首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meissner G 《Cell calcium》2004,35(6):621-628
The release of Ca(2+) ions from intracellular stores is a key step in a wide variety of cellular functions. In striated muscle, the release of Ca(2+) from the sarcoplasmic reticulum (SR) leads to muscle contraction. Ca(2+) release occurs through large, high-conductance Ca(2+) release channels, also known as ryanodine receptors (RyRs) because they bind the plant alkaloid ryanodine with high affinity and specificity. The RyRs are isolated as 30S protein complexes comprised of four 560 kDa RyR2 subunits and four 12 kDa FK506 binding protein (FKBP12) subunits. Multiple endogenous effector molecules and posttranslational modifications regulate the RyRs. This review focuses on current research toward understanding the control of the isolated cardiac Ca(2+) release channel/ryanodine receptor (RyR2) by Ca(2+), calmodulin, thiol oxidation/reduction and nitrosylation, and protein phosphorylation.  相似文献   

2.
Cardiac ryanodine receptor (RyR2) function is modulated by Ca(2+) and Mg(2+). To better characterize Ca(2+) and Mg(2+) binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+): Mg(2+), Ca(2+), Sr(2+), Ba(2+)) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+) binding to high affinity activating sites at the cytosolic channel surface, specific for Ca(2+) or Sr(2+). This activation was interfered by Mg(2+) and Ba(2+) acting at low affinity M(2+)-unspecific binding sites. When testing the effects of luminal M(2+) as current carriers, all M(2+) increased maximal RyR2 open probability (compared to Cs(+)), suggesting the existence of low affinity activating M(2+)-unspecific sites at the luminal surface. Responses to M(2+) vary from channel to channel (heterogeneity). However, with luminal Ba(2+)or Mg(2+), RyR2 were less sensitive to cytosolic Ca(2+) and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca(2+)or Sr(2+)). Kinetics of RyR2 with mixtures of luminal Ba(2+)/Ca(2+) and additive action of luminal plus cytosolic Ba(2+) or Mg(2+) suggest luminal M(2+) differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca(2+)/Sr(2+)-specific sites, which stabilize high P(o) mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca(2+) activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M(2+) binding sites (specific for Ca(2+) and unspecific for Ca(2+)/Mg(2+)) that dynamically modulate channel activity and gating status, depending on SR voltage.  相似文献   

3.
We have examined the biochemical and functional properties of the recently identified, uncharacterised CLIC-2 protein. Sequence alignments showed that CLIC-2 has a high degree of sequence similarity with CLIC-1 and some similarity to the omega class of glutathione transferases (GSTO). A homology model of CLIC-2 based on the crystal structure of CLIC-1 suggests that CLIC-2 belongs to the GST structural family but, unlike the GSTs, CLIC-2 exists as a monomer. It also has an unusual enzyme activity profile. While the CXXC active site motif is conserved between CLIC-2 and the glutaredoxins, no thiol transferase activity was detected. In contrast, low glutathione peroxidase activity was recorded. CLIC-2 was found to be widely distributed in tissues including heart and skeletal muscle. Functional studies showed that CLIC-2 inhibited cardiac ryanodine receptor Ca2+ release channels in lipid bilayers when added to the cytoplasmic side of the channels and inhibited Ca2+ release from cardiac sarcoplasmic reticulum vesicles. The inhibition of RyR channels was reversed by removing CLIC-2 from the solution or by adding an anti-CLIC-2 antibody. The results suggest that one function of CLIC-2 might be to limit Ca2+ release from internal stores in cells.  相似文献   

4.
The skeletal muscle (RyR1) and cardiac muscle (RyR2) ryanodine receptor calcium release channels contain a single, conserved calmodulin (CaM) binding domain, yet are differentially regulated by CaM. Here, we report that high-affinity [(35)S]CaM binding to RyR1 is driven by favorable enthalpic and entropic contributions at Ca(2+) concentrations from <0.01 to 100 microM. At 0.15 microM Ca(2+), [(35)S]CaM bound to RyR2 with decreased affinity and binding enthalpy compared with RyR1. The rates of [(35)S]CaM dissociation from RyR1 increased as the temperature was raised, whereas at 0.15 microM Ca(2+) the rate from RyR2 was little affected. The results suggest major differences in the energetics of CaM binding to and dissociation from RyR1 and RyR2.  相似文献   

