首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of thiophosphate substitutions on native siRNA gene silencing   总被引:4,自引:0,他引:4  
RNA mediated interference has emerged as a powerful tool in controlling gene expression in mammalian cells. We investigated the gene silencing properties of six thiophosphate substituted siRNAs (all based on a commercial luciferase medium silencer) compared to that of unmodified siRNA. We also examined the cytotoxicity and dose-response using several thiophosphate modified siRNAs with unmodified siRNA. Our results show that two thiophosphate siRNA sequences convert from medium to high silencers with the addition of four randomly placed thiophosphates. Both thiophosphate siRNAs have a statistically significant difference in luciferase gene silencing (5% and 6% activity) relative to the unmodified native medium silencer referred to as siRNA-2 (18% activity) and four other thiophosphate siRNAs that maintain their medium silencing capability. This indicates that specific thiophosphate substitutions may alter native siRNA function. Further, this shows that thiophosphate siRNAs with the same nucleotide sequence but with different sulfur modification positions have different silencing effects. Both the native siRNA and the thio siRNAs showed a concentration dependent relationship, i.e., with concentration increase, the luciferase gene silencing effect also increased. Confirming cytotoxicity experiments showed no significant changes when HeLa cells were treated with 10nM thiophosphate siRNAs over the course of several days. These results suggest that specific placement of thiophosphates could play an important role in the development of siRNAs as therapeutics by engineering in properties such as strength of binding, nuclease sensitivity, and ultimately efficacy.  相似文献   

2.
Small interfering RNAs (siRNAs) have become the most powerful and widely used gene silencing reagents for reverse functional genomics and molecular therapeutics. The key challenge for achieving effective gene silencing in particular for the purpose of the therapeutics is primarily dependent on the effectiveness and specificity of the RNAi targeting sequence. However, only a limited number of siRNAs is capable of inducing highly effective and sequence-specific gene silencing by RNA interference (RNAi) mechanism. In addition, the efficacy of siRNA-induced gene silencing can only be experimentally measured based on inhibition of the target gene expression. Therefore, it is important to establish a fully robust and comparative validating system for determining the efficacy of designed siRNAs. In this study, we have developed a reliable and quantitative reporter-based siRNA validation system that consists of a short synthetic DNA fragment containing an RNAi targeting sequence of interest and two expression vectors for targeting reporter and triggering siRNA expression. The efficacy of the siRNAs is measured by their abilities to inhibit expression of the targeting reporter gene with easily quantified readouts including enhanced green fluorescence protein (EGFP) and firefly luciferase. Using fully analyzed siRNAs against human hepatitis B virus (HBV) surface antigen (HBsAg) and tumor suppressor protein p53, we have demonstrated that this system could effectively and faithfully report the efficacy of the corresponding siRNAs. In addition, we have further applied this system for screening and identification of the highly effective siRNAs that could specifically inhibit expression of mouse matrix metalloproteinase-7 (MMP-7), Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1), and human serine/threonine kinase AKT1. Since only a readily available short synthetic DNA fragment is needed for constructing this novel reporter-based siRNA validation system, this system not only provides a powerful strategy for screening highly effective siRNAs but also implicates in the use of RNAi for studying novel gene function in mammals.  相似文献   

3.
It has been noted that target sites located in the coding region or the 3′-untranslated region (3′-UTR) can be silenced to significantly different levels by the same siRNA, but little is known about at what specificity the silencing was achieved. In an exploration of positional effects on siRNA specificity by luciferase reporter system, we surprisingly discovered that siRNA had greatly elevated tolerance towards mismatches in target sites in the 3′-UTR of the mRNA compared with the same target sites cloned in the coding region. Assessment of changes in protein and mRNA levels suggested that the differential mismatch tolerance might have resulted from location-specific translational repression in the 3′-UTR. Ablation of argonaute proteins by AGO-specific siRNAs revealed that the AGO2 had major impact on siRNA silencing activity against sites in both coding region and 3′-UTR, while the silencing of nonnucleolytic AGO proteins (AGO1, AGO3 and AGO4) did not significantly affect silencing of sites in either region. This paper revealed the discovery that the specificity of an siRNA can be affected by the location of its target site.  相似文献   

