首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The type I interferons (IFN-Is) are critical not only in early viral control but also in prolonged T-cell immune responses. However, chronic viral infections such as those of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) in humans and lymphocytic choriomeningitis virus (LCMV) in mice overcome this early IFN-I barrier and induce viral persistence and exhaustion of T-cell function. Although various T-cell-intrinsic and -extrinsic factors are known to contribute to induction of chronic conditions, the roles of IFN-I negative regulators in chronic viral infections have been largely unexplored. Herein, we explored whether 2′–5′ oligoadenylate synthetase-like 1 (OASL1), a recently defined IFN-I negative regulator, plays a key role in the virus-specific T-cell response and viral defense against chronic LCMV. To this end, we infected Oasl1 knockout and wild-type mice with LCMV CL-13 (a chronic virus) and monitored T-cell responses, serum cytokine levels, and viral titers. LCMV CL-13-infected Oasl1 KO mice displayed a sustained level of serum IFN-I, which was primarily produced by splenic plasmacytoid dendritic cells, during the very early phase of infection (2–3 days post-infection). Oasl1 deficiency also led to the accelerated elimination of viremia and induction of a functional antiviral CD8 T-cell response, which critically depended on IFN-I receptor signaling. Together, these results demonstrate that OASL1-mediated negative regulation of IFN-I production at an early phase of infection permits viral persistence and suppresses T-cell function, suggesting that IFN-I negative regulators, including OASL1, could be exciting new targets for preventing chronic viral infection.  相似文献   

2.
Expression of co-inhibitory molecules is generally associated with T-cell dysfunction in chronic viral infections such as HIV or HCV. However, their relative contribution in the T-cell impairment remains unclear. In the present study, we have evaluated the impact of the expression of co-inhibitory molecules such as 2B4, PD-1 and CD160 on the functions of CD8 T-cells specific to influenza, EBV and CMV. We show that CD8 T-cell populations expressing CD160, but not PD-1, had reduced proliferation capacity and perforin expression, thus indicating that the functional impairment in CD160+ CD8 T cells may be independent of PD-1 expression. The blockade of CD160/CD160-ligand interaction restored CD8 T-cell proliferation capacity, and the extent of restoration directly correlated with the ex vivo proportion of CD160+ CD8 T cells suggesting that CD160 negatively regulates TCR-mediated signaling. Furthermore, CD160 expression was not up-regulated upon T-cell activation or proliferation as compared to PD-1. Taken together, these results provide evidence that CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression.  相似文献   

3.
Cytotoxic T cells secrete perforin to kill virus-infected cells. In this study we show that perforin also plays a role in immune regulation. Perforin-deficient (perf −/−) mice chronically infected with lymphocytic choriomeningitis virus (LCMV) contained greater numbers of antiviral T cells compared to persistently infected +/+ mice. The enhanced expansion was seen in both CD4 and CD8 T cells, but the most striking difference was in the numbers of LCMV-specific CD8 T cells present in infected perf −/− mice. Persistent LCMV infection of +/+ mice results in both deletion and anergy of antigen-specific CD8 T cells, and our results show that this peripheral “exhaustion” of activated CD8 T cells occurred less efficiently in perf −/− mice. This excessive accumulation of activated CD8 T cells resulted in immune-mediated damage in persistently infected perf −/− mice; ~50% of these mice died within 2 to 4 weeks, and mortality was fully reversed by in vivo depletion of CD8 T cells. This finding highlights an interesting dichotomy between the role of perforin in viral clearance and immunopathology; perforin-deficient CD8 T cells were unable to clear the LCMV infection but were capable of causing immune-mediated damage. Finally, this study shows that perforin also plays a role in regulating T-cell-mediated autoimmunity. Mice that were deficient in both perforin and Fas exhibited a striking acceleration of the spontaneous lymphoproliferative disease seen in Fas-deficient (lpr) mice. Taken together, these results show that the perforin-mediated pathway is involved in downregulating T-cell responses during chronic viral infection and autoimmunity and that perforin and Fas act independently as negative regulators of activated T cells.  相似文献   