5.
S-Adenosyl-l-methionine (SAM) is the biological methyl-group donor for the enzymatic methylation of numerous substrates including proteins. SAM has been reported to activate smooth muscle derived ryanodine receptor calcium release channels. Therefore, we examined the effects of SAM on the cardiac isoform of the ryanodine receptor (RyR2). SAM increased cardiac sarcoplasmic reticulum [3H]ryanodine binding in a concentration-dependent manner by increasing the affinity of RyR2 for ryanodine. Activation occurred at physiologically relevant concentrations. SAM, which contains an adenosine moiety, enhanced ryanodine binding in the absence but not in the presence of an ATP analogue. S-Adenosyl-l-homocysteine (SAH) is the product of the loss of the methyl-group from SAM and inhibits methylation reactions. SAH did not activate RyR2 but did inhibit SAM-induced RyR2 activation. SAH did not alter adenine nucleotide activation of RyR2. These data suggest SAM activates RyR2 via a site that interacts with, but is distinct from, the adenine nucleotide binding site.  相似文献   

6.
Release of Ca2+ from the sarcoplasmic reticulum (SR) drives contractile function of cardiac myocytes. Luminal Ca2+ regulation of SR Ca2+ release is fundamental not only in physiology but also in physiopathology because abnormal luminal Ca2+ regulation is known to lead to arrhythmias, catecholaminergic polymorphic ventricular tachycardia (CPVT), and/or sudden cardiac arrest, as inferred from animal model studies. Luminal Ca2+ regulates ryanodine receptor (RyR)2-mediated SR Ca2+ release through mechanisms localized inside the SR; one of these involves luminal Ca2+ interacting with calsequestrin (CASQ), triadin, and/or junctin to regulate RyR2 function.CASQ2-RyR2 regulation was examined at the single RyR2 channel level. Single RyR2s were incorporated into planar lipid bilayers by the fusion of native SR vesicles isolated from either wild-type (WT), CASQ2 knockout (KO), or R33Q-CASQ2 knock-in (KI) mice. KO and KI mice have CPVT-like phenotypes. We show that CASQ2(WT) action on RyR2 function (either activation or inhibition) was strongly influenced by the presence of cytosolic MgATP. Function of the reconstituted CASQ2(WT)–RyR2 complex was unaffected by changes in luminal free [Ca2+] (from 0.1 to 1 mM). The inhibition exerted by CASQ2(WT) association with the RyR2 determined a reduction in cytosolic Ca2+ activation sensitivity. RyR2s from KO mice were significantly more sensitive to cytosolic Ca2+ activation and had significantly longer mean open times than RyR2s from WT mice. Sensitivity of RyR2s from KI mice was in between that of RyR2 channels from KO and WT mice. Enhanced cytosolic RyR2 Ca2+ sensitivity and longer RyR2 open times likely explain the CPVT-like phenotype of both KO and KI mice.  相似文献   

7.
调节Ryanodine受体的相关蛋白   总被引:1,自引:0,他引:1  
Ryanodine受体(RyR)是存在于内质网/肌浆网上(ER/SR)的一种钙释放经能迅速地将Ca^2+从ERSR中释放出来。从而发挥一系列的生理功能。RyR是一种颇复杂的分子,其位于胞质的亚基上有大量可供作用物结合的位点,控制构成离子通道的亚基上有大量可供作用物结合的位点。控制构成离子通道的亚基的活性。其中,一些内源性蛋白对RyR的活性有重要的调节作用。本文主要介绍DHPRs、TKBP等这些与R  相似文献   

