首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
EphrinA5 and slit2 are important repulsive guidance cues in the developing retinotectal system. Both ephrinA5 and slit2 cause growth cone collapse of embryonic chick retinal ganglion growth cones cultured on EHS laminin. However, the signaling mechanism that these guidance cues initiate to cause collapse remains unclear. Here we provide evidence that while both ephrinA5 and slit2 cause collapse in morphologically similar ways, the intracellular signaling leading to the collapse involves shared as well as divergent paths. Pharmacological inhibition of either phosphatidylinositol 3-kinase (PI3K) or src family kinases prevented both ephrinA5-mediated and slit2-mediated growth cone collapse. In contrast, the inhibition of nonclassical protein kinase C (PKC) isoforms blocked ephrinA5-mediated collapse, but did not interfere with slit2-mediated collapse. PI3K was copurified by affinity chromatography with either the ephrinA5 receptors (ephAs) or the slit2 receptor (roundabout). Colocalization studies have also shown that src family kinase members are recruited to the ephA and roundabout receptors upon activation. In contrast, PKC members are recruited to the ephA receptors, but not to the roundabout receptors, upon activation. This demonstrates distinct points of convergence and divergence between the two signaling molecules, ephrinA5 and slit2, and their repulsive guidance in the chick retinotectal system.  相似文献   

2.
Expression of rat TrkA in Xenopus spinal neurons confers responsiveness of these neurons to nerve growth factor (NGF) in assays of neuronal survival and growth cone chemotropism. Mutational analysis indicates that coactivation of phospholipase C-gamma (PLC-gamma) and phosphoinositide 3-kinase (PI3-kinase) by specific cytoplasmic domains of TrkA is essential for triggering chemoattraction of the growth cone in an NGF gradient. Uniform exposure of TrkA-expressing neurons to NGF resulted in a cross-desensitization of turning responses induced by a gradient of netrin-1, brain-derived neurotrophic factor (BDNF), or myelin-associated glycoprotein (MAG) but not by a gradient of collapsin-1/semaphorin III/D or neurotrophin-3 (NT-3). These results, together with the effects of pharmacological inhibitors, support the notion that there are common cytosolic signaling pathways for two separate groups of guidance cues, one of which requires coactivation of PLC-gamma and PI3-kinase pathways.  相似文献   

3.
The neurotrophins NGF and NT3 collaborate to support development of sympathetic neurons. Although both promote axonal extension via the TrkA receptor, only NGF activates retrograde transport of TrkA endosomes to support neuronal survival. Here, we report that actin depolymerization is essential for initiation of NGF/TrkA endosome trafficking and that?a Rac1-cofilin signaling module associated with TrkA early endosomes supports their maturation to retrograde transport-competent endosomes. These actin-regulatory endosomal components are absent from NT3/TrkA endosomes, explaining the failure of NT3 to support retrograde TrkA transport and survival. The inability of NT3 to activate Rac1-GTP-cofilin signaling is likely due to the labile nature of NT3/TrkA complexes within the acidic environment of TrkA early endosomes. Thus, TrkA endosomes associate with actin-modulatory proteins to promote F-actin disassembly, enabling their maturation into transport-competent signaling endosomes. Differential control of this process explains how NGF but not NT3 supports retrograde survival of sympathetic neurons.  相似文献   

4.
Chick collapsin-1, a member of the semaphorin family, has been implicated in axonal pathfinding as a repulsive guidance cue. Collapsin-1 induces growth cone collapse via a pathway which may include CRMP-62 and heterotrimeric G proteins. CRMP-62 protein is related to UNC-33, a nematode neuronal protein required for appropriately directed axonal extension. Mutations in unc-33 affect neural microtubules, the basic cytoskeletal elements for axoplasmic transport. Using computer-assisted video-enhanced differential interference contrast microscopy, we now demonstrate that collapsin-1 potently promotes axoplasmic transport. Collapsin-1 doubles the number of antero- and retrograde-transported organelles but not their velocity. Collapsin-1 decreases the number of stationary organelles, suggesting that the fraction of time during which a particle is moving is increased. Collapsin-1-stimulated transport occurs by a mechanism distinct from that causing growth cone collapse. Pertussis toxin (PTX) but not its B oligomer blocks collapsin-induced growth cone collapse. The holotoxin does not affect collapsin-stimulated axoplasmic transport. Mastoparan and a myelin protein NI-35 induce PTX-sensitive growth cone collapse but do not stimulate axoplasmic transport. These results provide evidence that collapsin has a unique property to activate axonal vesicular transport systems. There are at least two distinct pathways through which collapsin exerts its actions in developing neurons. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 316–328, 1997  相似文献   

