首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The genetic code is based on the aminoacylation of tRNA with amino acids catalyzed by the aminoacyl-tRNA synthetases. The synthetases are constructed from discrete domains and all synthetases possess a core catalytic domain that catalyzes amino acid activation, binds the acceptor stem of tRNA, and transfers the amino acid to tRNA. Fused to the core domain are additional domains that mediate RNA interactions distal to the acceptor stem. Several synthetases catalyze the aminoacylation of RNA oligonucleotide substrates that recreate only the tRNA acceptor stems. In one case, a relatively small catalytic domain catalyzes the aminoacylation of these substrates independent of the rest of the protein. Thus, the active site domain may represent a primordial synthetase in which polypeptide insertions that mediate RNA acceptor stem interactions are tightly integrated with determinants for aminoacyl adenylate synthesis. The relationship between nucleotide sequences in small RNA oligonucleotides and the specific amino acids that are attached to these oligonucleotides could constitute a second genetic code.  相似文献   

2.
The specific aminoacylation of RNA oligonucleotides whose sequences are based on the acceptor stems of tRNAs can be viewed as an operational RNA code for amino acids that may be related to the development of the genetic code. Many synthetases also have direct interactions with tRNA anticodon triplets and, in some cases, these interactions are thought to be essential for aminoacylation specificity. In these instances, an unresolved question is whether interactions with parts of the tRNA outside of the anticodon are sufficient for decoding genetic information. Escherichia coli isoleucyl- and methionyl-tRNA synthetases are closely related enzymes that interact with their respective anticodons. We used binary combinatorial mutagenesis of a 10 amino acid anticodon binding peptide in these two enzymes to identify composite sequences that would confer function to both enzymes despite their recognizing different anticodons. A single peptide was found that confers function to both enzymes in vivo and in vitro. Thus, even in enzymes where anticodon interactions are normally important for distinguishing one tRNA from another, these interactions can be 'neutralized' without losing specificity of amino-acylation. We suggest that acceptor helix interactions may play a role in providing the needed specificity.  相似文献   

3.
4.
J P Shi  S A Martinis  P Schimmel 《Biochemistry》1992,31(21):4931-4936
Previous work established that seven-base-pair hairpin microhelices with sequences based on the acceptor stems of alanine, glycine, methionine, and histidine tRNAs can be aminoacylated specifically with their cognate amino acids. To obtain "minimalist" substrates with fewer base pairs, we took advantage of the high thermodynamic stability of RNA tetraloop motifs that are found in ribosomal RNAs. We show here that rationally designed RNA tetraloops with as few as four base pairs are substrates for aminoacylation. Major nucleotide determinants for recognition by the class II synthetases were incorporated into each of the respective tetraloop substrates, resulting in specific aminoacylation by the alanine, glycine, and histidine tRNA synthetases. An analysis of the kinetics of aminoacylation shows that, for the alanine system, the majority of the transition-state stabilization provided by the synthetase-tRNA interaction is reproduced by the interaction of the synthetase with nucleotides in its minimalist tetraloop substrate. In an extension of this work, we also observed specific aminoacylation with the class I methionine tRNA synthetase of RNA tetraloops based on sequences in the acceptor stem of methionine tRNA. Thus, the results demonstrate four different examples where specific aminoacylation is directed by sequences/structures contained in less than half of a turn of an RNA helix.  相似文献   

5.
The aminoacyl-tRNA synthetases arose early in evolution and established the rules of the genetic code through their specific interactions with amino acids and RNA molecules. About half of these tRNA charging enzymes are class I synthetases, which contain similar N-terminal nucleotide-fold-like structures that are joined to variable domains implicated in specific protein-tRNA contacts. Here, we show that a bacterial synthetase gene can be split into two nonoverlapping segments. We split the gene for Escherichia coli methionyl-tRNA synthetase (a class I synthetase) at several sites near the interdomain junction, such that one segment codes for the nucleotide-fold-containing domain and the other provides determinants for tRNA recognition. When the segments are folded together, they can recognize and charge tRNA, both in vivo and in vitro. We postulate that an early step in the assembly of systems to attach amino acids to specific RNA molecules may have involved specific interactions between discrete proteins that is reflected in the interdomain contacts of modern synthetases.  相似文献   

