首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagic proteolysis: control and specificity   总被引:12,自引:0,他引:12  
The rate of proteolysis is an important determinant of the intracellular protein content. Part of the degradation of intracellular proteins occurs in the lysosomes and is mediated by macroautophagy. In liver, macroautophagy is very active and almost completely accounts for starvation-induced proteolysis. Factors inhibiting this process include amino acids, cell swelling and insulin. In the mechanisms controlling macroautophagy, protein phosphorylation plays an important role. Activation of a signal transduction pathway, ultimately leading to phosphorylation of ribosomal protein S6, accompanies inhibition of macroautophagy. Components of this pathway may include a heterotrimeric Gi3-protein, phosphatidylinositol 3- kinase and p70S6 kinase. Recent evidence indicates that lysosomal protein degradation can be selective and occurs via ubiquitin- dependent and -independent pathways. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
The rate of proteolysis is an important determinant of the intracellular protein content. Part of the degradation of intracellular proteins occurs in the lysosomes and is mediated by macroautophagy. In liver, macroautophagy is very active and almost completely accounts for starvation-induced proteolysis. Factors inhibiting this process include amino acids, cell swelling and insulin. In the mechanisms controlling macroautophagy, protein phosphorylation plays an important role. Activation of a signal transduction pathway, ultimately leading to phosphorylation of ribosomal protein S6, accompanies inhibition of macroautophagy. Components of this pathway may include a heterotrimeric Gi3-protein, phosphatidylinositol 3- kinase and p70S6 kinase. Recent evidence indicates that lysosomal protein degradation can be selective and occurs via ubiquitin- dependent and -independent pathways. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

3.
Activator of G protein Signaling 3 (AGS3) is a receptor-independent G protein activator that has been implicated in multiple biological events such as brain development, neuroplasticity and addiction, cardiac function, Golgi structure/function, macroautophagy and metabolism. However, how AGS3 is regulated is little known. We demonstrate here that AGS3 interacts with a ubiquitin specific protease USP9x, and this interaction is at least partially mediated through the C-terminal G protein regulatory domain of AGS3. Knockdown of USP9x causes a moderate reduction in the level of AGS3. In contrast, overexpression of either USP9x or its deubiquitinating domain UCH increases the amount of AGS3, whereas expression of the mutant UCH domain that lacks deubiquitinating activity does not have the same effect. As previously observed in AGS3 knockdown cells, the localization of several marker proteins of the late Golgi compartments is disturbed in cells depleted of USP9x. Taken together, our study suggests that USP9x can modulate the level of a subpopulation of AGS3, and this modulation plays a role in regulating the structure of the late Golgi compartments. Finally, we have found that levels of AGS3 and USP9x are co-regulated in the prefrontal cortex of rats withdrawn from repeated cocaine treatment. In conjunction with the above data, this observation indicates a potential role of USP9X in the regulation of the AGS3 level during cocaine-induced neuroplasticity.  相似文献   

4.
《Autophagy》2013,9(1):28-45
Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases.  相似文献   

5.
Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases.  相似文献   

6.
Physiological regulation of tau phosphorylation during hibernation   总被引:1,自引:0,他引:1  
The microtubule-associated protein tau is abnormally hyperphosphorylated in the brains of individuals with Alzheimer disease and other tauopathies, and is believed to play a critical role in the pathogenesis of these diseases. While the mechanisms leading to abnormal tau phosphorylation remain elusive, the recent demonstration of reversible tau phosphorylation during hibernation provides an ideal physiological model to study this critical process in vivo . In this study, arctic ground squirrels (AGS) during hibernation were used to study mechanisms related to tau hyperphosphorylation. Our data demonstrate that tau is hyperphosphorylated at all six sites (S199, T205, S214, S262, S396, and S404) examined in hibernating AGS. Interestingly, only three of these sites (S199, S262, and S404) are dephosphorylated in aroused animals, suggesting a reversible phosphorylation at selective sites. Summer-active AGS demonstrated the lowest tau phosphorylation at all these sites. To explore the mechanisms underlying increased tau phosphorylation during hibernation, the expression level and enzyme activity of various potential tau kinases and protein phosphatases were examined. The kinetic analysis of enzyme activity at different temperatures revealed differential changes in enzyme activity with temperature decline. Specifically, increased protein kinase A activity, decreased protein phosphatase 2A activity, as well as substantial contribution from glycogen synthase kinase-3β, likely play a key role in increased tau phosphorylation during hibernation in AGS.  相似文献   