5.
Zhou B  Cai Q  Xie Y  Sheng ZH 《Cell reports》2012,2(1):42-51
Neurotrophin signaling is crucial for neuron growth. While the "signaling endosomes" hypothesis is one of the accepted models, the molecular machinery that drives retrograde axonal transport of TrkB signaling endosomes is largely unknown. In particular, mechanisms recruiting dynein to TrkB signaling endosomes have not been elucidated. Here, using snapin deficient mice and gene rescue experiments combined with compartmentalized cultures of live cortical neurons, we reveal that Snapin, as a dynein adaptor, mediates retrograde axonal transport of TrkB signaling endosomes. Such a role is essential for dendritic growth of cortical neurons. Deleting snapin or disrupting Snapin-dynein interaction abolishes TrkB retrograde transport, impairs BDNF-induced retrograde signaling from axonal terminals to the nucleus, and decreases dendritic growth. Such defects were rescued by reintroducing the snapin gene. Our study indicates that Snapin-dynein coupling is one of the primary mechanisms driving BDNF-TrkB retrograde transport, thus providing mechanistic insights into the regulation of neuronal growth and survival.  相似文献   

6.
Wnts as retrograde signals for axon and growth cone differentiation   总被引:3,自引:0,他引:3  
Burden SJ 《Cell》2000,100(5):495-497
  相似文献   

7.
《Molecular cell》2021,81(18):3866-3876.e2
  1. Download : Download high-res image (133KB)
  2. Download : Download full-size image
  相似文献   

8.
Target-derived NGF promotes the phenotypic maintenance of mature dorsal root ganglion (DRG) nociceptive neurons. Here, we provide in vivo and in vitro evidence for the presence within DRG neurons of endosomes containing NGF, activated TrkA, and signaling proteins of the Rap1/Erk1/2, p38MAPK, and PI3K/Akt pathways. Signaling endosomes were shown to be retrogradely transported in the isolated sciatic nerve in vitro. NGF injection in the peripheral target of DRG neurons increased the retrograde transport of p-Erk1/2, p-p38, and pAkt in these membranes. Conversely, NGF antibody injections decreased the retrograde transport of p-Erk1/2 and p-p38. Our results are evidence that signaling endosomes, with the characteristics of early endosomes, convey NGF signals from the target of nociceptive neurons to their cell bodies.  相似文献   

9.
Short-term synaptic plasticity influences how presynaptic spike patterns control the firing of postsynaptic targets. Here we investigated whether specific mechanisms of short-term plasticity are regulated in a target-dependent manner by comparing synapses made by cerebellar granule cell parallel fibers onto Golgi cells (PF-->GC synapse) and Purkinje cells (PF-->PC synapse). Both synapses exhibited similar facilitation, suggesting that any differential short-term plasticity does not reflect differences in the initial release probability. PF-->PC synapses were highly sensitive to stimulus bursts, which could result in either depression of subsequent responses, mediated by endocannabinoid-dependent retrograde signaling, or enhancement of responses through posttetanic potentiation (PTP). In contrast, stimulus bursts had remarkably little effect on the strength of PF-->GC synapses. Unlike PCs, GCs were unable to regulate their PF synapses by releasing endocannabinoids. Moreover, PTP was reduced at the PF-->GC synapse compared to the PF-->PC synapse. Thus, the target-dependence of PF synapses arises from the differential expression of both retrograde signaling and PTP.  相似文献   

10.
Ephs regulate growth cone repulsion, a process controlled by the actin cytoskeleton. The guanine nucleotide exchange factor (GEF) ephexin1 interacts with EphA4 and has been suggested to mediate the effect of EphA on the activity of Rho GTPases, key regulators of the cytoskeleton and axon guidance. Using cultured ephexin1-/- mouse neurons and RNA interference in the chick, we report that ephexin1 is required for normal axon outgrowth and ephrin-dependent axon repulsion. Ephexin1 becomes tyrosine phosphorylated in response to EphA signaling in neurons, and this phosphorylation event is required for growth cone collapse. Tyrosine phosphorylation of ephexin1 enhances ephexin1's GEF activity toward RhoA while not altering its activity toward Rac1 or Cdc42, thus changing the balance of GTPase activities. These findings reveal that ephexin1 plays a role in axon guidance and is regulated by a switch mechanism that is specifically tailored to control Eph-mediated growth cone collapse.  相似文献   

11.
A discovery of a possibility for signal transduction from endosomes differing quantitatively and qualitatively from signaling from the plasma membrane became a reliably proved fact for animal and yeast receptors but was unaddressed by plant researches for a long time. In this lecture, I describe briefly recent progress in this research area and also the involvement of the actin cytoskeleton in endosome transport from the plasma membrane to acceptor compartments.  相似文献   