6.
tRNAs are aminoacylated by the aminoacyl-tRNA synthetases. There are at least 20 natural amino acids, but due to the redundancy of the genetic code, 64 codons on the mRNA. Therefore, there exist tRNA isoacceptors that are aminoacylated with the same amino acid, but differ in their sequence and in the anticodon. tRNA identity elements, which are sequence or structure motifs, assure the amino acid specificity. The Seryl-tRNA synthetase is an enzyme that depends on rather few and simple identity elements in tRNASer. The Seryl-tRNA-synthetase interacts with the tRNASer acceptor stem, which makes this part of the tRNA a valuable structural element for investigating motifs of the protein–RNA complex. We solved the high resolution crystal structures of two tRNASer acceptor stem microhelices and investigated their interaction with the Seryl-tRNA-synthetase by superposition experiments. The results presented here show that the amino acid side chains Ser151 and Ser156 of the synthetase are interacting in a very similar way with the RNA backbone of the microhelix and that the involved water molecules have almost identical positions within the tRNA/synthetase interface.  相似文献   

7.
RNA microhelices that reconstruct the acceptor stems of transfer RNAs can be aminoacylated. The anticodon-independent aminoacylation is sequence-specific and suggests a relationship between amino acids and nucleotide sequences which is different from that of the classical genetic code. The specific aminoacylation of RNA microhelices also suggests a highly differentiated adaptation of the structures of aminoacyl-tRNA synthetases to sequences in the acceptor stems of transfer RNAs.  相似文献   

8.
Rodin SN  Rodin AS 《Heredity》2008,100(4):341-355
If the table of the genetic code is rearranged to put complementary codons face-to-face, it becomes apparent that the code displays latent mirror symmetry with respect to two sterically different modes of tRNA recognition. These modes involve distinct classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the acceptor stem, respectively. We analyze the anticodon pairs complementary to the face-to-face codon couplets. Taking into account the invariant nucleotides on either side (5' and 3'), we consider the risk of anticodon confusion and subsequent erroneous aminoacylation in the ancestral coding system. This logic leads to the conclusion that ribozymic precursors of tRNA synthetases had the same two complementary modes of tRNA aminoacylation. This surprising case of molecular mimicry (1) shows a key potential selective advantage arising from the partitioning of aaRSs into two classes, (2) is consistent with the hypothesis that the two aaRS classes were originally encoded by the complementary strands of the same primordial gene and (3) provides a 'missing link' between the classic genetic code, embodied in the anticodon, and the second, or RNA operational, code that is embodied mostly in the acceptor stem and is directly responsible for proper tRNA aminoacylation.  相似文献   

9.

Background  

The genetic code is brought into action by 20 aminoacyl-tRNA synthetases. These enzymes are evenly divided into two classes (I and II) that recognize tRNAs from the minor and major groove sides of the acceptor stem, respectively. We have reported recently that: (1) ribozymic precursors of the synthetases seem to have used the same two sterically mirror modes of tRNA recognition, (2) having these two modes might have helped in preventing erroneous aminoacylation of ancestral tRNAs with complementary anticodons, yet (3) the risk of confusion for the presumably earliest pairs of complementarily encoded amino acids had little to do with anticodons. Accordingly, in this communication we focus on the acceptor stem.  相似文献   

10.
An operational RNA code relates specific amino acids to sequences/structures in RNA hairpin helices which reconstruct the seven-base-pair acceptor stems of transfer RNAs. These RNA oligonucleotides are aminoacylated by aminoacyl tRNA synthetases. The specificity and efficiency of aminoacylation are generally determined by three or four nucleotides which are near the site of amino acid attachment. These specificity-determining nucleotides include the so-called discriminator base and one or two base pairs within the first four base pairs of the helix. With three examples considered here, nucleotide sequence variations between the eubacterial E. coli tRNA acceptor stems and their human cytoplasmic and mitochondrial counterparts are shown to include changes of some of the nucleotides known to be essential for aminoacylation by the cognate E. coli enzymes. If the general locations of the specificity-determining nucleotides are the same in E. coli and human RNAs, these RNA sequence variations imply a similar covariation in sequences/structures of the E. coli and human tRNA synthetases. These covariations would reflect the integral relationship between the operational RNA code and the design and evolution of tRNA synthetases.Based on part of a presentation made at a workshop- Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code-held at Berkeley, CA, July 17–20, 1994  相似文献   

11.
RNA microhelices that recreate the acceptor stems of transfer RNAs are charged with specific amino acids. Here we identify a two-helix pair in alanyl-tRNA synthetase that is required for RNA microhelix binding. A single point mutation at an absolutely conserved residue in this motif selectively disrupts RNA binding without perturbation of the catalytic site. These results, and findings of similar motifs in the proximity of the active sites of other tRNA synthetases, suggest that two-helix pairs are widespread and provide a structural framework important for contacts with bound RNA substrates.  相似文献   