8.
Abnormal ryanodine receptor channels in malignant hyperthermia.   总被引:7,自引:7,他引:7       下载免费PDF全文
Previous studies have demonstrated a defect associated with the calcium release mechanism of sarcoplasmic reticulum (SR) from individuals susceptible to malignant hyperthermia (MH). To examine whether SR calcium release channels were indeed altered in MH, SR vesicles were purified from normal and MH susceptible (MHS) porcine muscle. The Ca2+ dependence of calcium efflux rates from 45Ca2(+)-filled SR vesicles was then compared with the Ca2+ dependence of single-channel recordings of SR vesicles incorporated into planar lipid bilayers. The rate constants of 45Ca2+ efflux from MHS SR were two to threefold larger than from normal SR over a wide range of myoplasmic Ca2+. Normal and MHS single channels were progressively activated in a similar fashion by cis Ca2+ from pCa 7 to 4. However, below pCa 4, normal channels were inactivated by cis Ca2+, whereas MHS channels remained open for significantly longer times. The altered Ca2+ dependence of channel inactivation in MHS SR was also evident when Ca2+ was increased on the trans side while cis Ca2+ was held constant. We propose that a defect in a low-affinity Ca2+ binding site is responsible for the altered gating of MHS SR channels. Such a defect could logically result from a mutation in the gene encoding the calcium release channel, providing a testable hypothesis for the molecular basis of this inherited disorder.  相似文献   

9.
The mammalian ryanodine receptor Ca2+ release channel (RyR) has a single conserved high affinity calmodulin (CaM) binding domain. However, the skeletal muscle RyR1 is activated and cardiac muscle RyR2 is inhibited by CaM at submicromolar Ca2+. This suggests isoform-specific domains are involved in RyR regulation by CaM. To gain insight into the differential regulation of cardiac and skeletal muscle RyRs by CaM, RyR1/RyR2 chimeras and mutants were expressed in HEK293 cells, and their single channel activities were measured using a lipid bilayer method. All RyR1/RyR2 chimeras and mutants were inhibited by CaM at 2 μM Ca2+, consistent with CaM inhibition of RyR1 and RyR2 at micromolar Ca2+ concentrations. An RyR1/RyR2 chimera with RyR1 N-terminal amino acid residues (aa) 1–3725 and RyR2 C-terminal aa 3692–4968 were inhibited by CaM at <1 μM Ca2+ similar to RyR2. In contrast, RyR1/RyR2 chimera with RyR1 aa 1–4301 and RyR2 4254–4968 was activated at <1 μM Ca2+ similar to RyR1. Replacement of RyR1 aa 3726–4298 with corresponding residues from RyR2 conferred CaM inhibition at <1 μM Ca2+, which suggests RyR1 aa 3726–4298 are required for activation by CaM. Characterization of additional RyR1/RyR2 chimeras and mutants in two predicted Ca2+ binding motifs in RyR1 aa 4081–4092 (EF1) and aa 4116–4127 (EF2) suggests that both EF-hand motifs and additional sequences in the large N-terminal regions are required for isoform-specific RyR1 and RyR2 regulation by CaM at submicromolar Ca2+ concentrations.  相似文献   

10.
In order to study interactions between ryanodine receptor calcium release (RyR2) channels during excitation-contraction coupling in cardiac muscle, we used bilayer lipid membrane (BLM) and improved the method of cardiac sarcoplasmic vesicle fusion into BLM. We increased fusion gradient for the vesicles, used chloride ions for fusion up to concentration of 1.2 mol/l and fused the vesicles by adding them directly to the forming BLM. Under these conditions, increased probability of fusion of vesicles containing 2-7 ryanodine channels into BLM was observed. Interestingly about 10% of the channels did not gate into BLM independently, but their gating was coupled. At 53 mmol/l calcium solution, two coupled gating channels had double conductance (191 +/- 15 pS) in comparison with the noncoupled channels (93 +/- 10 pS). Activities of the coupled channels were decreased by 5 micromol/l ryanodine and inhibited by 10 micromol/l ruthenium red similarly as single RyR2 channels. We suppose that cardiac sarcoplasmic vesicles contain single as well as coupled RyR2 channels.  相似文献   