7.
8.
Helicobacter pylori colonizes the human stomach and is the causative agent of a variety of gastric diseases. After bacterial attachment, the H. pylori CagA protein is translocated into gastric epithelial cells and tyrosine phosphorylated. This process is associated with characteristic cytoskeletal rearrangements, resulting in a scatter factor-like ('hummingbird') phenotype. In this study, using a cagA mutant complemented with wild-type cagA and transiently expressing CagA in AGS cells, we have demonstrated that translocated CagA is necessary for rearrangements of the actin cytoskeleton to occur. Anti-phosphotyrosine immunoblotting studies and treatment of infected cells with phosphotyrosine kinase inhibitors suggested that not only translocation but also phosphorylation of CagA is important in this process. Transient expression of CagA-green fluorescent protein (GFP) fusion proteins and two-dimensional gel electrophoresis of CagA protein species demonstrated tyrosine phosphorylation in the C-terminus. Site-directed mutagenesis of CagA revealed that tyrosine residue 972 is essential for induction of the cellular phenotype. We have also demonstrated that translocation and phosphorylation of CagA is necessary but not sufficient for induction of the hummingbird phenotype in AGS cells, indicating the involvement of as yet unidentified bacterial factor(s).  相似文献   

9.
Macroautophagy is a process by which cytoplasmic content and organelles are sequestered by double-membrane bound vesicles and subsequently delivered to lysosomes for degradation. Macroautophagy serves as a major intracellular pathway for protein degradation and as a pro-survival mechanism in time of stress by generating nutrients. In the present study, bafilomycin A1, a vacuolar type H+-ATPase inhibitor, suppresses macroautophagy by preventing acidification of lysosomes in colon cancer cells. Diminished macroautophagy was evidenced by the accumulation of undegraded LC3 protein. Suppression of macroautophagy by bafilomycin A1 induced G0/G1 cell cycle arrest and apoptosis which were accompanied by the down-regulation of cyclin D1 and cyclin E, the up-regulation of p21Cip1 as well as cleavages of caspases-3, -7, -8, and -9 and PARP. Further investigation revealed that bafilomycin A1 increased the phosphorylation of ERK, JNK, and p38. In this regard, p38 inhibitor partially reversed the anti-proliferative effect of bafilomycin A1. To conclude, inhibition of macroautophagy by bafilomycin A1 lowers G1-S transition and induces apoptosis in colon cancer cells. Our results not only indicate that inhibitors of macroautophagy may be used therapeutically to inhibit cancer growth, but also delineate the relationship between macroautophagy and apoptosis.  相似文献   

