首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The yeast 2 micron plasmid achieves high fidelity segregation by coupling its partitioning pathway to that of the chromosomes. Mutations affecting distinct steps of chromosome segregation cause the plasmid to missegregate in tandem with the chromosomes. In the absence of the plasmid stability system, consisting of the Rep1 and Rep2 proteins and the STB DNA, plasmid and chromosome segregations are uncoupled. The Rep proteins, acting in concert, recruit the yeast cohesin complex to the STB locus. The periodicity of cohesin association and dissociation is nearly identical for the plasmid and the chromosomes. The timely disassembly of cohesin is a prerequisite for plasmid segregation. Cohesin-mediated pairing and unpairing likely provides a counting mechanism for evenly partitioning plasmids either in association with or independently of the chromosomes.  相似文献   

2.
The 2 micron plasmid of Saccharomyces cerevisiae uses the Kip1 motor, but not the functionally redundant Cin8 motor, for its precise nuclear localization and equal segregation. The timing and lifetime of Kip1p association with the plasmid partitioning locus STB are consistent with Kip1p being an authentic component of the plasmid partitioning complex. Kip1–STB association is not blocked by disassembling the mitotic spindle. Lack of Kip1p disrupts recruitment of the cohesin complex at STB and cohesion of replicated plasmid molecules. Colocalization of a 2 micron reporter plasmid with Kip1p in close proximity to the spindle pole body is reminiscent of that of a CEN reporter plasmid. Absence of Kip1p displaces the plasmid from this nuclear address, where it has the potential to tether to a chromosome or poach chromosome segregation factors. Exploiting Kip1p, which is subsidiary to Cin8p for chromosome segregation, to direct itself to a “partitioning center” represents yet another facet of the benign parasitism of the yeast plasmid.  相似文献   

3.
Huang J  Hsu JM  Laurent BC 《Molecular cell》2004,13(5):739-750
The fidelity of chromosome segregation requires that the cohesin protein complex bind together newly replicated sister chromatids both at centromeres and at discrete sites along chromosome arms. Segregation of the yeast 2 micro plasmid also requires cohesin, which is recruited to the plasmid partitioning locus. Here we report that the RSC chromatin-remodeling complex regulates the differential association of cohesin with centromeres and chromosome arms. RSC cycles on and off chromosomal arm and plasmid cohesin binding sites in a cell cycle-regulated manner 15 min preceding Mcd1p, the central cohesin subunit. We show that in rsc mutants Mcd1p fails to associate with chromosome arms but still binds to centromeres, and that consequently, the arm regions of mitotic sister chromosomes separate precociously while cohesion at centromeres is unaffected. Our data suggest a role for RSC in facilitating the loading of cohesin specifically onto chromosome arms, thereby ensuring sister chromatid cohesion and proper chromosome segregation.  相似文献   

4.
The Saccharomyces cerevisiae 2 micron plasmid exemplifies a benign but selfish genome, whose stability approaches that of the chromosomes of its host. The plasmid partitioning locus STB (stability locus) displays certain functional analogies with centromeres along with critical distinctions, a significant one being the absence of the kinetochore complex at STB. The remodels the structure of chromatin (RSC) chromatin remodeling complex, the nuclear motor Kip1, the histone H3 variant Cse4 and the cohesin complex associate with both loci. These factors appear to contribute to plasmid segregation either directly or indirectly through their roles in chromosome segregation. Assembly and disassembly of the plasmid-coded partitioning proteins Rep1 and Rep2 and host factors at STB follow a temporal hierarchy during the cell cycle. Assembly is initiated by STB association of [Rsc8-Rsc58], followed by [Rep1-Rep2-Kip1] and [Cse4-Rsc2-Sth1] recruitment, and culminates in cohesin assembly. Disassembly starts with dissociation of RSC components, is followed by cohesin disassembly and Cse4 exit during anaphase and late telophase, respectively. [Rep1-Rep2-Kip1] persists through G1 of the ensuing cell cycle. The de novo assembly of the ‘partitioning complex’ is cued by the innate cell cycle clock and is dependent on DNA replication. Shared functional attributes of STB and centromere (CEN) are consistent with a potential evolutionary link between them.  相似文献   