4.
PD-1 expression is generally associated with exhaustion of T cells during chronic viral infections based on the finding that PD-1 expressing cells respond poorly to antigen activation and blockade of PD-1/PD-ligand interaction restores such antigen specific responses in vitro. We tested this hypothesis by examining PD-1 expression on virus-specific CD8 T cells and total T cells in vivo to determine whether PD-1 expression constitutes a reliable marker of immune exhaustion during SIV infection. The expression of PD-1 and Ki67 was monitored longitudinally on T cell subsets in peripheral blood, bone marrow, lymph node and rectal biopsy specimens from rhesus macaques prior to and post infection with pathogenic SIVmac239. During the course of infection, a progressive negative correlation was noted between PD-1 density and Ki67 expression in p11CM+ CD8+ T cells, as seen in other studies. However, for total and memory CD4 and CD8 T cells, a positive correlation was observed between PD-1 and Ki67 expression. Thus, while the levels of non-proliferating PD-1+ p11CM+ CD8 T cells were markedly elevated with progressing infection, such an increase was not seen on total T cells. In addition, total memory PD1+ T cells exhibited higher levels of CCR5 than PD-1 T cells. Interestingly, few PD-1+ CD8+ T cells expressed CCR7 compared to PD-1+ CD4 T cells and PD-1 T cells. In conclusion, overall PD1+ T cells likely represent a particular differentiation stage or trafficking ability rather than exhaustion and in the context of chronic SIV infection, the level of PD-1 expression by T cells does not by itself serve as a reliable marker for immune exhaustion.  相似文献   