4.
5.
With the aim to create a small interfering RNA (siRNA) with enhanced activity and resistance to nuclease degradation, we synthesized and evaluated the properties of the following siRNAs containing haloalkyl β-d-ribofuranosides at their 3′-dangling ends: 2,2,2-trifluoroethyl β-d-ribofuranoside, 2,2,2-trichloroethyl β-d-ribofuranoside and 2,2,2-tribromoethyl β-d-ribofuranoside. The gene silencing activities of the modified siRNAs were investigated through a dual luciferase reporter assay using HeLa cells. The highest silencing activity was observed for the trichloroethyl analog modified siRNA, which was closely followed by the trifluoroethyl and tribromoethyl analogs. The modified siRNAs were found to show increased binding affinity towards the Piwi-Argonaute-Zwille (PAZ) domain protein based on computational analysis and an experimental study. Furthermore, the RNAs modified with the analogs at their 3′-ends exhibited improved resistance to hydrolysis by a 3′-exonuclease.  相似文献   

6.
7.
Although there are many reports about the efficacy of siRNAs, it is not clear whether those siRNAs with high C/G contents can be used to silence their target mRNAs efficiently. In this study, we investigated the structure and function of a group of siRNAs with high C/G contents. The results showed that single siRNAs against the Calpain, Otoferlin and Her2 mRNAs could induce different silencing effects on their targets, suggesting that the accessibility to target sequences influences the efficacy of siRNA. Unexpectedly, a single siRNA could target its cognate sequence in the 3’UTR of EEF1D or the 5’UTR of hTRF2 or CDC6. Their interaction induced different modes of gene silencing. Furthermore, the introduction of mutations into the 3’ end of the passenger strand showed that the position and number of mutated nucleotides could exert some influence on the efficacy of siRNA. However, these mutations did not completely block the passenger strand from exerting its RNAi effect. Interestingly, our findings also indicated that the target mRNA might play essential roles in maintaining or discarding the guide strand in RISCs. Thus, the conclusion could be drawn that favorable siRNA sequences, accessible target structures and the fast cleavage mode are necessary and sufficient prerequisites for efficient RNAi.  相似文献   

8.
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide catalytic sequence-specific cleavage of fully or nearly fully complementary target mRNAs or control translation and/or stability of many mRNAs that share 6-8 nucleotides (nt) of complementarity to the siRNA and miRNA 5' end. siRNA- and miRNA-containing ribonucleoprotein silencing complexes are assembled from double-stranded 21- to 23-nt RNase III processing intermediates that carry 5' phosphates and 2-nt overhangs with free 3' hydroxyl groups. Despite the structural symmetry of a duplex siRNA, the nucleotide sequence asymmetry can generate a bias for preferred loading of one of the two duplex-forming strands into the RNA-induced silencing complex (RISC). Here we show that the 5'-phosphorylation status of the siRNA strands also acts as an important determinant for strand selection. 5'-O-methylated siRNA duplexes refractory to 5' phosphorylation were examined for their biases in siRNA strand selection. Asymmetric, single methylation of siRNA duplexes reduced the occupancy of the silencing complex by the methylated strand with concomitant elimination of its off-targeting signature and enhanced off-targeting signature of the phosphorylated strand. Methylation of both siRNA strands reduced but did not completely abolish RNA silencing, without affecting strand selection relative to that of the unmodified siRNA. We conclude that asymmetric 5' modification of siRNA duplexes can be useful for controlling targeting specificity.  相似文献   