5.
The 2 microm circle plasmid in Saccharomyces cerevisiae is a model for a stable, high-copy-number, extrachromosomal "selfish" DNA element. By combining a partitioning system and an amplification system, the plasmid ensures its stable propagation and copy number maintenance, even though it does not provide any selective advantage to its host. Recent evidence suggests that the partitioning system couples plasmid segregation to chromosome segregation. We now demonstrate an unexpected and unconventional role for the mitotic spindle in the plasmid-partitioning pathway. The spindle specifies the nuclear address of the 2 microm circle and promotes recruitment of the cohesin complex to the plasmid-partitioning locus STB. Only the nuclear microtubules, and not the cytoplasmic ones, are required for loading cohesin at STB. In cells recovering from nocodazole-induced spindle depolymerization and G(2)/M arrest, cohesin-STB association can be established coincident with spindle restoration. This postreplication recruitment of cohesin is not functional in equipartitioning. However, normally acquired cohesin can be inactivated after replication without causing plasmid missegregation. In the mtw1-1 mutant yeast strain, the plasmid cosegregates with the spindle and the spindle-associated chromosomes; by contrast, a substantial number of the chromosomes are not associated with the spindle. These results are consistent with a model in which the spindle promotes plasmid segregation in a chromosome-linked fashion.  相似文献   

6.
The establishment of sister chromatid cohesion during S phase and its dissolution at the metaphase-anaphase transition are essential for the faithful segregation of chromosomes in mitosis [1-4]. Recent studies in yeast genetics and Xenopus biochemistry have identified a large protein complex, cohesin, that plays a key role in sister chromatid cohesion [5-10]. The cohesin complex consists of a heterodimeric pair of SMC (structural maintenance of chromosomes) subunits and at least two non-SMC subunits. This structural organization is reminiscent of that of condensin, another major SMC protein complex that drives chromosome condensation in eukaryotic cells [11]. Condensin has been shown to reconfigure and compact DNA in vitro by utilizing the energy of ATP hydrolysis [12]. Very little is known, however, about how cohesin works at a mechanistic level. Here we report the first set of biochemical activities associated with an intact cohesin complex purified from HeLa cell extracts. The cohesin complex binds directly to double-stranded DNA and induces the formation of large protein-DNA aggregates. In the presence of topoisomerase II, cohesin stimulates intermolecular catenation of circular DNA molecules. This activity is in striking contrast to intramolecular knotting directed by condensin [13]. Cohesin also increases the probability of intermolecular ligation of linear DNA molecules in the presence of DNA ligase. Our results are consistent with a model in which cohesin functions as an intermolecular DNA crosslinker and is part of the molecular "glue" that holds sister chromatids together [14].  相似文献   

7.
The 2 microm circle is a highly persistent "selfish" DNA element resident in the Saccharomyces cerevisiae nucleus whose stability approaches that of the chromosomes. The plasmid partitioning system, consisting of two plasmid-encoded proteins, Rep1p and Rep2p, and a cis-acting locus, STB, apparently feeds into the chromosome segregation pathway. The Rep proteins assist the recruitment of the yeast cohesin complex to STB during the S phase, presumably to apportion the replicated plasmid molecules equally to daughter cells. The DNA-protein and protein-protein interactions of the partitioning system, as well as the chromatin organization at STB, are important for cohesin recruitment. Rep1p variants that are incompetent in binding to Rep2p, STB, or both fail to assist the assembly of the cohesin complex at STB and are nonfunctional in plasmid maintenance. Preventing the cohesin-STB association without impeding Rep1p-Rep2p-STB interactions also causes plasmid missegregation. During the yeast cell cycle, the Rep1p and Rep2p proteins are expelled from STB during a short interval between the late G(1) and early S phases. This dissociation and reassociation event ensures that cohesin loading at STB is replication dependent and is coordinated with chromosomal cohesin recruitment. In an rsc2 Delta yeast strain lacking a specific chromatin remodeling complex and exhibiting a high degree of plasmid loss, neither Rep1p nor the cohesin complex can be recruited to STB. The phenotypes of the Rep1p mutations and of the rsc2 Delta mutant are consistent with the role of cohesin in plasmid partitioning being analogous to that in chromosome partitioning.  相似文献   

8.
Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein.  相似文献   

9.
Chromosomal cohesin forms a ring   总被引:46,自引:0,他引:46  
Gruber S  Haering CH  Nasmyth K 《Cell》2003,112(6):765-777
The cohesin complex is essential for sister chromatid cohesion during mitosis. Its Smc1 and Smc3 subunits are rod-shaped molecules with globular ABC-like ATPases at one end and dimerization domains at the other connected by long coiled coils. Smc1 and Smc3 associate to form V-shaped heterodimers. Their ATPase heads are thought to be bridged by a third subunit, Scc1, creating a huge triangular ring that could trap sister DNA molecules. We address here whether cohesin forms such rings in vivo. Proteolytic cleavage of Scc1 by separase at the onset of anaphase triggers its dissociation from chromosomes. We show that N- and C-terminal Scc1 cleavage fragments remain connected due to their association with different heads of a single Smc1/Smc3 heterodimer. Cleavage of the Smc3 coiled coil is sufficient to trigger cohesin release from chromosomes and loss of sister cohesion, consistent with a topological association with chromatin.  相似文献   