5.
During chronic viral infections, T cells are exhausted due to constant antigen exposure and are associated with enhanced programmed death 1 (PD-1) expression. Deficiencies in the PD-1/programmed death-ligand 1 (PD-L1) pathway are associated with autoimmune diseases, including those of the central nervous system (CNS). To understand the role of PD-1 expression in regulating T-cell immunity in the CNS during chronic infection, we characterized PD-1 expression in cerebrospinal fluid (CSF) and blood of individuals with chronic human immunodeficiency virus type 1 (HIV-1) infection. PD-1 expression was higher on HIV-specific CD8+ T cells than on total CD8+ T cells in both CSF and blood. PD-1 expression on CSF T cells correlated positively with CSF HIV-1 RNA and inversely with blood CD4+ T-cell counts, suggesting that HIV-1 infection drives higher PD-1 expression on CSF T cells. However, in every HIV-positive individual, PD-1 expression was higher on T cells in CSF than on those in blood, despite HIV-1 RNA levels being lower. Among healthy HIV-negative controls, PD-1 expression was higher in CSF than in blood. Furthermore, frequencies of the senescence marker CD57 were lower on CSF T cells than on blood T cells, consistent with our prior observation of enhanced ex vivo functional capacity of CSF T cells. The higher PD-1 expression level on CSF T cells therefore does not reflect cellular exhaustion but may be a mechanism to downregulate immune-mediated tissue damage in the CNS. As inhibition of the PD-1/PD-L1 pathway is pursued as a therapeutic option for viral infections, potential effects of such a blockade on development of autoimmune responses in the CNS should be considered.Programmed death 1 (PD-1; also called CD279) and its ligands, PD-L1 (also called B7-H1 or CD274) and PD-L2 (also known as B7-DC or CD-273), regulate T-cell activation, peripheral tolerance, and autoimmunity (22, 43). PD-1 can be expressed on CD8+ and CD4+ T cells, B cells, natural killer T cells, and activated monocytes. PD-L1 is expressed on various cells, including T and B cells, dendritic cells, macrophages, mast cells, nonhematopoietic cell types (including vascular endothelial cells, pancreatic islet cells, astrocytes, keratinocytes, and microglial cells), and cells in immune privileged sites, including the placenta and the eye (22). PD-L2 expression is inducible and is restricted to dendritic cells, monocytes, macrophages, and mast cells (22). During chronic infections, the PD-1/PD-L1 pathway inhibits antigen-specific T-cell responses (7, 8, 35, 46). In human immunodeficiency virus type 1 (HIV-1)-infected individuals, PD-1 expression on HIV-specific T cells in peripheral blood is upregulated and correlates positively with plasma viremia and inversely with CD4+ T-cell counts (7, 46). PD-1 expression on HIV-specific T cells is also associated with T-cell exhaustion, as defined by a reduced ability to proliferate and produce cytokines (7, 46). Inhibition of the PD-1/PD-L1 pathway augments HIV-specific CD8+ and CD4+ T-cell function, and antiretroviral therapy is associated with a significant reduction of PD-1 expression on HIV-specific T cells in peripheral blood (8).The PD-1/PD-L1 pathway also limits immune-mediated tissue damage that may be caused by overreactive peripheral T cells, especially in immune privileged sites such as the central nervous system (CNS). In 1999, the importance of PD-1 for peripheral tolerance was first suggested by studies which showed that PD1−/− mice develop lupus-like autoimmune diseases (32). In humans, polymorphisms in the PDCD1 gene, which encodes PD-1, have been associated with autoimmune diseases, including lupus, diabetes, rheumatoid arthritis, and multiple sclerosis (20, 21, 25). Upregulation of PD-L1 in multiple sclerosis lesions from human brain tissue suggests a role for the PD-1/PD-L1 pathway in regulating T-cell activation and controlling immunopathological damage (33).The CNS is involved by HIV-1 early during primary infection (6, 13), and approximately 40% of patients who develop advanced AIDS without receiving antiretroviral therapy develop cognitive impairment (6, 13, 38). While HIV-1 proteins gp120 (3, 16) and Tat (30) are directly neurotoxic and may contribute to HIV-associated dementia, detrimental neuropathogenic effects have also been postulated for inflammatory and innate immune cells, especially monocytes/macrophages and T cells (11, 19, 49, 50). Immune responses cause neuropathogenesis during other viral infections, and cytotoxic T lymphocytes can worsen the disease through direct cytotoxicity or release of inflammatory cytokines such as gamma interferon (IFN-γ) (14). However, we recently described higher frequencies of functional HIV-specific CD8+ T cells in cerebrospinal fluid (CSF) than in blood among asymptomatic HIV-positive individuals with little or no HIV-1 RNA in CSF, suggesting that HIV-1-specific CD8+ T cells help to control intrathecal viral replication (40).To understand the role of the PD-1/PD-L1 pathway in regulating T-cell responses during viral infection of the CNS, we characterized PD-1 expression on T cells in CSF and peripheral blood among asymptomatic HIV-positive individuals. We hypothesized that T-cell PD1 expression would be lower in CSF than in blood, since HIV-1 RNA concentrations are lower in CSF than in plasma and the magnitude and breadth of IFN-γ-secreting HIV-specific T cells are greater in CSF than in blood (40). We show that, in CSF, HIV-1 RNA correlates directly with PD-1 expression on CD4+, CD8+, and HIV-specific CD8+ T cells. Unexpectedly, PD-1 expression on all T cells is higher in CSF than in blood in HIV-positive patients and healthy HIV-negative controls. In contrast, expression of the senescence marker CD57 is lower in CSF than in blood. These data suggest that higher PD-1 expression on T cells in CSF may be a mechanism to regulate T-cell immunity in the CNS, rather than indicating T-cell exhaustion, and that this regulation is increased by HIV-1 replication.  相似文献   

6.
7.
The intrahepatic immune environment is normally biased towards tolerance. Nonetheless, effective antiviral immune responses can be induced against hepatotropic pathogens. To examine the immunological basis of this paradox we studied the ability of hepatocellularly expressed hepatitis B virus (HBV) to activate immunologically naïve HBV-specific CD8+ T cell receptor (TCR) transgenic T cells after adoptive transfer to HBV transgenic mice. Intrahepatic priming triggered vigorous in situ T cell proliferation but failed to induce interferon gamma production or cytolytic effector function. In contrast, the same T cells differentiated into cytolytic effector T cells in HBV transgenic mice if Programmed Death 1 (PD-1) expression was genetically ablated, suggesting that intrahepatic antigen presentation per se triggers negative regulatory signals that prevent the functional differentiation of naïve CD8+ T cells. Surprisingly, coadministration of an agonistic anti-CD40 antibody (αCD40) inhibited PD-1 induction and restored T cell effector function, thereby inhibiting viral gene expression and causing a necroinflammatory liver disease. Importantly, the depletion of myeloid dendritic cells (mDCs) strongly diminished the αCD40 mediated functional differentiation of HBV-specific CD8+ T cells, suggesting that activation of mDCs was responsible for the functional differentiation of HBV-specific CD8+ T cells in αCD40 treated animals. These results demonstrate that antigen-specific, PD-1-mediated CD8+ T cell exhaustion can be rescued by CD40-mediated mDC-activation.  相似文献   