10.
Activation of ERK1/2 stimulates macroautophagy in the human colon cancer cell line HT-29 by favoring the phosphorylation of the Galpha-interacting protein (GAIP) in an amino acid-dependent manner (Ogier-Denis, E., Pattingre, S., El Benna, J., and Codogno, P. (2000) J. Biol. Chem. 275, 39090-39095). Here we show that ERK1/2 activation by aurintricarboxylic acid (ATA) treatment induces the phosphorylation of GAIP in an amino acid-dependent manner. Accordingly, ATA challenge increased the rate of macroautophagy, whereas epidermal growth factor did not significantly affect macroautophagy and GAIP phosphorylation status. In fact, ATA activated the ERK1/2 signaling pathway, whereas epidermal growth factor stimulated both the ERK1/2 pathway and the class I phosphoinositide 3-kinase pathway, known to decrease the rate of macroautophagy. Amino acids interfered with the ATA-induced macroautophagy by inhibiting the activation of the kinase Raf-1. The role of the Ras/Raf-1/ERK1/2 signaling pathway in the GAIP- and amino acid-dependent control of macroautophagy was confirmed in HT-29 cells expressing the Ras(G12V,T35S) mutant. Similar to the protein phosphatase 2A inhibitor okadaic acid, amino acids sustained the phosphorylation of Ser(259), which is involved in the negative regulation of Raf-1. In conclusion, these results add a novel target to the amino acid signaling-dependent control of macroautophagy in intestinal cells.  相似文献   

11.
Activator of G-protein signaling 3 (AGS3) has a modular domain structure consisting of seven tetratricopeptide repeats (TPRs) and four G-protein regulatory (GPR) motifs. Each GPR motif binds to the alpha subunit of Gi/Go (Gialpha > Goalpha) stabilizing the GDP-bound conformation of Galpha and apparently competing with Gbetagamma for GalphaGDP binding. As an initial approach to identify regulatory mechanisms for AGS3-G-protein interactions, a yeast two-hybrid screen was initiated using the TPR and linker region of AGS3 as bait. This screen identified the serine/threonine kinase LKB1, which is involved in the regulation of cell cycle progression and polarity. Protein interaction assays in mammalian systems using transfected cells or brain lysate indicated the regulated formation of a protein complex consisting of LKB1, AGS3, and G-proteins. The interaction between AGS3 and LKB1 was also observed with orthologous proteins in Drosophila where both proteins are involved in cell polarity. LKB1 immunoprecipitates from COS7 cells transfected with LKB1 phosphorylated the GPR domains of AGS3 and the related protein LGN but not the AGS3-TPR domain. GPR domain phosphorylation was completely blocked by a consensus GPR motif peptide, and placement of a phosphate moiety within a consensus GPR motif reduced the ability of the peptide to interact with G-proteins. These data suggest that phosphorylation of GPR domains may be a general mechanism regulating the interaction of GPR-containing proteins with G-proteins. Such a mechanism may be of particular note in regard to localized signal processing in the plasma membrane involving G-protein subunits and/or intracellular functions regulated by heterotrimeric G-proteins that occur independently of a typical G-protein-coupled receptor.  相似文献   

12.
Previously, we have reported tissue- and stage-specific expression of miR-372 in human embryonic stem cells and so far, not many reports speculate the function of this microRNA (miRNA). In this study, we screened various human cancer cell lines including gastric cancer cell lines and found first time that miR-372 is expressed only in AGS human gastric adenocarcinoma cell line. Inhibition of miR-372 using antisense miR-372 oligonucleotide (AS-miR-372) suppressed proliferation, arrested the cell cycle at G2/M phase, and increased apoptosis of AGS cells. Furthermore, AS-miR-372 treatment increased expression of LATS2, while over-expression of miR-372 decreased luciferase reporter activity driven by the 3′ untranslated region (3′ UTR) of LATS2 mRNA. Over-expression of LATS2 induced changes in AGS cells similar to those in AGS cells treated with AS-miR-372. Taken together, these findings demonstrate an oncogenic role for miR-372 in controlling cell growth, cell cycle, and apoptosis through down-regulation of a tumor suppressor gene, LATS2.  相似文献   