11.
Ryanodine binds with high affinity and specificity to a class of Ca(2+)-release channels known as ryanodine receptors (RyR). The interaction with RyR results in a dramatic alteration in function with open probability (Po) increasing markedly and rates of ion translocation modified. We have investigated the features of ryanodine that govern the interaction of the ligand with RyR and the mechanisms underlying the subsequent alterations in function by monitoring the effects of congeners and derivatives of ryanodine (ryanoids) on individual RyR2 channels. While the interaction of all tested ryanoids results in an increased Po, the amplitude of the modified conductance state depends upon the structure of the ryanoid. We propose that different rates of cation translocation observed in the various RyR-ryanoid complexes represent different conformations of the channel stabilized by specific conformers of the ligand. On the time scale of a single channel experiment ryanodine binds irreversibly to the channel. However, alterations in structure yield some ryanoids with dissociation rate constants orders of magnitude greater than ryanodine. The probability of occurrence of the RyR-ryanoid complex is sensitive to trans-membrane voltage, with the vast majority of the influence of potential arising from a voltage-driven alteration in the affinity of the ryanoid-binding site.  相似文献   

12.
In cardiac muscle, the ryanodine receptor (RyR2) on the sarcoplasmic reticulum (SR) releases the calcium required for muscle contraction. The magnitude of Ca2+ release by RyR2, which is subject to regulation by several physiological mediators, determines cardiac contractility. In heart failure, chronic stimulation of the β-adrenergic signaling pathway leads to hyperphosphorylation of RyR2 by protein kinase A, which dissociates calstabin2 (FKBP12.6) from the receptor. Calstabin2-depleted channels display altered channel gating and can cause diastolic Ca2+ release from the SR. This release depletes the SR Ca2+ stores, leading to reduced myocardial contractility. Mutant RyR2, found in patients with catecholaminergic polymorphic ventricular tachycardia, has decreased calstabin2 binding affinity, which can trigger ventricular arrhythmias and sudden cardiac death after stress and exercise. Thus, defects in RyR2 have been linked to heart failure and exercise-induced sudden cardiac death and might provide novel therapeutic targets for the treatment of these common diseases of the heart.  相似文献   

13.
Single ryanodine-sensitive sarcoplasmic reticulum (SR) Ca2+ release channels isolated from rabbit skeletal and canine cardiac muscle were reconstituted in planar lipid bilayers. Single channel activity was measured in simple solutions (no ATP or Mg2+) with 250 mM symmetrical Cs+ as charge carrier. A laser flash was used to photolyze caged-Ca2+ (DM-nitrophen) in a small volume directly in front of the bilayer. The free [Ca2+] in this small volume and in the bulk solution was monitored with Ca2+ electrodes. This setup allowed fast, calibrated free [Ca2+] stimuli to be applied repetitively to single SR Ca2+ release channels. A standard photolytically induced free [Ca2+] step (pCa 7-->6) was applied to both the cardiac and skeletal release channels. The rate of channel activation was determined by fitting a single exponential to ensemble currents generated from at least 50 single channel sweeps. The time constants of activation were 1.43 +/- 0.65 ms (mean +/- SD; n = 5) and 1.28 +/- 0.61 ms (n = 5) for cardiac and skeletal channels, respectively. This study presents a method for defining the fast Ca2+ regulation kinetics of single SR Ca2+ release channels and shows that the activation rate of skeletal SR Ca2+ release channels is consistent with a role for CICR in skeletal muscle excitation-contraction coupling.  相似文献   