8.
Adoptive cellular immunotherapy using in vitro expanded CD8+ T cells shows promise for tumour immunotherapy but is limited by eventual loss of function of the transferred T cells through factors that likely include inactivation by tolerogenic dendritic cells (DC). The co-inhibitory receptor programmed death-1 (PD-1), in addition to controlling T-cell responsiveness at effector sites in malignancies and chronic viral diseases is an important modulator of dendritic cell-induced tolerance in naive T cell populations. The most potent therapeutic capacity amongst CD8+ T cells appears to lie within Tcm or Tcm-like cells but memory T cells express elevated levels of PD-1. Based on established trafficking patterns for Tcm it is likely Tcm-like cells interact with lymphoid-tissue DC that present tumour-derived antigens and may be inherently tolerogenic to develop therapeutic effector function. As little is understood of the effect of PD-1/PD-L1 blockade on Tcm-like CD8+ T cells, particularly in relation to inactivation by DC, we explored the effects of PD-1/PD-L1 blockade in a mouse model where resting DC tolerise effector and memory CD8+ T cells. Blockade of PD-1/PD-L1 promoted effector differentiation of adoptively-transferred Tcm-phenotype cells interacting with tolerising DC. In tumour-bearing mice with tolerising DC, effector activity was increased in both lymphoid tissues and the tumour-site and anti-tumour activity was promoted. Our findings suggest PD-1/PD-L1 blockade may be a useful adjunct for adoptive immunotherapy by promoting effector differentiation in the host of transferred Tcm-like cells.  相似文献   

