首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate change has resulted in major changes in plant phenology across the globe that includes leaf‐out date and flowering time. The ability of species to respond to climate change, in part, depends on their response to climate as a phenological cue in general. Species that are not phenologically responsive may suffer in the face of continued climate change. Comparative studies of phenology have found phylogeny to be a reliable predictor of mean leaf‐out date and flowering time at both the local and global scales. This is less true for flowering time response (i.e., the correlation between phenological timing and climate factors), while no study to date has explored whether the response of leaf‐out date to climate factors exhibits phylogenetic signal. We used a 52‐year observational phenological dataset for 52 woody species from the Forest Botanical Garden of Heilongjiang Province, China, to test phylogenetic signal in leaf‐out date and flowering time, as well as, the response of these two phenological traits to both temperature and winter precipitation. Leaf‐out date and flowering time were significantly responsive to temperature for most species, advancing, on average, 3.11 and 2.87 day/°C, respectively. Both leaf‐out and flowering, and their responses to temperature exhibited significant phylogenetic signals. The response of leaf‐out date to precipitation exhibited no phylogenetic signal, while flowering time response to precipitation did. Native species tended to have a weaker flowering response to temperature than non‐native species. Earlier leaf‐out species tended to have a greater response to winter precipitation. This study is the first to assess phylogenetic signal of leaf‐out response to climate change, which suggests, that climate change has the potential to shape the plant communities, not only through flowering sensitivity, but also through leaf‐out sensitivity.  相似文献   

2.
This study aims to document shifts in the latitudinal distributions of non-native species relative to their own native distributions and to discuss possible causes and implications of these shifts. We used published and newly compiled data on inter-continentally introduced birds, mammals and plants. We found strong correlations between the latitudinal distributions occupied by species in their native and exotic ranges. However, relatively more non-native species occur at latitudes higher than those in their native ranges, and fewer occur at latitudes lower than those in their native ranges. Only a small fraction of species examined (i.e. <20% of animals and <10% of plants) have expanded their distributions in their exotic range beyond both high- and low-limits of their native latitudes. Birds, mammals and plants tended to shift their exotic ranges in similar ways. In addition, most non-native species (65–85% in different groups) have not reached the distributional extent observed in their native ranges. The possible drivers of latitudinal shifts in the exotic range may include climate change, greater biotic resistance at lower latitudes, historical limitations on ranges in native regions, and the impacts of humans on species distributions. The relatively restricted distribution of most species in their exotic range highlights the great potential of future spread of most introduced species and calls for closely monitoring their directional spread under climate change.  相似文献   

3.
Phenology is a harbinger of climate change, with many species advancing flowering in response to rising temperatures. However, there is tremendous variation among species in phenological response to warming, and any phenological differences between native and non‐native species may influence invasion outcomes under global warming. We simulated global warming in the field and found that non‐native species flowered earlier and were more phenologically plastic to temperature than natives, which did not accelerate flowering in response to warming. Non‐native species' flowering also became more synchronous with other community members under warming. Earlier flowering was associated with greater geographic spread of non‐native species, implicating phenology as a potential trait associated with the successful establishment of non‐native species across large geographic regions. Such phenological differences in both timing and plasticity between native and non‐natives are hypothesised to promote invasion success and population persistence, potentially benefiting non‐native over native species under climate change.  相似文献   

4.
Climate change has resulted in major changes in the phenology—i.e. the timing of seasonal activities, such as flowering and bird migration—of some species but not others. These differential responses have been shown to result in ecological mismatches that can have negative fitness consequences. However, the ways in which climate change has shaped changes in biodiversity within and across communities are not well understood. Here, we build on our previous results that established a link between plant species'' phenological response to climate change and a phylogenetic bias in species'' decline in the eastern United States. We extend a similar approach to plant and bird communities in the United States and the UK that further demonstrates that climate change has differentially impacted species based on their phylogenetic relatedness and shared phenological responses. In plants, phenological responses to climate change are often shared among closely related species (i.e. clades), even between geographically disjunct communities. And in some cases, this has resulted in a phylogenetically biased pattern of non-native species success. In birds, the pattern of decline is phylogenetically biased but is not solely explained by phenological response, which suggests that other traits may better explain this pattern. These results illustrate the ways in which phylogenetic thinking can aid in making generalizations of practical importance and enhance efforts to predict species'' responses to future climate change.  相似文献   

