首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Phylogenomics     
《Current biology : CB》2021,31(19):R1177-R1181
  相似文献   

7.
Phylogenomics     
Telford MJ 《Current biology : CB》2007,17(22):R945-R946
  相似文献   

8.
The origin of metabolism has been linked to abiotic chemistries that existed in our planet at the beginning of life. While plausible chemical pathways have been proposed, including the synthesis of nucleobases, ribose and ribonucleotides, the cooption of these reactions by modern enzymes remains shrouded in mystery. Here we study the emergence of purine metabolism. The ages of protein domains derived from a census of fold family structure in hundreds of genomes were mapped onto enzymes in metabolic diagrams. We find that the origin of the nucleotide interconversion pathway benefited most parsimoniously from the prebiotic formation of adenine nucleosides. In turn, pathways of nucleotide biosynthesis, catabolism and salvage originated ∼300 million years later by concerted enzymatic recruitments and gradual replacement of abiotic chemistries. Remarkably, this process led to the emergence of the fully enzymatic biosynthetic pathway ∼3 billion years ago, concurrently with the appearance of a functional ribosome. The simultaneous appearance of purine biosynthesis and the ribosome probably fulfilled the expanding matter-energy and processing needs of genomic information.  相似文献   

9.
10.
Phylogenomics of the nucleosome   总被引:23,自引:0,他引:23  
Histones are best known as the architectural proteins that package the DNA of eukaryotic organisms, forming octameric nucleosome cores that the double helix wraps tightly around. Although histones have traditionally been viewed as slowly evolving scaffold proteins that lack diversification beyond their abundant tail modifications, recent studies have revealed that variant histones have evolved for diverse functions. H2A and H3 variants have diversified to assume roles in epigenetic silencing, gene expression and centromere function. Such diversification of histone variants and 'deviants' contradicts the perception of histones as monotonous members of multigene families that indiscriminately package and compact the genome. How these diverse functions have evolved from ancestral forms can be addressed by applying phylogenetic tools to increasingly abundant sequence data.  相似文献   

11.
Phylogenomics and bioinformatics of SARS-CoV   总被引:5,自引:0,他引:5  
  相似文献   

12.
Phylogenomics of prokaryotic ribosomal proteins   总被引:1,自引:0,他引:1  
Yutin N  Puigbò P  Koonin EV  Wolf YI 《PloS one》2012,7(5):e36972
Archaeal and bacterial ribosomes contain more than 50 proteins, including 34 that are universally conserved in the three domains of cellular life (bacteria, archaea, and eukaryotes). Despite the high sequence conservation, annotation of ribosomal (r-) protein genes is often difficult because of their short lengths and biased sequence composition. We developed an automated computational pipeline for identification of r-protein genes and applied it to 995 completely sequenced bacterial and 87 archaeal genomes available in the RefSeq database. The pipeline employs curated seed alignments of r-proteins to run position-specific scoring matrix (PSSM)-based BLAST searches against six-frame genome translations, mitigating possible gene annotation errors. As a result of this analysis, we performed a census of prokaryotic r-protein complements, enumerated missing and paralogous r-proteins, and analyzed the distributions of ribosomal protein genes among chromosomal partitions. Phyletic patterns of bacterial and archaeal r-protein genes were mapped to phylogenetic trees reconstructed from concatenated alignments of r-proteins to reveal the history of likely multiple independent gains and losses. These alignments, available for download, can be used as search profiles to improve genome annotation of r-proteins and for further comparative genomics studies.  相似文献   

13.
14.
15.
We introduce a supervised machine learning approach with sparsity constraints for phylogenomics, referred to as evolutionary sparse learning (ESL). ESL builds models with genomic loci—such as genes, proteins, genomic segments, and positions—as parameters. Using the Least Absolute Shrinkage and Selection Operator, ESL selects only the most important genomic loci to explain a given phylogenetic hypothesis or presence/absence of a trait. ESL models do not directly involve conventional parameters such as rates of substitutions between nucleotides, rate variation among positions, and phylogeny branch lengths. Instead, ESL directly employs the concordance of variation across sequences in an alignment with the evolutionary hypothesis of interest. ESL provides a natural way to combine different molecular and nonmolecular data types and incorporate biological and functional annotations of genomic loci in model building. We propose positional, gene, function, and hypothesis sparsity scores, illustrate their use through an example, and suggest several applications of ESL. The ESL framework has the potential to drive the development of a new class of computational methods that will complement traditional approaches in evolutionary genomics, particularly for identifying influential loci and sequences given a phylogeny and building models to test hypotheses. ESL’s fast computational times and small memory footprint will also help democratize big data analytics and improve scientific rigor in phylogenomics.  相似文献   

16.
The genetic code shapes the genetic repository. Its origin has puzzled molecular scientists for over half a century and remains a long-standing mystery. Here we show that the origin of the genetic code is tightly coupled to the history of aminoacyl-tRNA synthetase enzymes and their interactions with tRNA. A timeline of evolutionary appearance of protein domain families derived from a structural census in hundreds of genomes reveals the early emergence of the ‘operational’ RNA code and the late implementation of the standard genetic code. The emergence of codon specificities and amino acid charging involved tight coevolution of aminoacyl-tRNA synthetases and tRNA structures as well as episodes of structural recruitment. Remarkably, amino acid and dipeptide compositions of single-domain proteins appearing before the standard code suggest archaic synthetases with structures homologous to catalytic domains of tyrosyl-tRNA and seryl-tRNA synthetases were capable of peptide bond formation and aminoacylation. Results reveal that genetics arose through coevolutionary interactions between polypeptides and nucleic acid cofactors as an exacting mechanism that favored flexibility and folding of the emergent proteins. These enhancements of phenotypic robustness were likely internalized into the emerging genetic system with the early rise of modern protein structure.  相似文献   

17.
18.
叶绿体系统发育基因组学的研究进展   总被引:4,自引:0,他引:4  
系统发育基因组学是由系统发育研究和基因组学相结合产生的一门崭新的交叉学科。近年来,在植物系统发育研究中,基于叶绿体基因组的系统发育基因组学研究优势渐显端倪,为一些分类困难类群的系统学问题提出了解决方案,但同时也存在某些问题。本文结合近年来叶绿体系统发育基因组学研究中的一些典型实例,讨论了叶绿体系统发育基因组学在植物系统关系重建中的价值和应用前景,并针对其存在问题进行了探讨,其中也涉及了新一代测序技术对叶绿体系统发育基因组学的影响。  相似文献   

19.
20.
The degradation of nuclear DNA by DNA fragmentation factor (DFF) is a key step in apoptosis of mammalian cells. Using comparative genomics, we have here determined the evolutionary history of the genes encoding the two DFF subunits, DFFA (also known as ICAD) and DFFB (CAD). Orthologs of DFFA and DFFB were identified in Nematostella vectensis, a representative of the primitive metazoan clade cnidarians, and in various vertebrates and insects, but not in representatives of urochordates, echinoderms, and nematodes. The domains mediating the interaction of DFFA and DFFB, a caspase cleavage site in DFFA, and the amino acid residues critical for endonuclease activity of DFFB were conserved in Nematostella. These findings suggest that DFF has been a part of the primordial apoptosis system of the eumetazoan common ancestor and that the ancient cell death machinery has degenerated in several evolutionary lineages, including the one leading to the prototypical apoptosis model, Caenorhabditis elegans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号