10.
Pericentric heterochromatin, while often considered as “junk” DNA, plays important functions in chromosome biology. It contributes to sister chromatid cohesion, a process mediated by the cohesin complex that ensures proper genome segregation during nuclear division. Long stretches of heterochromatin are almost exclusively placed at centromere-proximal regions but it remains unclear if there is functional (or mechanistic) importance in linking the sites of sister chromatid cohesion to the chromosomal regions that mediate spindle attachment (the centromere). Using engineered chromosomes in Drosophila melanogaster, we demonstrate that cohesin enrichment is dictated by the presence of heterochromatin rather than centromere proximity. This preferential accumulation is caused by an enrichment of the cohesin-loading factor (Nipped-B/NIPBL/Scc2) at dense heterochromatic regions. As a result, chromosome translocations containing ectopic pericentric heterochromatin embedded in euchromatin display additional cohesin-dependent constrictions. These ectopic cohesion sites, placed away from the centromere, disjoin abnormally during anaphase and chromosomes exhibit a significant increase in length during anaphase (termed chromatin stretching). These results provide evidence that long stretches of heterochromatin distant from the centromere, as often found in many cancers, are sufficient to induce abnormal accumulation of cohesin at these sites and thereby compromise the fidelity of chromosome segregation.  相似文献   

11.
Cohesion between sister chromatids, mediated by the chromosomal cohesin complex, is a prerequisite for their alignment on the spindle apparatus and segregation in mitosis. Budding yeast cohesin first associates with chromosomes in G1. Then, during DNA replication in S-phase, the replication fork-associated acetyltransferase Eco1 acetylates the cohesin subunit Smc3 to make cohesin’s DNA binding resistant to destabilization by the Wapl protein. Whether stabilization of cohesin molecules that happen to link sister chromatids is sufficient to build sister chromatid cohesion, or whether additional reactions are required to establish these links, is not known. In addition to Eco1, several other factors contribute to cohesion establishment, including Ctf4, Ctf18, Tof1, Csm3, Chl1 and Mrc1, but little is known about their roles. Here, we show that each of these factors facilitates cohesin acetylation. Moreover, the absence of Ctf4 and Chl1, but not of the other factors, causes a synthetic growth defect in cells lacking Eco1. Distinct from acetylation defects, sister chromatid cohesion in ctf4Δ and chl1Δ cells is not improved by removing Wapl. Unlike previously thought, we do not find evidence for a role of Ctf4 and Chl1 in Okazaki fragment processing, or of Okazaki fragment processing in sister chromatid cohesion. Thus, Ctf4 and Chl1 delineate an additional acetylation-independent pathway that might hold important clues as to the mechanism of sister chromatid cohesion establishment.  相似文献   

12.
Frank Uhlmann 《EMBO reports》2009,10(10):1095-1102
Sister chromatid cohesion is the basis for the recognition of chromosomal DNA replication products for their bipolar segregation in mitosis. Fundamental to sister chromatid cohesion is the ring‐shaped cohesin complex, which is loaded onto chromosomes long before the initiation of DNA replication and is thought to hold replicated sister chromatids together by topological embrace. What happens to cohesin when the replication fork approaches, and how cohesin recognizes newly synthesized sister chromatids, is poorly understood. The characterization of a number of cohesion establishment factors has begun to provide hints as to the reactions involved. Cohesin is a member of the evolutionarily conserved family of Smc subunit‐based protein complexes that contribute to many aspects of chromosome biology by mediating long‐range DNA interactions. I propose that the establishment of cohesion equates to the selective stabilization of those cohesin‐mediated DNA interactions that link sister chromatids in the wake of replication forks.  相似文献   