5.
Global change is predicted to alter environmental conditions for populations in numerous ways; for example, invasive species often experience substantial shifts in climatic conditions during introduction from their native to non-native ranges. Whether these shifts elicit a phenotypic response, and how adaptation and phenotypic plasticity contribute to phenotypic change, are key issues for understanding biological invasions and how populations may respond to local climate change. We combined modeling, field data, and a laboratory experiment to test for changing thermal tolerances during the introduction of the tropical lizard Anolis cristatellus from Puerto Rico to Miami, Florida. Species distribution models and bioclimatic data analyses showed lower minimum temperatures, and greater seasonal and annual variation in temperature for Miami compared to Puerto Rico. Two separate introductions of A. cristatellus occurred in Miami about 12 km apart, one in South Miami and the other on Key Biscayne, an offshore island. As predicted from the shift in the thermal climate and the thermal tolerances of other Anolis species in Miami, laboratory acclimation and field acclimatization showed that the introduced South Miami population of A. cristatellus has diverged from its native-range source population by acquiring low-temperature acclimation ability. By contrast, the introduced Key Biscayne population showed little change compared to its source. Our analyses predicted an adaptive response for introduced populations, but our comparisons to native-range sources provided evidence for thermal plasticity in one introduced population but not the other. The rapid acquisition of thermal plasticity by A. cristatellus in South Miami may be advantageous for its long-term persistence there and expansion of its non-native range. Our results also suggest that the common assumption of no trait variation when modeling non-native species distributions is invalid.  相似文献   

6.
Most ecologists believe that climate change poses a significant threat to the persistence of native species. However, in some areas climate change may reduce or eliminate non-native invasive species, creating opportunities for restoration. If invasive species are no longer suited to novel climate conditions, the native communities that they replaced may not be viable either. If neither invasive nor native species are climatically viable, a type of "transformative" restoration will be required, involving the translocation of novel species that can survive and reproduce under new climate conditions. Here, we illustrate one approach for restoration planning by using bioclimatic envelope modeling to identify restoration opportunities in the western United States, where the invasive plant cheatgrass ( Bromus tectorum ) is no longer climatically viable under 2100 conditions projected by the Geophysical Fluid Dynamics Laboratory (GFDL2.1) coupled atmosphere-ocean general circulation model. We then select one example of a restoration target area and identify novel plant species that could become viable at the site in the wake of climate change. We do so by identifying the closest sites that currently have climate conditions similar to those projected at the restoration target area in 2100. This approach is a first step toward identifying appropriate species for transformative restoration.  相似文献   

7.
Restoring the estimated 1 billion hectares of degraded forests must consider future climate accompanied by novel ecosystems. Transformational restoration can play a key role in adaptation to climate change but it is conceptually the most divergent from contemporary approaches favoring native species and natural disturbance regimes. Here, we review concepts of novelty in ecosystems with examples of emergent/neo-native and designed novel ecosystems, with application to transformational restoration. Danish forests have a high degree of novelty and provide a realistic context for discussing assisted migration, one method of transformational adaptation. Deforestation and impacts of past land use created a highly degraded landscape dominated by heathland in western Denmark. Restoration with non-native species began 150 years ago because the native broadleaves could not establish on the heathlands. Danish forestry continues to rely extensively on non-native species. Preparing for transformational adaptation requires risky research today to prepare for events in the future and refugia from the last glaciation may provide genetic material better adapted to future climate. A new project will test whether species and provenances from the Caspian forests in Iran possess greater genetic diversity and superior resistance (physiological adaptability) and resilience (evolutionary adaptability) and possibly a gene pool for future adaptation.  相似文献   

8.
Knapp S  Kühn I 《Ecology letters》2012,15(7):696-703
Recently, ecologists debated whether distinguishing native from non-native species is sensible or not. One argument is that widespread and less widespread species are functionally different, whether or not they are native. An opposing statement points out ecologically relevant differences between native and non-native species. We studied the functional traits that drive native and non-native vascular plant species frequency in Germany by explaining species grid-cell frequency using traits and their interaction with status. Native and non-native species frequency was equally driven by life span, ploidy type and self-compatibility. Non-native species frequency rose with later flowering cessation date, whereas this relationship was absent for native species. Native and non-native species differed in storage organs and in the number of environmental conditions they tolerate. We infer that environmental filters drive trait convergence of native and non-native species, whereas competition drives trait divergence. Meanwhile, introduction pathways functionally bias the frequency of non-native species.  相似文献   

