amplification of the genome, cell branching and/or elongation, and loss of reproductive capacity. In Caulobacter crescentus, cellular differentiation is tightly linked to the cell cycle via the activity of the master regulator CtrA, and recent research in S. meliloti suggests that CtrA might also be key to cellular differentiation during symbiosis. However, the regulatory circuit driving cell cycle progression in S. meliloti is not well characterized in both the free-living and symbiotic state. Here, we investigated the regulation and function of CtrA in S. meliloti. We demonstrated that depletion of CtrA cause cell elongation, branching and genome amplification, similar to that observed in nitrogen-fixing bacteroids. We also showed that the cell cycle regulated proteolytic degradation of CtrA is essential in S. meliloti, suggesting a possible mechanism of CtrA depletion in differentiated bacteroids. Using a combination of ChIP-Seq and gene expression microarray analysis we found that although S. meliloti CtrA regulates similar processes as C. crescentus CtrA, it does so through different target genes. For example, our data suggest that CtrA does not control the expression of the Fts complex to control the timing of cell division during the cell cycle, but instead it negatively regulates the septum-inhibiting Min system. Our findings provide valuable insight into how highly conserved genetic networks can evolve, possibly to fit the diverse lifestyles of different bacteria.  相似文献   

3.
4.
5.
The polar organelle development gene, podJ, is expressed during the swarmer-to-stalked cell transition of the Caulobacter crescentus cell cycle. Mutants with insertions that inactivate the podJ gene are nonchemotactic, deficient in rosette formation, and resistant to polar bacteriophage, but they divide normally. In contrast, hyperexpression of podJ results in a lethal cell division defect. Nucleotide sequence analysis of the podJ promoter region revealed a binding site for the global response regulator, CtrA. Deletion of this site results in increased overall promoter activity, suggesting that CtrA is a negative regulator of the podJ promoter. Furthermore, synchronization studies have indicated that temporal regulation is not dependent on the presence of the CtrA binding site. Thus, although the level of podJ promoter activity is dependent on the CtrA binding site, the temporal control of podJ promoter expression is dependent on other factors.  相似文献   

6.
DnaA protein binds bacterial replication origins and it initiates chromosome replication. The Caulobacter crescentus DnaA also initiates chromosome replication and the C. crescentus response regulator CtrA represses chromosome replication. CtrA proteolysis by ClpXP helps restrict chromosome replication to the dividing cell type. We report that C. crescentus DnaA protein is also selectively targeted for proteolysis but DnaA proteolysis uses a different mechanism. DnaA protein is unstable during both growth and stationary phases. During growth phase, DnaA proteolysis ensures that primarily newly made DnaA protein is present at the start of each replication period. Upon entry into stationary phase, DnaA protein is completely removed while CtrA protein is retained. Cell cycle arrest by sudden carbon or nitrogen starvation is sufficient to increase DnaA proteolysis, and relieving starvation rapidly stabilizes DnaA protein. This starvation-induced proteolysis completely removes DnaA protein even while DnaA synthesis continues. Apparently, C. crescentus relies on proteolysis to adjust DnaA in response to such rapid nutritional changes. Depleting the C. crescentus ClpP protease significantly stabilizes DnaA. However, a dominant-negative clpX allele that blocks CtrA degradation, even when combined with a clpA null allele, did not decrease DnaA degradation. We suggest that either a novel chaperone presents DnaA to ClpP or that ClpX is used with exceptional efficiency so that when ClpX activity is limiting for CtrA degradation it is not limiting for DnaA degradation. This unexpected and finely tuned proteolysis system may be an important adaptation for a developmental bacterium that is often challenged by nutrient-poor environments.  相似文献   

7.
8.
9.
10.
The cell cycle of Caulobacter crescentus involves the polar morphogenesis and an asymmetric cell division driven by precise interactions and regulations of proteins, which makes Caulobacter an ideal model organism for investigating bacterial cell development and differentiation. The abundance of molecular data accumulated on Caulobacter motivates system biologists to analyze the complex regulatory network of cell cycle via quantitative modeling. In this paper, We propose a comprehensive model to accurately characterize the underlying mechanisms of cell cycle regulation based on the study of: a) chromosome replication and methylation; b) interactive pathways of five master regulatory proteins including DnaA, GcrA, CcrM, CtrA, and SciP, as well as novel consideration of their corresponding mRNAs; c) cell cycle-dependent proteolysis of CtrA through hierarchical protease complexes. The temporal dynamics of our simulation results are able to closely replicate an extensive set of experimental observations and capture the main phenotype of seven mutant strains of Caulobacter crescentus. Collectively, the proposed model can be used to predict phenotypes of other mutant cases, especially for nonviable strains which are hard to cultivate and observe. Moreover, the module of cyclic proteolysis is an efficient tool to study the metabolism of proteins with similar mechanisms.  相似文献   