13.
14.
During S phase, not only does DNA have to be replicated, but also newly synthesized DNA molecules have to be connected with each other. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic or meiotic spindle, and is thus an essential prerequisite for chromosome segregation. Cohesion is mediated by cohesin complexes that are thought to embrace sister chromatids as large rings. Cohesin binds to DNA dynamically before DNA replication and is converted into a stably DNA-bound form during replication. This conversion requires acetylation of cohesin, which in vertebrates leads to recruitment of sororin. Sororin antagonizes Wapl, a protein that is able to release cohesin from DNA, presumably by opening the cohesin ring. Inhibition of Wapl by sororin therefore “locks” cohesin rings on DNA and allows them to maintain cohesion for long periods of time in mammalian oocytes, possibly for months or even years.DNA replication during the synthesis (S) phase generates identical DNA molecules, which, in their chromatinized form, are called sister chromatids. The pairs of sister chromatids remain united as part of one chromosome during the subsequent gap (G2) phase and during early mitosis, in prophase, prometaphase, and metaphase. During these stages of mitosis chromosomes condense, in most eukaryotes the nuclear envelope breaks down, and in all species chromosomes are ultimately attached to both poles of the mitotic spindle. Only once this biorientation has been achieved for all chromosomes, the sister chromatids are separated from each other in anaphase and transported toward opposite spindle poles of the mother cell, enabling its subsequent division into two genetically identical daughter cells.This series of events critically depends on the fact that sister chromatids remain physically connected with each other from S phase until metaphase. This physical connection, called sister chromatid cohesion, opposes the pulling forces that are generated by microtubules that attach to kinetochores and thereby enables the biorientation of chromosomes on the mitotic spindle (Tanaka et al. 2000b). Without cohesion, sister chromatids could therefore not be segregated symmetrically between the forming daughter cells, resulting in aneuploidy. For the same reasons, cohesion is essential for chromosome segregation in meiosis I and meiosis II. Cohesion defects in human oocytes can lead to aneuploidy, which is thought to be the major cause of spontaneous abortion, because only a few types of aneuploidy are compatible with viability, such as trisomy 21 (Down syndrome), trisomy 18 (Edwards syndrome), and trisomy 13 (Patau syndrome) (Hunt and Hassold 2010). Studying the mechanisms of cohesion is therefore essential for understanding how the genome is passed properly from one cell generation to the next.In addition, sister chromatid cohesion facilitates the repair of DNA double-strand breaks in cells that have replicated their DNA, where such breaks can be repaired by a homologous recombination mechanism that uses the undamaged sister chromatid as a template (for review, see Watrin et al. 2006). Furthermore, mutations in the proteins that are required for sister chromatid cohesion can cause defects in chromatin structure and gene regulation, and can in rare cases lead to congenital developmental disorders, called Cornelia de Lange syndrome, Roberts/SC Phocomelia syndrome, and Warsaw Breakage syndrome (for review, see Mannini et al. 2010).  相似文献   

15.
Nasmyth K 《Nature cell biology》2011,13(10):1170-1177
Cohesin confers both intrachromatid and interchromatid cohesion through formation of a tripartite ring within which DNA is thought to be entrapped. Here, I discuss what is known about the four stages of the cohesin ring cycle using the ring model as an intellectual framework. I postulate that cohesin loading onto chromosomes, catalysed by a separate complex called kollerin, is mediated by the entry of DNA into cohesin rings, whereas dissociation, catalysed by Wapl and several other cohesin subunits (an activity that will be called releasin here), is mediated by the subsequent exit of DNA. I suggest that the ring's entry and exit gates may be separate, with the former and latter taking place at Smc1-Smc3 and Smc3-kleisin interfaces, respectively. Establishment of cohesion during S phase involves neutralization of releasin through acetylation of Smc3 at a site close to the putative exit gate of DNA, which locks rings shut until opened irreversibly by kleisin cleavage through the action of separase, an event that triggers the metaphase to anaphase transition.  相似文献   

16.
The mechanism of sister chromatid cohesion   总被引:15,自引:0,他引:15  
Each of our cells inherit their genetic information in the form of chromosomes from a mother cell. In order that we obtain the full genetic complement, cells need to ensure that replicated chromosomes are accurately split and distributed during cell division. Mistakes in this process lead to aneuploidies, cells with supernumerous or missing chromosomes. Most aneuploid human embryos are not viable, and if they are, they develop severe birth defects. Aneuploidies later in human life are frequently found associated with the development of malignant cancer. DNA replication during S-phase is linked to segregation of the sister copies in mitosis by sister chromatid cohesion. A chromosomal protein complex, cohesin, holds replicated sister DNA strands together after their synthesis. This allows pairs of replication products to be recognised by the spindle apparatus in mitosis for segregation into opposite direction. At anaphase onset, cohesin is destroyed by a site-specific protease, separase. Here I review what we have learned about the molecular mechanism of sister chromatid cohesion. Cohesin forms a large proteinaceous ring that may hold sister chromatids by encircling and topological trapping. To understand how cohesin links newly synthesised replication products, biochemical assays to study the enzymology of cohesin will be required.  相似文献   