9.
10.
Silencing of hepatitis A virus infection by small interfering RNAs   总被引:3,自引:0,他引:3       下载免费PDF全文
Infection by hepatitis A virus (HAV) can cause acute hepatitis and, rarely, fulminant liver failure, in particular in patients chronically infected with hepatitis C virus. Based on our previous observation that small interfering RNAs (siRNAs) can silence translation and replication of the firefly luciferase-encoding HAV replicon, we now exploited this technology to demonstrate the effect of siRNAs on viral infection in Huh-7 cells. Freshly and persistently infected cells were transfected with siRNAs targeting various sites in the HAV nonstructural genes. Compared to a single application, consecutive siRNA transfections targeting multiple sequences in the viral genome resulted in a more efficient and sustained silencing effect than a single transfection. In most instances, multiple applications of a single siRNA led to the emergence of viral escape mutants with mutated target sites that rendered these genomes resistant to RNA interference (RNAi). Efficient and sustained suppression of the viral infectivity was achieved after consecutive applications of an siRNA targeting a computer-predicted hairpin structure. This siRNA holds promise as a therapeutic tool for severe courses of HAV infection. In addition, the results provide new insight into the structural bases for sequence-specific RNAi.  相似文献   

11.
Two classes of short interfering RNA in RNA silencing   总被引:52,自引:0,他引:52  
  相似文献   

12.
A major challenge to the development of therapeutic small interfering RNAs (siRNAs) is specific and efficient in vivo delivery to target cells. Recent studies suggest that cell type-specific gene silencing in vivo can be achieved by combining siRNAs with cell type-specific affinity ligands such as monoclonal antibodies. The antibody-directed siRNA complex enters target cells through receptor endocytosis and is subsequently released to the cytosol to specifically silence target gene expression through biologically conserved RNA interference (RNAi) pathways. Antibody fragments fused with a small basic nucleic-acid-binding protein and antibody fragment-directed nanoimmunoliposomes are two examples of effective delivery vehicles in vivo. The demonstrated specificity of in vivo gene silencing and the lack of nonspecific immune activation and systemic toxicity encourage further development of therapies based on cell type-specific delivery of siRNA.  相似文献   

13.
Small interfering RNA (siRNA) molecules achieve sequence-specific gene silencing through the RNA interference (RNAi) mechanism. Here, live-cell and live-animal bioluminescent imaging (BLI) is used to directly compare luciferase knockdown by unmodified and nuclease-stabilized siRNAs in rapidly (HeLa) and slowly (CCD-1074Sk) dividing cells to reveal the impact of cell division and siRNA nuclease stability on the kinetics of siRNA-mediated gene silencing. Luciferase knockdown using unmodified siRNAs lasts approximately 1 week in HeLa cells and up to 1 month in CCD-1074Sk cells. There is a slight increase in the duration of luciferase knockdown by nuclease-stabilized siRNAs relative to unmodified siRNAs after cationic lipid transfection, but this difference is not observed after electroporation. In BALB/cJ mice, a fourfold increase in maximum luciferase knockdown is observed after hydrodynamic injection (HDI) of nuclease-stabilized siRNAs relative to unmodified siRNAs, yet the overall kinetics of the recovery after knockdown are nearly identical. By using a mathematical model of siRNA-mediated gene silencing, the trends observed in the experimental data can be duplicated by changing model parameters that affect the stability of the siRNAs before they reach the cytosolic compartment. Based on these findings, we hypothesize that the stabilization advantages of nuclease-stabilized siRNAs originate primarily from effects prior to and during internalization before the siRNAs can interact with the intracellular RNAi machinery.  相似文献   