9.
10.
We previously showed that agonistic antibodies to CD40 could substitute for CD4 T-cell help and prevent reactivation of murine gammaherpesvirus 68 (MHV-68) in the lungs of major histocompatibility complex (MHC) class II−/− (CII−/−) mice, which are CD4 T cell deficient. Although CD8 T cells were required for this effect, no change in their activity was detected in vitro. A key question was whether anti-CD40 treatment (or CD4 T-cell help) changed the function of CD8 T cells or another cell type in vivo. To address this question, in the present study, we showed that adoptive transfer of CD8 T cells from virus-infected wild-type mice or anti-CD40-treated CII−/− mice caused a significant reduction in lung viral titers, in contrast to those from control CII−/− mice. Anti-CD40 treatment also greatly prolonged survival of infected CII−/− mice. This confirms that costimulatory signals cause a change in CD8 T cells enabling them to maintain effective long-term control of MHV-68. We investigated the nature of this change and found that expression of the inhibitory receptor PD-1 was significantly increased on CD8 T cells in the lungs of MHV-68-infected CII−/−, CD40−/−, or CD80/86−/− mice, compared with that in wild-type or CD28/CTLA4−/− mice, correlating with the level of viral reactivation. Furthermore, blocking PD-1-PD-L1 interactions significantly reduced viral reactivation in CD4 T-cell-deficient mice. In contrast, the absence of another inhibitory receptor, NKG2A, had no effect. These data suggest that CD4 T-cell help programs a change in CD8 T-cell function mediated by altered PD-1 expression, which enables effective long-term control of MHV-68.Murine gammaherpesvirus 68 (MHV-68) is a naturally occurring rodent pathogen which is closely related to Epstein-Barr virus (EBV) and Kaposi''s sarcoma-associated herpesvirus (KSHV) (17, 64). Intranasal administration of MHV-68 to mice results in acute productive infection of lung epithelial cells and a latent infection in various cell types, including B lymphocytes, dendritic cells, epithelial cells, and macrophages (18, 19, 52, 53, 61, 65). The virus induces an inflammatory infiltrate in the lungs, lymph node enlargement, splenomegaly, and mononucleosis comprising increased numbers of activated CD8 T cells in the blood (53, 58). It has also been reported to induce lymphoproliferative disease/lymphoma in immunocompromised mice (30, 55, 60). Thus, the pathogenesis resembles that of EBV in humans, although structurally, the virus is more closely related to KSHV.Infectious MHV-68 is cleared from the lungs by a T-cell-dependent mechanism 10 to 15 days after infection (18, 53, 56). In wild-type mice, the lungs remain clear of replicating virus thereafter. Although CD4 T cells are not essential for primary clearance of replicating virus, they are required for effective long-term control (11). Thus, major histocompatibility complex (MHC) class II−/− mice that lack CD4 T cells or mice rendered CD4 deficient by antibody treatment initially clear infectious virus from the lungs. However, infectious virus reactivates in the lungs 10 to 15 days later and gradually increases in titer (11, 43). The infected CD4-deficient mice eventually die, apparently from long-term lung damage due to continuing lytic viral replication (11). MHC class II−/− mice do not produce antibody to T-dependent antigens (10). Cytotoxic T-lymphocyte (CTL) epitopes have been identified in open reading frame (ORF) 6 (p56, H-2Db-restricted), and ORF 61 (p79, H-2Kb-restricted) gene products, which appear to encode early lytic-phase proteins (32, 49). The epitopes are presented during two distinct phases during MHV-68 infection, which changes the pattern of CTL dominance (32, 51). However, there is no significant difference in the numbers of CD8 T cells specific for each epitope in wild-type mice and CD4 T-cell-deficient mice (4, 50). In addition, CTL activity measured in vitro does not differ substantially in the lungs of wild-type mice or CD4 T-cell-deficient mice (4, 11, 50). Furthermore, postexposure vaccination with the p56 epitope failed to prevent viral reactivation in class II−/− mice, despite dramatically expanding the number of CD8 T cells specific for the peptide (5). In contrast, vaccination of wild-type mice against these epitopes reduced lytic viral titers in the lung dramatically on subsequent challenge with MHV-68. B-cell-deficient mice clear MHV-68 with the kinetics of wild-type mice and do not show viral reactivation in the lungs (13, 61), suggesting that antibody is not essential for control of the virus. Depletion of CD4 T cells during the latent phase of infection in B-cell-deficient mice does not induce viral reactivation, whereas depletion of both CD4 and CD8 T-cell subsets provokes viral reactivation in the lungs (52). Short-term depletion of both CD4 and CD8 T-cell subsets during the latent phase of infection in wild-type mice does not lead to viral reactivation probably due to the presence of neutralizing antibody (11). Taken together, these results suggest that CD4 and CD8 T cells and B cells play overlapping roles in preventing or controlling reactivation of MHV-68 during the latent phase of infection. However, the B-cell- and CD8 T-cell-mediated control mechanisms do not develop in the absence of CD4 T cells.We, and others, have previously shown that the costimulatory molecule CD28 is not required for long-term control of MHV-68 (28, 29). However, interestingly, mice lacking both of the ligands for CD28, CD80 and CD86, show viral reactivation in the lung (21, 35). Our previously published data showed that agonistic antibodies to CD40 could substitute for CD4 T-cell function in the long-term control of MHV-68 (46). CD8 T-cell receptor-positive (TCR+) cells were required for this effect, while antibody production was not restored (45, 46). MHV-68-infected CD40L−/− mice (7) and CD40−/− mice (29) also showed viral reactivation in the lungs. However, no change in CD8 CTL activity was detected in in vitro assays following anti-CD40 treatment (46). A key question was whether anti-CD40 treatment (or CD4 T-cell help) caused a direct change in CD8 T-cell function or whether both CD8 T cells and an independent anti-CD40-sensitive step were required for viral control. To address this question, we used adoptive transfer of CD8 T cells from MHV-68-infected wild-type mice, anti-CD40-treated mice, or control MHC class II−/− mice to MHV-68-infected class II−/− recipients. We also investigated whether anti-CD40 treatment prolonged survival in addition to reducing lung viral titers. The heterodimeric molecule CD94/NKG2A has been implicated in negatively regulating the CD8 T-cell response to polyomavirus (38) and herpes simplex virus (HSV) (54), while the inhibitory receptor PD-1 (programmed death 1) has been implicated in T-cell exhaustion following infection with several other persistent viruses (2, 15, 20, 22, 26, 36, 39-41, 57, 67). In the present study, we investigated the effect of signaling via various costimulatory molecules on the expression of NKG2A and PD-1 and how these molecules influenced viral control.  相似文献   