12.
Aminoacylation of tRNAs, catalyzed by 20 aminoacyl-tRNA synthetases, is responsible for establishing the genetic code. The enzymes are divided into two classes on the basis of the architectures of their active sites. Members of the two classes also differ in that they bind opposite sides of the tRNA acceptor stem. Importantly, specific pairs of synthetases--one from each class--can be docked simultaneously onto the acceptor stem. This article relates these specific pairings to the organization of the table of codons that defines the universal genetic code.  相似文献   

13.
Aminoacyl-tRNA synthetases are essential enzymes that help to ensure the fidelity of protein translation by accurately aminoacylating (or "charging") specific tRNA substrates with cognate amino acids. Many synthetases have an additional catalytic activity to confer amino acid editing or proofreading. This activity relieves ambiguities during translation of the genetic code that result from one synthetase activating multiple amino acid substrates. In this review, we describe methods that have been developed for assaying both pre- and post-transfer editing activities. Pre-transfer editing is defined as hydrolysis of a misactivated aminoacyl-adenylate prior to transfer to the tRNA. This reaction has been reported to occur either in the aminoacylation active site or in a separate editing domain. Post-transfer editing refers to the hydrolysis reaction that cleaves the aminoacyl-ester linkage formed between the carbonyl carbon of the amino acid and the 2' or 3' hydroxyl group of the ribose on the terminal adenosine. Post-transfer editing takes place in a hydrolytic active site that is distinct from the site of amino acid activation. Here, we focus on methods for determination of steady-state reaction rates using editing assays developed for both classes of synthetases.  相似文献   

14.
The activation and charging of amino acids onto the acceptor stems of their cognate tRNAs are the housekeeping functions of aminoacyl-tRNA synthetases. The availability of whole genome sequences has revealed the existence of synthetase-like proteins that have other functions linked to different aspects of cell metabolism and physiology. In eubacteria, a paralog of glutamyl-tRNA synthetase, which lacks the tRNA-binding domain, was found to aminoacylate tRNA(Asp) not on the 3'-hydroxyl group of the acceptor stem but on a cyclopentene diol of the modified nucleoside queuosine present at the wobble position of anticodon loop. This modified nucleoside might be a relic of an ancient code.  相似文献   

15.
The anticodon-independent aminoacylation of RNA hairpin helices that reconstruct tRNA acceptor stems has been demonstrated for at least 10 aminoacyl-tRNA synthetases. For Escherichia coli cysteine tRNA synthetase, the specificity of aminoacylation of the acceptor stem is determined by the U73 nucleotide adjacent to the amino acid attachment site. Because U73 is present in all known cysteine tRNAs, we investigated the ability of the E. coli cystein enzyme to aminoacylate a heterologous acceptor stem. We show here that a minihelixCys based on the acceptor-T psi C stem of yeast tRNACys is a substrate for the E. coli enzyme, and that aminoacylation of this minihelix is dependent on U73. Additionally, we identify two base pairs in the acceptor stem that quantitatively convert the E. coli acceptor stem to the yeast acceptor stem. The influence of U73 and these two base pairs is completely retained in the full-length tRNA. This suggests a conserved relationship between the acceptor stem alone and the acceptor stem in the context of a tRNA for aminoacylation with cysteine. However, the primary determinant in the species-specific aminoacylation of the E. coli and yeast cysteine tRNAs is a tertiary base pair at position 15:48 outside of the acceptor stem. Although E. coli tRNACys has an unusual G15:G48 tertiary base pair, yeast tRNACys has a more common G15:C48 that prevents efficient aminoacylation of yeast tRNACys by the E. coli enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The updated structural and phylogenetic analyses of tRNA pairs with complementary anticodons provide independent support for our earlier finding, namely that these tRNA pairs concertedly show complementary second bases in the acceptor stem. Two implications immediately follow: first, that a tRNA molecule gained its present, complete, cloverleaf shape via duplication(s) of a shorter precursor. Second, that common ancestry is shared by two major components of the genetic code within the tRNA molecule--the classic code per se embodied in anticodon triplets, and the operational code of aminoacylation embodied primarily in the first three base pairs of the acceptor stems. In this communication we show that it might have been a double, sense-antisense, in-frame translation of the very first protein-encoding genes that directed the code's earliest expansion, thus preserving this fundamental dual-complementary link between acceptors and anticodons. Furthermore, the dual complementarity appears to be consistent with two mirror-symmetrical modes by which class I and II aminoacyl-tRNA synthetases recognize the cognate tRNAs--from the minor and major groove side of the acceptor stem, respectively.  相似文献   