9.
I compare the sizes of non-native and native ants to evaluate how worker size may be related to the ability of a species to invade new habitats. I compare the size of 78 non-native ant species belonging to 26 genera with the size of native congeneric species; native ants are larger than non-native ants in 22 of 26 genera. Ants were sorted by genera into fighting and nonfighting groups, based on observations of interspecific interactions with other ant species. In all of the genera with monomorphic worker castes that fight during competition, the non-native species were smaller than the native species. The genera that engage in combat had a higher frequency of significantly smaller size in non-native ants. I selected Wasmannia auropunctata for further studies, to compare native and non-native populations. Specimens of W. auropunctata from non-native populations were smaller than conspecific counterparts from its native habitat. I consider hypotheses to explain why non-native ants are smaller in size than native ants, including the role of colony size in interspecific fights, changes in life history, the release from intraspecific fighting, and climate. The discovery that fighting non-natives are smaller than their closest native relatives may provide insight into the mechanisms for success of non-native species, as well as the role of worker size and colony size during interspecific competition.  相似文献   

10.
There is ample evidence for species distributional changes in response to recent climate change, but most studies are biased toward better known taxa. Thus, an integrated approach is needed that includes the “cryptic diversity” represented partly by lichens, which are among the most sensitive organisms to environmental change due to their physiological characteristics. The use of functional traits and ecological attributes may improve the interpretation of how species respond to climate change. Thus, we quantified the future climate change impacts on 41 lichen species distributed in the Iberian Peninsula using ensemble climatic suitability maps (derived from generalized linear and generalized additive models, and classification and regression tree analysis) and different metrics. We also determined the lichen traits/attributes that might be related to a shared response to climate change. The results indicated a loss of bioclimatic space for 75% of the species studied and an increase for 10 species, especially in Mediterranean ones. Most of the species that will lose more than 70% of their current modeled distribution area comprised big macrolichens with cyanobacteria as the photobiont, thereby indicating a great biomass loss in forests, which might affect nutrient cycles. We also found that the predicted distributions were trait-related. Smaller species, green-algae lichens, and saxicolous and epiphyte species will respond better to future climate change. The results of this type of study may help to identify the species that are most vulnerable to climate change and facilitate the development of conservation measures to avoid their decline.  相似文献   

11.
The introduction of non-native predators is thought to have important negative effects on native prey populations. The susceptibility of native prey to non-native or introduced predators may depend on their ability to respond appropriately to the presence of these non-native predators. We conducted a laboratory based behavioral experiment to examine the response of American toad (Bufo americanus) and bullfrog (Rana catesbeiana) tadpoles to the presence of cues from the introduced mosquitofish (Gambusia affinis), a potential tadpole predator. Neither the American toad tadpoles nor the bullfrog tadpoles responded behaviorally to the presence of mosquitofish cues. If tadpoles are unable to respond to the presence of mosquitofish cues appropriately, then their ability to avoid predation by mosquitofish may be compromised and this may contribute to the impacts of mosquitofish on some tadpole populations.  相似文献   

12.
Flowering phenology is an important and poorly understood plant trait that may possibly be related to the invasiveness potential of alien species. The present work evaluates whether flowering time of invasive alien species is a key trait to overcome the climatic filters operating in continental Mediterranean ecosystems of Spain (characterised by summer drought and low temperatures in winter). We conducted comparisons between the flowering phenology of the invasive species in their native range and in Spain, and between flowering phenology of 91 coexisting invasive–native species pairs. For the alien species, geographical change from the native to the invaded region did not result in shifts in the start and the length of the flowering period. Overall, climatic conditions in the native range of species selected for a flowering pattern is maintained after translocation of the species to another region. Flowering of tropical and temperate invasive alien species peaked in summer, which contrasts with the spring flowering of native and invasive alien species of Mediterranean climate origin. By exploiting this new temporal niche, these invasive alien species native to tropical and temperate regions benefit from reduced competition with natives for abiotic and biotic resources. We suggest that human-mediated actions have reduced the strength of the summer drought filter in particular microhabitats, permitting the invasion of many summer-flowering aliens.  相似文献   