12.
In the developing nervous system, nerve cells and axons respond to various attractive and repulsive guidance cues while traveling to their final destination. Netrins are bifunctional guidance cues that attract several classes of axons but repel others. The response of an axon to netrins is dictated by the composition of netrin receptors on the cell surface and the internal state of the growth cone. Recent analyses have identified several signal transduction pathways that contribute to netrin-mediated guidance. A model emerges in which tyrosine phosphorylation, phosphatidylinositol signaling and regulation by Rho GTPases act in concert to trigger extension of axons and turning of growth cones in response to Netrin1.  相似文献   

13.
Fu X  Yang Y  Xu C  Niu Y  Chen T  Zhou Q  Liu JJ 《Molecular biology of the cell》2011,22(19):3684-3698
Brain-derived neurotrophic factor (BDNF) binds to its cell surface receptor TrkB to regulate differentiation, development, synaptic plasticity, and functional maintenance of neuronal cells. Binding of BDNF triggers TrkB dimerization and autophosphorylation, which provides docking sites for adaptor proteins to recruit and activate downstream signaling molecules. The molecular mechanisms underlying BDNF-TrkB endocytic trafficking crucial for spatiotemporal control of signaling pathways remain to be elucidated. Here we show that retrolinkin, a transmembrane protein, interacts with endophilin A1 and mediates BDNF-activated TrkB (pTrk) trafficking and signaling in CNS neurons. We find that activated TrkB colocalizes and interacts with the early endosome marker APPL1. Both retrolinkin and endophilin A1 are required for BDNF-induced dendrite development and acute extracellular signal-regulated kinase activation from early endosomes. Suppression of retrolinkin expression not only blocks BDNF-triggered TrkB internalization, but also prevents recruitment of endophilin A1 to pTrk vesicles trafficking through APPL1-positive endosomes. These findings reveal a novel mechanism for BDNF-TrkB to regulate signaling both in time and space through a specific membrane trafficking pathway.  相似文献   

14.
We previously identified Rho-associated protein kinase (Rho-kinase) as a specific effector of Rho. In this study, we identified collapsin response mediator protein-2 (CRMP-2), as a novel Rho-kinase substrate in the brain. CRMP-2 is a neuronal protein whose expression is up-regulated during development. Rho-kinase phosphorylated CRMP-2 at Thr-555 in vitro. We produced an antibody that specifically recognizes CRMP-2 phosphorylated at Thr-555. Using this antibody, we found that Rho-kinase phosphorylated CRMP-2 downstream of Rho in COS7 cells. Phosphorylation of CRMP-2 was observed in chick dorsal root ganglion neurons during lysophosphatidic acid (LPA)-induced growth cone collapse, whereas the phosphorylation was not detected during semaphorin-3A-induced growth cone collapse. Both LPA-induced CRMP-2 phosphorylation and LPA-induced growth cone collapse were inhibited by Rho-kinase inhibitor HA1077 or Y-32885. LPA-induced growth cone collapse was also blocked by a dominant negative form of Rho-kinase. On the other hand, semaphorin-3A-induced growth cone collapse was not inhibited by a dominant negative form of Rho-kinase. Furthermore, overexpression of a mutant CRMP-2 in which Thr-555 was replaced by Ala significantly inhibited LPA-induced growth cone collapse. These results demonstrate the existence of Rho-kinase-dependent and -independent pathways for growth cone collapse and suggest that CRMP-2 phosphorylation by Rho-kinase is involved in the former pathway.  相似文献   

15.
Forward and reverse signaling mediated by EphB tyrosine kinase receptors and their transmembrane ephrin-B ligands play important roles in axon pathfinding, yet little is known about the intracellular pathways involved. Here we have used growth cones from the ventral (EphB receptor-bearing) and dorsal (ephrin-B-bearing) embryonic Xenopus retina to investigate the signaling mechanisms in both forward and reverse directions. We report that unclustered, but not clustered, EphB2 ectodomains trigger fast (5-10 min) transient collapse responses in growth cones. This collapse response is mediated by low levels of intracellular cyclic GMP and requires proteasome function. In contrast, clustered, but not unclustered, ephrin-B1 ectodomains cause slow (30-60 min) growth cone collapse that depends on high cGMP levels and is insensitive to inhibition of the proteasomal pathway. Upon receptor-ligand binding, endocytosis occurs in the reverse direction (EphB2-Fc into dorsal retinal growth cones), but not the forward direction, and is also sensitive to proteasomal inhibition. Endocytosis is functionally important because blocking of EphB2 internalization inhibits growth cone collapse. Our data reveal that distinct signaling mechanisms exist for B-type Eph/ephrin-mediated growth cone guidance and suggest that endocytosis provides a fast mechanism for switching off signaling in the reverse direction.  相似文献   