14.
Calmodulin activates the skeletal muscle Ca(2+) release channel RYR1 at nm Ca(2+) concentrations and inhibits the channel at microm Ca(2+) concentrations. Using a deletion mutant of calmodulin, we demonstrate that amino acids 2-8 are required for high affinity binding of calmodulin to RYR1 at both nm and microm Ca(2+) concentrations and are required for maximum inhibition of the channel at microm Ca(2+) concentrations. In contrast, the addition of three amino acids to the N terminus of calmodulin increased the affinity for RYR1 at both nm and microm Ca(2+) concentrations, but destroyed its functional effects on RYR1 at nm Ca(2+). Using both full-length RYR1 and synthetic peptides, we demonstrate that the calmodulin-binding site on RYR1 is likely to be noncontiguous, with the C-terminal lobe of both apocalmodulin and Ca(2+)-calmodulin binding to amino acids between positions 3614 and 3643 and the N-terminal lobe binding at sites that are not proximal in the primary sequence. Ca(2+) binding to the C-terminal lobe of calmodulin converted it from an activator to an inhibitor, but an interaction with the N-terminal lobe was required for a maximum effect on RYR1. This interaction apparently depends on the native sequence or structure of the first few amino acids at the N terminus of calmodulin.  相似文献   

15.
The clustering of ryanodine receptors (RyR2) into functional Ca2+ release units is central to current models for cardiac excitation-contraction (E-C) coupling. Using immunolabeling and confocal microscopy, we have analyzed the distribution of RyR2 clusters in rat and ventricular atrial myocytes. The resolution of the three-dimensional structure was improved by a novel transverse sectioning method as well as digital deconvolution. In contrast to earlier reports, the mean RyR2 cluster transverse spacing was measured 1.05 microm in ventricular myocytes and estimated 0.97 microm in atrial myocytes. Intercalated RyR2 clusters were found interspersed between the Z-disks on the cell periphery but absent in the interior, forming double rows flanking the local Z-disks on the surface. The longitudinal spacing between the adjacent rows of RyR2 clusters on the Z-disks was measured to have a mean value of 1.87 microm in ventricular and 1.69 microm in atrial myocytes. The measured RyR2 cluster distribution is compatible with models of Ca2+ wave generation. The size of the typical RyR2 cluster was close to 250 nm, and this suggests that approximately 100 RyR2s might be present in a cluster. The importance of cluster size and three-dimensional spacing for current E-C coupling models is discussed.  相似文献   

16.
Glutamate-activated N-methyl-D-aspartate (NMDA) receptors are ligand-gated ion channels, which mediate synaptic transmission, long-term potentiation, synaptic plasticity and neurodegeneration via conditional Ca(2+) signalling. Recent crystallographic studies have focussed on solving the structural determinant of the ligand binding within the core region of NR1 and NR2 subunits. Future structural analysis will help to understand the mechanism of native channel activation and regulation during synaptic transmission. A number of NMDA receptor ligands have been identified which act as positive or negative modulators of receptor function. There is evidence that the lipid bilayer can further regulate the activity of the NMDA receptor channels. Modulators of NMDA receptor function offer the potential for the development of novel therapeutics to target neurological disorders associated with this family of glutamate ion channel receptors. Here, we review the recent literature concerning structural and functional properties, as well as the physiological and pathological roles of NMDA receptor channels.  相似文献   

17.
18.
The phosphorylation of canine cardiac and skeletal muscle ryanodine receptors by the catalytic subunit of cAMP-dependent protein kinase has been studied. A high-molecular-weight protein (Mr 400,000) in cardiac microsomes was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. A monoclonal antibody against the cardiac ryanodine receptor immunoprecipitated this phosphoprotein. In contrast, high-molecular-weight proteins (Mr 400,000-450,000) in canine skeletal microsomes isolated from extensor carpi radialis (fast) or superficial digitalis flexor (slow) muscle fibers were not significantly phosphorylated. In agreement with these findings, the ryanodine receptor purified from cardiac microsomes was also phosphorylated by cAMP-dependent protein kinase. Phosphorylation of the cardiac ryanodine receptor in microsomal and purified preparations occurred at the ratio of about one mol per mol of ryanodine-binding site. Upon phosphorylation of the cardiac ryanodine receptor, the levels of [3H]ryanodine binding at saturating concentrations of this ligand increased by up to 30% in the presence of Ca2+ concentrations above 1 microM in both cardiac microsomes and the purified cardiac ryanodine receptor preparation. In contrast, the Ca2+ concentration dependence of [3H]ryanodine binding did not change significantly. These results suggest that phosphorylation of the ryanodine receptor by cAMP-dependent protein kinase may be an important regulatory mechanism for the calcium release channel function in the cardiac sarcoplasmic reticulum.  相似文献   