13.
A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N) are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1) native species monocultures and 2) mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass) in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use) was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both plant evolutionary history and introduced species will shape community productivity in a changing world.  相似文献   

14.
Biogeographical comparisons of native and non-native populations allow researchers to understand the degree to which traits contributing to invasion success are intrinsic or change during the invasion process. Here, we investigate whether traits underlying interspecific competition change following invasion and whether these alter the impacts of two crayfish congeners that have invaded into each other’s native ranges. Specifically, we compared native and non-native populations of rusty (Faxonius rusticus) and virile crayfish (F. virilis). We compared native and non-native populations of each species using laboratory assays to examine aggression and large mesocosms with the congeners in sympatry to examine growth and survival as well as impacts on lower trophic levels. We found that non-native virile crayfish were more aggressive in response to a threat than native virile crayfish and exhibited greater growth and survival in sympatry with rusty crayfish. These intraspecific differences were large enough to alter coexistence between species in the mesocosm experiment, which is consistent with patterns of coexistence between these species in the field. We did not observe differences in traits between native and non-native rusty crayfish, but rusty crayfish were consistently competitively dominant over virile crayfish in paired laboratory assays. Non-native populations of both species had greater impacts on lower trophic levels than native populations. Taken together, these findings provide new evidence that trait changes during invasions may enhance ecological impacts of invasive animals and their ability to compete with closely related native species.  相似文献   

15.
Non-native species are recognized as important components of change to food web structure. Non-native prey may increase native predator populations by providing an additional food source and simultaneously decrease native prey populations by outcompeting them for a limited resource. This pattern of apparent competition may be important for plants and sessile marine invertebrate suspension feeders as they often compete for space and their immobile state make them readily accessible to predators. Reported studies on apparent competition have rarely been examined in biological invasions and no study has linked seasonal patterns of native and non-native prey abundance to increasing native predator populations. Here, we evaluate the effects of non-native colonial ascidians (Diplosoma listerianum and Didemnum vexillum) on population growth of a native predator (bloodstar, Henricia sanguinolenta) and native sponges through long-term surveys of abundance, prey choice and growth experiments. We show non-native species facilitate native predator population growth by providing a novel temporal resource that prevents loss of predator biomass when its native prey species are rare. We expect that by incorporating native and non-native prey seasonal abundance patterns, ecologists will gain a more comprehensive understanding of the mechanisms underlying the effects of non-native prey species on native predator and prey population dynamics.  相似文献   

16.
Many studies have shown that soil disturbance facilitates establishment of invasive, non-native plant species, and a number of mechanisms have been isolated that contribute to the process. To our knowledge no studies have isolated the role of altered soil compaction, a likely correlate of many types of soil disturbance, in facilitating invasion. To address this, we measured the response of seeded non-native and native plant species to four levels of soil compaction in mesocosms placed in an abandoned agricultural field in the Methow Valley, Washington, USA. Soil compaction levels reflected the range of resistance to penetration (0.1–3.0 kg cm−2) measured on disturbed soils throughout the study system prior to the experiment. Percent cover of non-native species, namely Bromus tectorum and Centaurea diffusa, decreased by 34% from the least to the most compacted treatments, whereas percent cover of native species, mostly Pseudoroegneria spicata and Lupinus spp., did not respond to compaction treatments. Experimental results were supported by a survey of soil penetration resistance and percent cover by species in 18 abandoned agricultural fields. Percent cover of B. tectorum was negatively related to soil compaction levels, whereas none of the native species showed any response to soil compaction. These results highlight a potentially important, though overlooked, aspect of soil disturbance that may contribute to subsequent non-native plant establishment.  相似文献   

17.
Plant populations migrating in response to climate change will have to colonize established communities. Even if a population disperses to a new region with a favorable climate, interactions with other species may prevent its establishment and further spread. The potential of these species to grow along with residents will be a critical factor controlling their response to climate change. To determine the capacity of migrating species to colonize established communities we conducted extensive long-term transplant experiments where potential tree migrant species, i.e. species within 'migration range,' were planted side by side with resident ones. Potential immigrants were selected to be representative species of their native communities. For both groups, residents and potential migrants (17 species), we compared their growth response along gradients in soil moisture and light availability. Rather than manipulate climate directly, we exploited natural microclimatic gradients and the fluctuations in climate that occurred during the 5-year experiment. Experimental results were used to estimate growth in the context of novel climate and relevant establishment factors. Results suggest that potential immigrant species had similar growth rates in the new environment than those from resident species ensuring their ability to establish in the area. However, contrary to our expectations, the soil moisture requirements for the immigrant group were similar to those of the resident species. These results could have major implications for vegetation changes under the predicted drier climate for the region. If it is the case that neither resident species nor potential migrants are able to maintain stable populations, the region may experience a decline in local biodiversity.  相似文献   

18.