17.
Analogously to chromosome cohesion in eukaryotes, newly replicated DNA in E. coli is held together by inter-sister linkages before partitioning into daughter nucleoids. In both cases, initial joining is apparently mediated by DNA catenation, in which replication-induced positive supercoils diffuse behind the fork, causing newly replicated duplexes to twist around each other. Type-II topoisomerase-catalyzed sister separation is delayed by the well-characterized cohesin complex in eukaryotes, but cohesion control in E. coli is not currently understood. We report that the abundant fork tracking protein SeqA is a strong positive regulator of cohesion, and is responsible for markedly prolonged cohesion observed at “snap” loci. Epistasis analysis suggests that SeqA stabilizes cohesion by antagonizing Topo IV-mediated sister resolution, and possibly also by a direct bridging mechanism. We show that variable cohesion observed along the E. coli chromosome is caused by differential SeqA binding, with oriC and snap loci binding disproportionally more SeqA. We propose that SeqA binding results in loose inter-duplex junctions that are resistant to Topo IV cleavage. Lastly, reducing cohesion by genetic manipulation of Topo IV or SeqA resulted in dramatically slowed sister locus separation and poor nucleoid partitioning, indicating that cohesion has a prominent role in chromosome segregation.  相似文献   

18.
Cohesin is a protein complex that ties sister DNA molecules from the time of DNA replication until the metaphase to anaphase transition. Current models propose that the association of the Smc1, Smc3, and Scc1/Mcd1 subunits creates a ring-shaped structure that entraps the two sister DNAs [1]. Cohesin is essential for correct chromosome segregation and recombinational repair. Its activity is therefore controlled by several posttranslational modifications, including acetylation, phosphorylation, sumoylation, and site-specific proteolysis. Here we show that cohesin sumoylation occurs at the time of cohesion establishment, after cohesin loading and ATP binding, and independently from Eco1-mediated cohesin acetylation. In order to test the functional relevance of cohesin sumoylation, we have developed a novel approach in budding yeast to deplete SUMO from all subunits in the cohesin complex, based on fusion of the Scc1 subunit to a SUMO peptidase Ulp domain (UD). Downregulation of cohesin sumoylation is lethal, and the Scc1-UD chimeras have a failure in sister chromatid cohesion. Strikingly, the unsumoylated cohesin rings are acetylated. Our findings indicate that SUMO is a novel molecular determinant for the establishment of sister chromatid cohesion, and we propose that SUMO is required for the entrapment of sister chromatids during the acetylation-mediated closure of the cohesin ring.  相似文献   

19.
The contribution of DNA catenation to sister chromatid cohesion is unclear partly because it has never been observed directly within mitotic chromosomes. Differential sedimentation-velocity and gel electrophoresis reveal that sisters of 26 kb circular minichromosomes are held together by catenation as well as by cohesin. The finding that chemical crosslinking of cohesin's three subunit interfaces entraps sister DNAs of circular but not linear minichromosomes implies that cohesin functions using a topological principle. Importantly, cohesin holds both catenated and uncatenated DNAs together in this manner. In the vicinity of centromeres, catenanes are resolved by spindle forces, but linkages mediated directly by cohesin resist these forces even after complete decatenation. Crucially, persistence of catenation after S phase depends on cohesin. We conclude that by retarding Topo II-driven decatenation, cohesin mediates sister chromatid cohesion by an indirect mechanism as well as one involving entrapment of sister DNAs inside its tripartite ring.  相似文献   

20.
The yeast 2-micron plasmid epitomizes the evolutionary optimization of selfish extra-chromosomal genomes for stable persistence without jeopardizing their hosts’ fitness. Analyses of fluorescence-tagged single-copy reporter plasmids and/or the plasmid partitioning proteins in native and non-native hosts reveal chromosome-hitchhiking as the likely means for plasmid segregation. The contribution of the partitioning system to equal segregation is bipartite- replication-independent and replication-dependent. The former nearly eliminates ‘mother bias’ (preferential plasmid retention in the mother cell) according to binomial distribution, thus limiting equal segregation of a plasmid pair to 50%. The latter enhances equal segregation of plasmid sisters beyond this level, elevating the plasmid close to chromosome status. Host factors involved in plasmid partitioning can be functionally separated by their participation in the replication-independent and/or replication-dependent steps. In the hitchhiking model, random tethering of a pair of plasmids to chromosomes signifies the replication-independent component of segregation; the symmetric tethering of plasmid sisters to sister chromatids embodies the replication-dependent component. The 2-micron circle broadly resembles the episomes of certain mammalian viruses in its chromosome-associated propagation. This unifying feature among otherwise widely differing selfish genomes suggests their evolutionary convergence to the common logic of exploiting, albeit via distinct molecular mechanisms, host chromosome segregation machineries for self-preservation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号