11.
Chronic infections are characterized by the inability to eliminate the persisting pathogen and often associated with functional impairment of virus-specific T-cell responses. Costimulation through Glucocorticoid-induced TNFR-related protein (GITR) can increase survival and function of effector T cells. Here, we report that constitutive expression of GITR-ligand (GITRL) confers protection against chronic lymphocytic choriomeningitis virus (LCMV) infection, accelerating recovery without increasing pathology. Rapid viral clearance in GITRL transgenic mice coincided with increased numbers of poly-functional, virus-specific effector CD8+ T cells that expressed more T-bet and reduced levels of the rheostat marker PD-1. GITR triggering also boosted the helper function of virus-specific CD4 T cells already early in the infection, as was evidenced by increased IL-2 and IFNγ production, and more expression of CD40L and T-bet. Importantly, CD4-depletion experiments revealed that the expanded pool of virus-specific effector CD8 T cells and the ensuing viral clearance in LCMV-infected GITRL tg mice was entirely dependent on CD4 T cells. We found no major differences for NK cell and regulatory T cell responses, whereas the humoral response to the virus was increased in GITRL tg mice, but only in the late phase of the infection when the virus was almost eradicated. Based on these findings, we conclude that enhanced GITR-triggering mediates its protective, anti-viral effect on the CD8 T cell compartment by boosting CD4 T cell help. As such, increasing costimulation through GITR may be an attractive strategy to increase anti-viral CTL responses without exacerbating pathology, in particular to persistent viruses such as HIV and HCV.  相似文献   

12.
Mechanisms contributing to the development of chronic viral infections, including chronic hepatitis B virus (HBV) infections, are not well understood. We have shown recently that production of IFN-gamma, an important antiviral cytokine, by HBV-specific CTLs is rapidly induced when they enter the liver of HBV transgenic mice, and then rapidly suppressed, despite the continued presence of Ag. Suppression of IFN-gamma production by the CTLs coincides with the up-regulation of programmed cell death (PD)-1, a cell surface signaling molecule known to inhibit T cell function. To determine whether PD-1 plays a role in the functional suppression of IFN-gamma secretion by CTLs, we treated HBV transgenic mice with blocking Abs specific for PD ligand (PD-L)1, the most widely expressed PD-1 ligand, and adoptively transferred HBV-specific CTLs. Treatment with anti-PD-L1 Abs resulted in a delay in the suppression of IFN-gamma-producing CTLs and a concomitant increase in the absolute number of IFN-gamma-producing CTLs in the liver. These results indicate that PD-1:PD-L1 interactions contribute to the suppression of IFN-gamma secretion observed following Ag recognition in the liver. Blockade of inhibitory pathways such as PD-1:PD-L1 may reverse viral persistence and chronic infection in cases in which the CTL response is suppressed by this mechanism.  相似文献   

13.
In this study, we compared adenoviral vaccine vectors with the capacity to induce equally potent immune responses against non-dominant and immunodominant epitopes of murine lymphocytic choriomeningitis virus (LCMV). Our results demonstrate that vaccination targeting non-dominant epitopes facilitates potent virus-induced T-cell responses against immunodominant epitopes during subsequent challenge with highly invasive virus. In contrast, when an immunodominant epitope was included in the vaccine, the T-cell response associated with viral challenge remained focussed on that epitope. Early after challenge with live virus, the CD8+ T cells specific for vaccine-encoded epitopes, displayed a phenotype typically associated with prolonged/persistent antigenic stimulation marked by high levels of KLRG-1, as compared to T cells reacting to epitopes not included in the vaccine. Notably, this association was lost over time in T cells specific for the dominant T cell epitopes, and these cells were fully capable of expanding in response to a new viral challenge. Overall, our data suggests a potential for broadening of the antiviral CD8+ T-cell response by selecting non-dominant antigens to be targeted by vaccination. In addition, our findings suggest that prior adenoviral vaccination is not likely to negatively impact the long-term and protective immune response induced and maintained by a vaccine-attenuated chronic viral infection.  相似文献   