Aim

Studies investigating the determinants of plant invasions rarely examine multiple factors and often only focus on the role played by native plant species richness. By contrast, we explored how vegetation structure, landscape features and climate shape non-native plant invasions across New Zealand in mānuka and kānuka shrublands.

Location

New Zealand.

Method

We based our analysis on 247 permanent 20 × 20-m plots distributed across New Zealand surveyed between 2009 and 2014. We calculated native plant species richness and cumulative cover at ground, understorey and canopy tiers. We examined non-native species richness and mean species ground cover in relation to vegetation structure (native richness and cumulative cover), landscape features (proportion of adjacent anthropogenic land cover, distance to nearest road or river) and climate. We used generalized additive models (GAM) to assess which variables had greatest importance in determining non-native richness and mean ground cover and whether these variables had a similar effect on native species in the ground tier.

Results

A positive relationship between native and non-native plant species richness was not due to their similar responses to the variables examined in this study. Higher native canopy richness resulted in lower non-native richness and mean ground cover, whereas higher native ground richness was associated with higher native canopy richness. Non-native richness and mean ground cover increased with the proportion of adjacent anthropogenic land cover, whereas for native richness and mean ground cover, this relationship was negative. Non-native richness increased in drier areas, while native richness was more influenced by temperature.

Main Conclusions

Adjacent anthropogenic land cover seems to not only facilitate non-native species arrival by being a source of propagules but also aids their establishment as a result of fragmentation. Our results highlight the importance of examining both cover and richness in different vegetation tiers to better understand non-native plant invasions.  相似文献   

19.
Understanding species responses to global change will help predict shifts in species distributions as well as aid in conservation. Changes in the timing of seasonal activities of organisms over time may be the most responsive and easily observable indicator of environmental changes associated with global climate change. It is unknown how global climate change will affect species distributions and developmental events in subtropical ecosystems or if climate change will differentially favor nonnative species. Contrary to previously observed trends for earlier flowering onset of plant species with increasing spring temperatures from mid and higher latitudes, we document a trend for delayed seasonal flowering among plants in Florida. Additionally, there were few differences in reproductive responses by native and nonnative species to climatic changes. We argue that plants in Florida have different reproductive cues than those from more northern climates. With global change, minimum temperatures have become more variable within the temperate-subtropical zone that occurs across the peninsula and this variation is strongly associated with delayed flowering among Florida plants. Our data suggest that climate change varies by region and season and is not a simple case of species responding to consistently increasing temperatures across the region. Research on climate change impacts need to be extended outside of the heavily studied higher latitudes to include subtropical and tropical systems in order to properly understand the complexity of regional and seasonal differences of climate change on species responses.  相似文献   

20.
Phenotypic plasticity may be advantageous for plants to be able to rapidly cope with new and changing environments associated with climate change or during biological invasions. This is especially true for perennial plants, as they may need a longer period to respond genetically to selective pressures than annuals, and also because they are more likely to experience environmental changes during their lifespan. However, few studies have explored the plasticity of the reproductive life history traits of woody perennial species. This study focuses on a woody shrub, Ulex europaeus (common gorse), and on the response of its reproductive traits to one important environmental factor, shading. The study was performed on clones originating from western France (within the native range of this invasive species) and grown for seven years. We compared traits of plants grown in a shade treatment (with two successive shade levels) vs. full natural light. The traits monitored included flowering onset, pod production and seed predation. All traits studied responded to shading, exhibiting various levels of plasticity. In particular, dense shade induced a radical but reversible decrease in flower and pod production, while moderate shade had little effect on reproductive traits. The magnitude of the response to dense shade depended on the genotype, showing a genetically based polymorphism of plasticity. The level of plasticity also showed substantial variations between years, and the effect of environmental variations was cumulative over time. This suggests that plasticity can influence the lifetime fitness of U. Europaeus and is involved in the capacity of the species to grow under contrasting environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号