13.
Macroautophagy is primarily a degradative process that cells use to break down their own components to recycle macromolecules and provide energy under stress conditions, and defects in macroautophagy lead to a wide range of diseases. Atg9, conserved from yeast to mammals, is the only identified transmembrane protein in the yeast core macroautophagy machinery required for formation of the sequestering compartment termed the autophagosome. This protein undergoes dynamic movement between the phagophore assembly site (PAS), where the autophagosome precursor is nucleated, and peripheral sites that may provide donor membrane for expansion of the phagophore. Atg9 is a phosphoprotein that is regulated by the Atg1 kinase. We used stable isotope labeling by amino acids in cell culture (SILAC) to identify phosphorylation sites on this protein and identified an Atg1-independent phosphorylation site at serine 122. A nonphosphorylatable Atg9 mutant showed decreased autophagy activity, whereas the phosphomimetic mutant enhanced activity. Electron microscopy analysis suggests that the different levels of autophagy activity reflect differences in autophagosome formation, correlating with the delivery of Atg9 to the PAS. Finally, this phosphorylation regulates Atg9 interaction with Atg23 and Atg27.  相似文献   

14.
Gastric cancer is a common malignancy in many countries of the world, especially in Asia. Prevention is likely to be the most effective means of not only reducing the incidence but also mortality from this disease. The term 'chemoprevention' has been referred to the prevention of cancer using specific agents to suppress or reverse the carcinogenic process. In recent years, attention has been focused on the anticancer properties of edible plants, an important role in the prevention of disease. Hibiscus sabdariffa Linne (Malvaceae), an attractive plant believed to be native to Africa, is cultivated in the Sudan and Eastern Taiwan. The purpose of this study was to examine whether the plant, H. sabdariffa extracts (HSE), affects the apoptosis of AGS cells. Using a set of apoptotic detection assays, they showed that HSE induced cytotoxicity and apoptosis of AGS cells in a concentration-dependent manner but is ineffective in Chang liver cells. The result also revealed increased phosphorylation in p38, JNK and c-Jun, cytochrome c release, and expression of Fas, FasL, Bax, and t-Bid in the HSE-treated AGS cells. We further used MAPK inhibitors to evaluate their effect on the HSE-induced AGS death. The data showed that SB203580 (p38 inhibitor), JNK inhibitor I and II or transfection with the mutant JNK expression vector had strong potential in inhibiting AGS cells apoptosis and related proteins expression. Finally, we suggested that HSE mediated AGS apoptosis via the JNK/p38 signaling cascade. According to these results, HSE could be developed as a chemopreventive agent.  相似文献   

15.
16.
Kwon MJ  Nam TJ 《Life sciences》2006,79(20):1956-1962
Porphyrans, the sulfated polysaccharides, are the main components of Porphyra. The potential apoptotic activities of porphyran were evaluated using AGS human gastric cancer cells. Porphyran did not affect the growth of normal cells, but did induce cancer cell death in a dose-dependent manner. The addition of 0.1% porphyran also reduced DNA synthesis after 24 h of exposure, suggesting that porphyran inhibits cancer cell growth by both decreasing cell proliferation and inducing apoptosis. AGS cells treated with porphyran displayed a marked increase in poly(ADP-ribose) polymerase (PARP) cleavage, as well as caspase-3 activation. The ability of porphyran to promote apoptosis may contribute to its usefulness as an agent capable of significantly inhibiting cell growth in AGS human gastric cancer cells. Insulin-like growth factor-I receptor (IGF-IR) phosphorylation was decreased in porphyran-treated AGS cells compared to control cells, which correlated with Akt activation. Thus, porphyran appears to negatively regulate IGF-IR phosphorylation by causing a decrease in the expression levels in AGS gastric cancer cells, and then inducing caspase-3 activation.  相似文献   

17.
Satoru Torii 《Autophagy》2020,16(8):1532-1533
ABSTRACT

Alternative autophagy is an ATG5 (autophagy related 5)-independent, Golgi membrane-derived form of macroautophagy. ULK1 (unc-51 like kinase 1) is an essential initiator not only for canonical autophagy but also for alternative autophagy. However, the mechanism as to how ULK1 differentially regulates both types of autophagy has remained unclear. Recently, we identified a novel phosphorylation site of ULK1 at Ser746, which is required for alternative autophagy, but not canonical autophagy. We also identify RIPK3 (receptor-interacting serine-threonine kinase 3) as the kinase responsible for genotoxic stress-induced ULK1 S746 phosphorylation. These findings indicate that RIPK3-dependent ULK1 S746 phosphorylation plays a pivotal role in genotoxic stress-induced alternative autophagy.  相似文献   