16.
In the fundamental process of neuronal path-finding, a growth cone at the tip of every neurite detects and follows multiple guidance cues regulating outgrowth and initiating directional changes. While the main focus of research lies on the cytoskeletal dynamics underlying growth cone advancement, we investigated collapse and retraction mechanisms in NG108-15 growth cones transiently transfected with mCherry-LifeAct and pCS2+/EMTB-3XGFP for filamentous actin and microtubules, respectively. Using fluorescence time lapse microscopy we could identify two distinct modes of growth cone collapse leading either to neurite retraction or to a controlled halt of neurite extension. In the latter case, lateral movement and folding of actin bundles (filopodia) confine microtubule extension and limit microtubule-based expansion processes without the necessity of a constantly engaged actin turnover machinery. We term this previously unreported second type fold collapse and suggest that it marks an intermediate-term mode of growth regulation closing the gap between full retraction and small scale fluctuations.  相似文献   

17.
18.
Pincher,a pinocytic chaperone for nerve growth factor/TrkA signaling endosomes   总被引:16,自引:0,他引:16  
A central tenet of nerve growth factor (NGF) action that is poorly understood is its ability to mediate cytoplasmic signaling, through its receptor TrkA, that is initiated at the nerve terminal and conveyed to the soma. We identified an NGF-induced protein that we termed Pincher (pinocytic chaperone) that mediates endocytosis and trafficking of NGF and its receptor TrkA. In PC12 cells, overexpression of Pincher dramatically stimulated NGF-induced endocytosis of TrkA, unexpectedly at sites of clathrin-independent macropinocytosis within cell surface ruffles. Subsequently, a system of Pincher-containing tubules mediated the delivery of NGF/TrkA-containing vesicles to cytoplasmic accumulations. These vesicles selectively and persistently mediated TrkA-erk5 mitogen-activated protein kinase signaling. A dominant inhibitory mutant form of Pincher inhibited the NGF-induced endocytosis of TrkA, and selectively blocked TrkA-mediated cytoplasmic signaling of erk5, but not erk1/2, kinases. Our results indicate that Pincher mediates pinocytic endocytosis of functionally specialized NGF/TrkA endosomes with persistent signaling potential.  相似文献   

19.
Cells have to maintain stable plasma membrane protein and lipid compositions under normal conditions and to remodel their plasma membranes in response to stimuli. This maintenance and remodeling require that integral membrane proteins at the plasma membrane that become misfolded, because of the relatively harsher extracellular milieu or carbohydrate and amino acid sequence changes, are degraded. We had previously shown that Derlin proteins, required for quality control mechanisms in the endoplasmic reticulum, also localize to endosomes and function in the degradation of misfolded integral membrane proteins at the plasma membrane. In this study, we show that Derlin proteins physically associate with sorting nexins that function in retrograde membrane transport from endosomes to the Golgi apparatus. Using genetic studies in Caenorhabditis elegans and ricin pulse-chase analyses in murine RAW264.7 macrophages, we show that the Derlin-sorting nexin interaction is physiologically relevant. Our studies suggest that at least some integral membrane proteins that are misfolded at the plasma membrane are retrogradely transported to the Golgi apparatus and ultimately to the endoplasmic reticulum for degradation via resident quality control mechanisms.  相似文献   

20.
The amyloid precursor protein (APP) is well known for giving rise to the amyloid-β peptide and for its role in Alzheimer's disease. Much less is known, however, on the physiological roles of APP in the development and plasticity of the central nervous system. We have used phage display of a peptide library to identify high-affinity ligands of purified recombinant human sAPPα(695) (the soluble, secreted ectodomain from the main neuronal APP isoform). Two peptides thus selected exhibited significant homologies with the conserved extracellular domain of several members of the semaphorin (Sema) family of axon guidance proteins. We show that sAPPα(695) binds both purified recombinant Sema3A and Sema3A secreted by transfected HEK293 cells. Interestingly, sAPPα(695) inhibited the collapse of embryonic chicken (Gallus gallus domesticus) dorsal root ganglia growth cones promoted by Sema3A (K(d)≤8·10(-9) M). Two Sema3A-derived peptides homologous to the peptides isolated by phage display blocked sAPPα binding and its inhibitory action on Sema3A function. These two peptides are comprised within a domain previously shown to be involved in binding of Sema3A to its cellular receptor, suggesting a competitive mechanism by which sAPPα modulates the biological action of semaphorins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号