19.
Recent studies on cardiac hypertrophy animal model suggest that inter-domain interactions within the ryanodine receptor (RyR2) become defective concomitant with the development of hypertrophy (e.g. de-stabilization of the interaction between N-terminal and central domains of RyR2; T. Oda, M. Yano, T. Yamamoto, T. Tokuhisa, S. Okuda, M. Doi, T. Ohkusa, Y. Ikeda, S. Kobayashi, N. Ikemoto, M. Matsuzaki, Defective regulation of inter-domain interactions within the ryanodine receptor plays a key role in the pathogenesis of heart failure, Circulation 111 (2005) 3400-3410). To determine if de-stabilization of the inter-domain interaction in fact causes hypertrophy, we introduced DPc10 (a peptide corresponding to the G2460-P2495 region of RyR2, which is known to de-stabilize the N-terminal/central domain interaction) into rat neonatal cardiomyocytes by mediation of peptide carrier BioPORTER. After incubation for 24 h the peptide induced hypertrophy, as evidenced by significant increase in cell size and [3H]leucine uptake. K201 or dantrolene, the reagents known to correct the de-stabilized inter-domain interaction to a normal mode, prevented the DPc10-induced hypertrophy. These results suggest that disruption of the normal N-terminal/central inter-domain interaction within the RyR2 is a causative mechanism of cardiomyocyte hypertrophy.  相似文献   

20.
Increased oxidative stress contributes to heart dysfunction via impaired Ca2+ homeostasis in diabetes. Abnormal RyR2 function related with altered cellular redox state is an important factor in the pathogenesis of diabetic cardiomyopathy, while its underlying mechanisms remain poorly understood. In the present study, we used a streptozotocin-induced rat model of diabetic cardiomyopathy and tested a hypothesis that diabetes-related alteration in RyR2 function is related with ROS-induced posttranslational modifications. For this, we used heart preparations from either a diabetic rat or a sodium selenate (NaSe)-treated (0.3 mg/kg for 4 weeks) diabetic rat as well as either NaSe- (100 nmol/L) or thioredoxin (Trx; 5 μmol/L)-incubated (30 min) diabetic cardiomyocytes. Experimental approaches included imaging of intracellular free-Ca2+ ([Ca2+]i) under both electrically stimulated and resting Fluo-3-loaded cardiomyocytes. RyR2-mediated SR-Ca2+ leak was significantly enhanced in diabetic cardiomyocytes, resulting in reduced amplitude and prolonged time courses of [Ca2+]i transients compared to those of controls. Both SR-Ca2+ leak and [Ca2+]i transients were normalized by treating diabetic rats with NaSe or by incubating diabetic myocytes with NaSe or Trx. Moreover, exposure of diabetic cardiomyocytes to antioxidants significantly improved [Ca2+]i handling factors such as phosphorylation/protein levels of RyR2, amount of RyR2-bound FKBP12.6 and activities of both protein kinase A and CaMKII. NaSe treatment also normalized the oxidative stress/antioxidant defense biomarkers in plasma as well as Trx activity and nuclear factor-κB phosphorylation in the diabetic rat heart. Collectively, these findings suggest that redox modification through Trx-system besides the glutathione system contributes to abnormal function of RyR2s in hyperglycemic cardiomyocytes, presenting a potential therapeutic target for treating diabetics to preserve cardiac function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号