18.
《Autophagy》2013,9(6):553-560
Macroautophagy, an intracellular bulk degradation process in eukaryotes, is sensitive to nutrient supply and deprivation. Microtubule-associated protein 1 light chain 3 (LC3), a mammalian homologue of yeast Atg8, plays an indispensable role in macroautophagy formation and is a suitable marker for this process. Through analysis of the subcellular distribution of LC3, we determined that the cytosolic fraction contained not only a precursor form (LC3-I), but also an apparent active form (LC3-IIs). Both cytosolic LC3-I and LC3-IIs were more responsive to amino acids than those of total homogenate. Moreover, changes in the LC3-IIs/I ratio reflected those in the total proteolytic flux remarkably in both fresh rat hepatocytes and H4-II-E cell lines. Thus, in addition to a sensitive index of macroautophagy, calculating the cytosolic LC3 ratio became an easy and quick quantitative method for monitoring its regulation in hepatocytes and H4-II-E cells.  相似文献   

19.

Background

The mechanisms through which aberrant α-synuclein (ASYN) leads to neuronal death in Parkinson''s disease (PD) are uncertain. In isolated liver lysosomes, mutant ASYNs impair Chaperone Mediated Autophagy (CMA), a targeted lysosomal degradation pathway; however, whether this occurs in a cellular context, and whether it mediates ASYN toxicity, is unknown. We have investigated presently the effects of WT or mutant ASYN on the lysosomal pathways of CMA and macroautophagy in neuronal cells and assessed their impact on ASYN-mediated toxicity.

Methods and Findings

Novel inducible SH-SY5Y and PC12 cell lines expressing human WT and A53T ASYN, as well as two mutant forms that lack the CMA-targeting motif were generated. Such forms were also expressed in primary cortical neurons, using adenoviral transduction. In each case, effects on long-lived protein degradation, LC3 II levels (as a macroautophagy index), and cell death and survival were assessed. In both PC12 and SH-SY5Y cycling cells, induction of A53T ASYN evoked a significant decrease in lysosomal degradation, largely due to CMA impairment. In neuronally differentiated SH-SH5Y cells, both WT and A53T ASYN induction resulted in gradual toxicity, which was partly dependent on CMA impairment and compensatory macroautophagy induction. In primary neurons both WT and A53T ASYN were toxic, but only in the case of A53T ASYN did CMA dysfunction and compensatory macroautophagy induction occur and participate in death.

Conclusions

Expression of mutant A53T, and, in some cases, WT ASYN in neuronal cells leads to CMA dysfunction, and this in turn leads to compensatory induction of macroautophagy. Inhibition of these lysosomal effects mitigates ASYN toxicity. Therefore, CMA dysfunction mediates aberrant ASYN toxicity, and may be a target for therapeutic intervention in PD and related disorders. Furthermore, macroautophagy induction in the context of ASYN over-expression, in contrast to other settings, appears to be a detrimental response, leading to neuronal death.  相似文献   

20.
Macroautophagy is a regulated bulk degradation process of cellular components, mainly long-lived proteins or cytoplasmic organelles. Nutrient depletion is a classic inducer of macroautophagy. In this report, we have induced heat-mediated macroautophagy in several cell lines in the absence of nutrient depletion. Heat treatment increased the autophagic markers LC3-I and LC3-II at the protein levels. Interestingly, expression of a constitutively active HSF1 mutant suppressed basal LC3-II protein level and heat-induced increase of LC3-II. Our results provide evidence that heat is a potent inducer of macroautophagy in mammalian cells, and implicate the negative role of active HSF1 in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号