11.
Bacteria are powerful models for understanding how cells divide and accomplish global regulatory programs. In Caulobacter crescentus, a cascade of essential master regulators supervises the correct and sequential activation of DNA replication, cell division, and development of different cell types. Among them, the response regulator CtrA plays a crucial role coordinating all those functions. Here, for the first time, we describe the role of a novel factor named CcnA (cell cycle noncoding RNA A), a cell cycle–regulated noncoding RNA (ncRNA) located at the origin of replication, presumably activated by CtrA, and responsible for the accumulation of CtrA itself. In addition, CcnA may be also involved in the inhibition of translation of the S-phase regulator, GcrA, by interacting with its 5′ untranslated region (5′ UTR). Performing in vitro experiments and mutagenesis, we propose a mechanism of action of CcnA based on liberation (ctrA) or sequestration (gcrA) of their ribosome-binding site (RBS). Finally, its role may be conserved in other alphaproteobacterial species, such as Sinorhizobium meliloti, representing indeed a potentially conserved process modulating cell cycle in Caulobacterales and Rhizobiales.

During cell cycle progression in the bacterium Caulobacter crescentus, the master cell cycle regulator CtrA is controlled by CcnA, a cell cycle-regulated non-coding RNA transcribed from a gene located at the origin of replication.  相似文献   

12.
Asymmetric cell division in Caulobacter crescentus produces two cell types, a stalked cell and a new swarmer cell, with characteristics surface structures. We have examined the role of the cell cycle in the differentiation of these two cells using the adsorption of bacteriophage øLC72, the assembly of the polar flagellum, and stalk formation as assays for changes in surface morphology. Previous studies of this aquatic bacterium [17, 25] have suggested that the replicating chromosome acts as a 'clock' in timing the formation of the flagellar filament at one pole of the new swarmer cell. The analysis of conditional cell cycle mutants presented here extends these results by showing that DNA synthesis is also required for adsorption of phage øLC72 and, more importantly, they also suggest that a late cell division step is involved in determining the spatial pattern in which the phage receptors and flagella are assembled. We propose that this cell division step is required for formation of 'organizational' centers which direct the assembly of surface structures at the new cell poles, and for the polarity reversal in assembly that accompanies swarmer cell to stalked cell development.  相似文献   

13.
Bacteria must control the progression of their cell cycle in response to nutrient availability. This regulation can be mediated by guanosine tetra- or pentaphosphate [(p)ppGpp], which are synthesized by enzymes of the RelA/SpoT homologue (Rsh) family, particularly under starvation conditions. Here, we study the effects of (p)ppGpp on the cell cycle of Caulobacter crescentus, an oligotrophic bacterium with a dimorphic life cycle. C. crescentus divides asymmetrically, producing a motile swarmer cell that cannot replicate its chromosome and a sessile stalked cell that is replication competent. The swarmer cell rapidly differentiates into a stalked cell in appropriate conditions. An artificial increase in the levels of (p)ppGpp in nonstarved C. crescentus cells was achieved by expressing a truncated relA gene from Escherichia coli, encoding a constitutively active (p)ppGpp synthetase. By combining single-cell microscopy, flow cytometry approaches, and swarming assays, we show that an increase in the intracellular concentration of (p)ppGpp is sufficient to slow down the swarmer-to-stalked cell differentiation process and to delay the initiation of chromosome replication. We also present evidence that the intracellular levels of two master regulators of the cell cycle of C. crescentus, DnaA and CtrA, are modulated in response to (p)ppGpp accumulation, even in the absence of actual starvation. CtrA proteolysis and DnaA synthesis seem indirectly inhibited by (p)ppGpp accumulation. By extending the life span of the motile nonreproductive swarmer cell and thus promoting dispersal and foraging functions over multiplication under starvation conditions, (p)ppGpp may play a central role in the ecological adaptation of C. crescentus to nutritional stresses.  相似文献   