14.
RNA interference (RNAi) is a powerful method for suppressing the expression of a gene of interest, and can be induced by 21-25 nucleotide small interfering RNA (siRNA) duplexes homologous to the silenced gene, which function as sequence-specific RNAi mediators in RNA-induced silencing complexes (RISCs). In the previous study, it was shown that fork-siRNA duplexes, whose sense-stranded siRNA elements carried a few nucleotide mismatches at the 3'-ends against the antisense-stranded siRNA elements, could enhance RNAi activity more than conventional siRNA duplexes in cultured mammalian cells. In this study, we further characterized fork-siRNA duplexes using reporter plasmids carrying target sequences complementary to the sense- or antisense-stranded siRNA elements in the untranslated region of Renilla luciferase. The data presented here suggest that nucleotide mismatches at either the 3'- or 5'-end of the sense-stranded siRNA elements in fork-siRNA duplexes could influence assembly of not only the antisense-stranded siRNA elements but also the sense-stranded elements into RISCs. In addition, we further suggest the possibility that there could be a positional effect of siRNA duplex on RNAi activity.  相似文献   

15.
In plants, particular micro‐RNAs (miRNAs) induce the production of a class of small interfering RNAs (siRNA) called trans‐acting siRNA (ta‐siRNA) that lead to gene silencing. A single miRNA target is sufficient for the production of ta‐siRNAs, which target can be incorporated into a vector to induce the production of siRNAs, and ultimately gene silencing. The term miRNA‐induced gene silencing (MIGS) has been used to describe such vector systems in Arabidopsis. Several ta‐siRNA loci have been identified in soybean, but, prior to this work, few of the inducing miRNAs have been experimentally validated, much less used to silence genes. Nine ta‐siRNA loci and their respective miRNA targets were identified, and the abundance of the inducing miRNAs varies dramatically in different tissues. The miRNA targets were experimentally verified by silencing a transgenic GFP gene and two endogenous genes in hairy roots and transgenic plants. Small RNAs were produced in patterns consistent with the utilization of the ta‐siRNA pathway. A side‐by‐side experiment demonstrated that MIGS is as effective at inducing gene silencing as traditional hairpin vectors in soybean hairy roots. Soybean plants transformed with MIGS vectors produced siRNAs and silencing was observed in the T1 generation. These results complement previous reports in Arabidopsis by demonstrating that MIGS is an efficient way to produce siRNAs and induce gene silencing in other species, as shown with soybean. The miRNA targets identified here are simple to incorporate into silencing vectors and offer an effective and efficient alternative to other gene silencing strategies.  相似文献   

16.
Higher eukaryotes have developed a mechanism of sequence-specific RNA degradation which is known as RNA silencing. In plants and some animals, similar to the nematode Caenorhabditis elegans, RNA silencing is a non-cell-autonomous event. Hence, silencing initiation in one or a few cells leads progressively to the sequence-specific suppression of homologous sequences in neighbouring cells in an RNA-mediated fashion. Spreading of silencing in plants occurs through plasmodesmata and results from a cell-to-cell movement of a short-range silencing signal, most probably 21-nt siRNAs (short interfering RNAs) that are produced by one of the plant Dicer enzymes. In addition, silencing spreads systemically through the phloem system of the plants, which also translocates metabolites from source to sink tissues. Unlike the short-range silencing signal, there is little known about the mediators of systemic silencing. Recent studies have revealed various and sometimes surprising genetic elements of the short-range silencing spread pathway, elucidating several aspects of the processes involved. In this review we attempt to clarify commonalities and differences between the individual silencing pathways of RNA silencing spread in plants.  相似文献   

17.
18.
19.
20.
RNA干涉及其应用前景   总被引:5,自引:7,他引:5  
张利生  陈大元 《遗传》2003,25(3):341-344
RNA干涉是指由特定双链RNA(dsRNA)引起的转录后基因沉默现象。研究表明,Dicer断裂dsRNA产生的小干涉RNA可以抑制哺乳动物体细胞和胚胎中的基因的表达。RdRP在扩增RNAi中起着关键性的作用,RdRP活性复制较长的触发性dsRNA或以一种非引物的方式复制短的siRNA,即以siRNA为引物的RdRP反应使靶mRNA转变为dsRNA,同时复制触发性dsRNA。所有的产物又可作为Dicer的底物,起始RdRP级联反应。本文综述了RNAi可能的作用机制,并对RNAi在分析功能基因组、药物治疗等方面的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号