14.
HIV-1 infection is associated with a progressive loss of T cell functional capacity and reduced responsiveness to antigenic stimuli. The mechanisms underlying T cell dysfunction in HIV-1/AIDS are not completely understood. Multiple studies have shown that binding of program death ligand 1 (PD-L1) on the surface of monocytes and dendritic cells to PD-1 on T cells negatively regulates T cell function. Here we show that neutrophils in the blood of HIV-1-infected individuals express high levels of PD-L1. PD-L1 is induced by HIV-1 virions, TLR-7/8 ligand, bacterial lipopolysaccharide (LPS), and IFNα. Neutrophil PD-L1 levels correlate with the expression of PD-1 and CD57 on CD4+ and CD8+ T cells, elevated levels of neutrophil degranulation markers in plasma, and increased frequency of low density neutrophils (LDNs) expressing the phenotype of granulocytic myeloid-derived suppressor cells (G-MDSCs). Neutrophils purified from the blood of HIV-1-infected patients suppress T cell function via several mechanisms including PD-L1/PD-1 interaction and production of reactive oxygen species (ROS). Collectively, the accumulated data suggest that chronic HIV-1 infection results in an induction of immunosuppressive activity of neutrophils characterized by high expression of PD-L1 and an inhibitory effect on T cell function.  相似文献   

15.
16.
Viral persistence is associated with hierarchical antiviral CD8 T cell exhaustion with increased programmed death-1 (PD-1) expression. In HCV persistence, HCV-specific CD8 T cells from the liver (the site of viral replication) display increased PD-1 expression and a profound functional impairment that is not reversed by PD-1 blockade alone. Here, we report that the inhibitory receptor cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) is preferentially upregulated in PD-1+ T cells from the liver but not blood of chronically HCV-infected patients. PD-1/CTLA-4 co-expression in intrahepatic T cells was associated with a profound HCV-specific effector dysfunction that was synergistically reversed by combined PD-1/CTLA-4 blockade in vitro, but not by blocking PD-1 or CTLA-4 alone. A similar effect was observed in circulating HCV-specific CD8 T cells with increased PD-1/CTLA-4 co-expression during acute hepatitis C. The functional response to combined blockade was directly associated with CTLA-4 expression, lost with CD28-depletion and CD4-independent (including CD4+FoxP3+ Tregs). We conclude that PD-1 and CTLA-4 pathways both contribute to virus-specific T cell exhaustion at the site of viral replication by a redundant mechanism that requires combined PD-1/CTLA-4 blockade to reverse. These findings provide new insights into the mechanisms of virus-specific T cell dysfunction, and suggest that the synergistic effect by combined inhibitory receptor blockade might have a therapeutic application against chronic viral infection in vivo, provided that it does not induce autoimmunity.  相似文献   