14.
The free-living aquatic bacterium, Caulobacter crescentus, exhibits two different morphologies during its life cycle. The morphological change from swarmer cell to stalked cell is a result of changes of function of two bi-functional histidine kinases, PleC and CckA. Here, we describe a detailed molecular mechanism by which the function of PleC changes between phosphatase and kinase state. By mathematical modeling of our proposed molecular interactions, we derive conditions under which PleC, CckA and its response regulators exhibit bistable behavior, thus providing a scenario for robust switching between swarmer and stalked states. Our simulations are in reasonable agreement with in vitro and in vivo experimental observations of wild type and mutant phenotypes. According to our model, the kinase form of PleC is essential for the swarmer-to-stalked transition and to prevent premature development of the swarmer pole. Based on our results, we reconcile some published experimental observations and suggest novel mutants to test our predictions.  相似文献   

15.
Development in Caulobacter reflects a level of complexity once thought only to exist in eukaryotic cells. The cell cycle and development are not isolated from each other, but are interdependent processes. Checkpoints are in place to ensure that both cell cycle and developmental processes are completed accurately before the next stage is initiated. The timing of these processes is regulated by signal transduction networks that integrate signals from DNA replication, cell division and development. These signal transduction networks achieve precise timing of the cell cycle and development by regulating temporal gene expression, and protein activity by dynamic spatial localization within the cell and timed proteolysis.  相似文献   

16.
The peptidoglycan cell wall of bacteria is a complex macromolecule composed of glycan strands that are cross-linked by short peptide bridges. Its biosynthesis involves a conserved group of enzymes, the bifunctional penicillin-binding proteins (bPBPs), which contain both a transglycosylase and a transpeptidase domain, thus being able to elongate the glycan strands and, at the same time, generate the peptide cross-links. The stalked model bacterium Caulobacter crescentus possesses five bPBP paralogs, named Pbp1A, PbpC, PbpX, PbpY, and PbpZ, whose function is still incompletely understood. In this study, we show that any of these proteins except for PbpZ is sufficient for growth and normal morphogenesis when expressed at native or elevated levels, whereas inactivation of all five paralogs is lethal. Growth analyses indicate a central role of PbpX in the resistance of C. crescentus against the noncanonical amino acid d-alanine. Moreover, we show that PbpX and PbpY localize to the cell division site. Their recruitment to the divisome is dependent on the essential cell division protein FtsN and likely involves interactions with FtsL and the putative peptidoglycan hydrolase DipM. The same interaction pattern is observed for Pbp1A and PbpC, although these proteins do not accumulate at midcell. Our findings demonstrate that the bPBPs of C. crescentus are, to a large extent, redundant and have retained the ability to interact with the peptidoglycan biosynthetic machineries responsible for cell elongation, cytokinesis, and stalk growth. Nevertheless, they may preferentially act in specific peptidoglycan biosynthetic complexes, thereby facilitating the independent regulation of distinct growth processes.  相似文献   

17.
18.
19.
Bacterial differentiation is often associated with the asymmetric localization of regulatory proteins, such as histidine kinases. PdhS is an essential and polarly localized histidine kinase in the pathogenic alphaproteobacterium Brucella abortus. After cell division, PdhS is asymmetrically segregated between the two sibling cells, highlighting a differentiation event. However, the function(s) of PdhS in the B. abortus cell cycle remains unknown. We used an original approach, the pentapeptide scanning mutagenesis method, to generate a thermosensitive allele of pdhS. We report that a B. abortus strain carrying this pdhS allele displays growth arrest and an altered DivK-yellow fluorescent protein (YFP) polar localization at the restrictive temperature. Moreover, the production of a nonphosphorylatable PdhS protein or truncated PdhS proteins leads to dominant-negative effects by generating morphological defects consistent with the inhibition of cell division. In addition, we have used a domain mapping approach combined with yeast two-hybrid and fluorescence microscopy methods to better characterize the unusual PdhS sensory domain. We have identified a fragment of the PdhS sensory domain required for protein-protein interaction (amino acids [aa] 210 to 434), a fragment sufficient for polar localization (aa 1 to 434), and a fragment (aa 527 to 661) whose production in B. abortus correlates with the generation of cell shape alterations. The data support a model in which PdhS acts as an essential regulator of cell cycle progression in B. abortus and contribute to a better understanding of the differentiation program inherited by the two sibling cells.  相似文献   

20.
CzcR is the Rickettsia prowazekii homolog of the Caulobacter crescentus global response regulator CtrA. CzcR expression partially compensates for developmental defects in ctrA mutant C. crescentus cells, and CzcR binds to all five CtrA binding sites in the C. crescentus replication origin. Conversely, CtrA binds to five similar sites in the putative R. prowazekii replication origin (oriRp). Also, Escherichia coli IHF protein binds over a central CtrA binding site in oriRp. Therefore, CtrA and IHF regulatory proteins have similar binding patterns in both replication origins, and we propose that CzcR is a global cell cycle regulator in R. prowazekii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号