17.
tRNA identity elements assure the correct aminoacylation of tRNAs by the aminoacyl-tRNA synthetases with the cognate amino acid. The tRNAGly/glycyl-tRNA sythetase system is member of the so-called ‘class II system’ in which the tRNA determinants consist of rather simple elements. These are mostly located in the tRNA acceptor stem and in the glycine case additionally the discriminator base at position 73 is required. Within the glycine-tRNA synthetases, the archaebacterial/human and the eubacterial sytems differ with respect to their protein structures and the required tRNA identity elements, suggesting a unique evolutionary divergence.In this study, we present a comparison between the crystal structures of the eubacterial Escherichia coli and the human tRNAGly acceptor stem microhelices and their surrounding hydration patterns.  相似文献   

18.
RNA minihelices and the decoding of genetic information   总被引:1,自引:0,他引:1  
P Schimmel 《FASEB journal》1991,5(8):2180-2187
The rules of the genetic code are determined by the specific aminoacylation of transfer RNAs by aminoacyl transfer RNA synthetase. A straightforward analysis shows that a system of synthetase-tRNA interactions that relies on anticodons for specificity could, in principle, enable most synthetases to distinguish their cognate tRNA isoacceptors from all others. Although the anticodons of some tRNAs are recognition sites for the cognate aminoacyl tRNA synthetases, for other synthetases the anticodon is dispensable for specific aminoacylation. In particular, alanine and histidine tRNA synthetases aminoacylate small RNA minihelices that reconstruct the part of their cognate tRNAs that is proximate to the amino acid attachment site. Helices with as few as six base pairs can be efficiently aminoacylated. The specificity of aminoacylation is determined by a few nucleotides and can be converted from one amino acid to another by the change of only a few nucleotides. These findings suggest that, for a subgroup of the synthetases, there is a distinct code in the acceptor helix of transfer RNAs that determines aminoacylation specificity.  相似文献   

19.
The aminoacylation of tRNAs by the aminoacyl-tRNA synthetases recapitulates the genetic code by dictating the association between amino acids and tRNA anticodons. The sequences of tRNAs were analyzed to investigate the nature of primordial recognition systems and to make inferences about the evolution of tRNA gene sequences and the evolution of the genetic code. Evidence is presented that primordial synthetases recognized acceptor stem nucleotides prior to the establishment of the three major phylogenetic lineages. However, acceptor stem sequences probably did not achieve a level of sequence diversity sufficient to faithfully specify the anticodon assignments of all 20 amino acids. This putative bottleneck in the evolution of the genetic code may have been alleviated by the advent of anticodon recognition. A phylogenetic analysis of tRNA gene sequences from the deep Archaea revealed groups that are united by sequence motifs which are located within a region of the tRNA that is involved in determining its tertiary structure. An association between the third anticodon nucleotide (N36) and these sequence motifs suggests that a tRNA-like structure existed close to the time that amino acid-anticodon assignments were being established. The sequence analysis also revealed that tRNA genes may evolve by anticodon mutations that recruit tRNAs from one isoaccepting group to another. Thus tRNA gene evolution may not always be monophyletic with respect to each isoaccepting group.Based on a presentation made at a workshop— Aminoacyl-tRNA Synthetases and the Evolution of the Genetic Code—held at Berkeley, CA, July 17–20, 1994 Correspondence to: M.E. Saks  相似文献   

20.
Early work on aminoacylation of alanine-specific tRNA (tRNA(Ala)) by alanyl-tRNA synthetase (AlaRS) gave rise to the concept of an early "second genetic code" imbedded in the acceptor stems of tRNAs. A single conserved and position-specific G:U base pair in the tRNA acceptor stem is the key identity determinant. Further understanding has been limited due to lack of a crystal structure of the enzyme. We determined a 2.14 A crystal structure of the 453 amino acid catalytic fragment of Aquifex aeolicus AlaRS. It contains the catalytic domain characteristic of class II synthetases, a helical domain with a hairpin motif critical for acceptor-stem recognition, and a C-terminal domain of a mixed alpha/beta fold. Docking of tRNA(Ala) on AlaRS shows critical contacts with the three domains, consistent with previous mutagenesis and functional data. It also suggests conformational flexibility within the C domain, which might allow for the positional variation of the key G:U base pair seen in some tRNA(Ala)s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号