17.
Primary HIV-1 infection (PHI) is marked by a flu-like syndrome and high levels of viremia that decrease to a viral set point with the first emergence of virus-specific CD8+ T-cell responses. Here, we investigated in a large cohort of 527 subjects the immunodominance pattern of the first virus-specific cytotoxic T-lymphocyte (CTL) responses developed during PHI in comparison to CTL responses in chronic infection and demonstrated a distinct relationship between the early virus-specific CTL responses and the viral set point, as well as the slope of CD4+ T-cell decline. CTL responses during PHI followed clear hierarchical immunodominance patterns that were lost during the transition to chronic infection. Importantly, the immunodominance patterns of human immunodeficiency virus type 1 (HIV-1)-specific CTL responses detected in primary, but not in chronic, HIV-1 infection were significantly associated with the subsequent set point of viral replication. Moreover, the preservation of the initial CD8+ T-cell immunodominance patterns from the acute into the chronic phase of infection was significantly associated with slower CD4+ T-cell decline. Taken together, these data show that the specificity of the initial CTL response to HIV is critical for the subsequent control of viremia and have important implications for the rational selection of antigens for future HIV-1 vaccines.In the first weeks after human immunodeficiency virus type 1 (HIV-1) acquisition, viral loads peak at high levels, accompanied by a flu-like syndrome (15). A rapid depletion of the CD4+ T-cell population occurs during this acute infection, in particular, within the gastrointestinal tract-associated lymphoid tissue (6, 19, 20), marking a nonrecoverable scar on the immune system. With the resolution of the clinical syndromes, viral loads decrease to a set point, which persists at this level for months to years until progressive CD4+ T-cell decline results in the onset of AIDS. It has been shown that the initial viral set point following primary infection is a very strong predictor of the disease-free period until the onset of AIDS (18, 21, 22).The initial decrease in the viral load during primary HIV-1 infection (PHI) is temporally associated with the first emergence of virus-specific CD8+ T-cell responses, and several studies have provided strong evidence that HIV-1-specific CD8+ T-cell responses are capable of controlling viral replication (5, 16, 24, 25, 27, 31, 33). However, significant numbers of virus-specific CD8+ T cells are detectable both in chronically infected individuals who progress rapidly to AIDS and in those who do not experience HIV-1 disease progression for decades (1, 11), and the characteristics that define a protective HIV-1-specific CD8+ T-cell response are not known. In particular, the level of control over viral replication is not predicted by the overall breadth, magnitude, or function of virus-specific CD8+ T-cell responses in chronic HIV-1 infection (1, 4, 11, 26, 28).Here, we demonstrate in a large cohort of individuals identified during PHI that immunodominance patterns of virus-specific CD8+ T-cell responses detected in PHI, but not in chronic HIV-1 infection, are strongly associated with the subsequent set point of viral replication. These data show that the specificity of the initial CD8+ T-cell response to HIV is critical for the subsequent control of viremia and have important implications for the rational selection of antigens for future HIV-1 vaccines.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) infection results in lifelong chronic infection of trigeminal ganglion (TG) neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1–infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates.  相似文献   

19.

Background

The PD-1 axis is a cell intrinsic immunoregulatory pathway that mediates T cell exhaustion in chronic infection particularly in some viral infections. We hypothesized that PD-1, PD-L1 and PD-L2 would be highly expressed in untreated tuberculosis patients compared to controls due to their chronic infection and would decrease with successful TB treatment.

Materials and Methods

Untreated tuberculosis patients (n = 26) were recruited at diagnosis and followed up during treatment. Household contacts (n = 24) were recruited to establish baseline differences. Blood gene expression ex vivo was investigated using qRT-PCR. Flow cytometry was performed to establish protein expression patterns.

Results

PD-L1 gene expression was found to be elevated in active TB disease; however, this was not observed for PD-1 or PD-L2. The intensive phase of TB treatment was associated with a significant decline in PD-1, PD-L1 and PD-L2 gene expression. PD-1 protein expression on the surface of NK cells, CD8+ and CD4+ T cells was similar in patients with active TB disease compared to controls but declined with successful TB treatment, with the greatest decline occurring on the NK cells followed by CD8+ T cells and then CD4+ T cells. Granzyme B/PD-1 co-expression declined with successful intensive phase treatment.

Conclusion

Modulation of PD-1/PD-L1 pathway through TB treatment indicates changes in the peripheral T cell response caused by live Mycobacterium tuberculosis (Mtb) followed by the response to dead bacilli, antigen-release and immuno-pathology resolution. The PD-1 axis could be a host drug target for immunomodulatory treatments in the future.  相似文献   

20.
Efficient infection control requires potent T-cell responses at sites of pathogen replication. However, the regulation of T-cell effector function in situ remains poorly understood. Here, we show key differences in the regulation of effector activity between CD4+ and CD8+ T-cells during skin infection with HSV-1. IFN-γ-producing CD4+ T cells disseminated widely throughout the skin and draining lymph nodes (LN), clearly exceeding the epithelial distribution of infectious virus. By contrast, IFN-γ-producing CD8+ T cells were only found within the infected epidermal layer of the skin and associated hair follicles. Mechanistically, while various subsets of lymphoid- and skin-derived dendritic cells (DC) elicited IFN-γ production by CD4+ T cells, CD8+ T cells responded exclusively to infected epidermal cells directly presenting viral antigen. Notably, uninfected cross-presenting DCs from both skin and LNs failed to trigger IFN-γ production by CD8+ T-cells. Thus, we describe a previously unappreciated complexity in the regulation of CD4+ and CD8+ T-cell effector activity that is subset-specific, microanatomically distinct and involves largely non-overlapping types of antigen-presenting cells (APC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号