首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

2.
The molecular complexes involved in the nonhomologous end-joining process that resolves recombination-activating gene (RAG)-induced double-strand breaks and results in V(D)J gene rearrangements vary during mammalian ontogeny. In the mouse, the first immunoglobulin gene rearrangements emerge during midgestation periods, but their repertoires have not been analyzed in detail. We decided to study the postgastrulation DJH joints and compare them with those present in later life. The embryo DJH joints differed from those observed in perinatal life by the presence of short stretches of nontemplated (N) nucleotides. Whereas most adult N nucleotides are introduced by terminal deoxynucleotidyl transferase (TdT), the embryo N nucleotides were due to the activity of the homologous DNA polymerase μ (Polμ), which was widely expressed in the early ontogeny, as shown by analysis of Polμ−/− embryos. Based on its DNA-dependent polymerization ability, which TdT lacks, Polμ also filled in small sequence gaps at the coding ends and contributed to the ligation of highly processed ends, frequently found in the embryo, by pairing to internal microhomology sites. These findings show that Polμ participates in the repair of early-embryo, RAG-induced double-strand breaks and subsequently may contribute to preserve the genomic stability and cellular homeostasis of lymphohematopoietic precursors during development.The adaptive immune system is characterized by the great diversity of its antigen receptors, which result from the activities of enzymatic complexes that cut and paste the genomic DNA of antigen receptor loci. The nonhomologous end-joining (NHEJ) machinery is then recruited to repair the double-strand DNA breaks (DSBs) inflicted by the products of the recombination-activating genes (RAGs) (45, 65). Within B cells, each immunoglobulin (Ig) receptor represents a singular shuffling of two heavy (H) and two light (L) chains, which are derived from the recombination of V, D, and J gene segments of the IgH locus and of V and J for IgL (71). Besides these combinatorial possibilities, most Ig variability derives from extensive processing of the coding ends, including exonucleolytic trimming of DNA ends, together with the addition of palindromic (P) nucleotides templated by the adjacent germ line sequence and of nontemplated (N) nucleotides secondary to the activity of the terminal deoxynucleotidyl transferase (TdT), a lymphoid-specific member of family X of DNA polymerases (reviewed in reference 56). During B-lineage differentiation, IgH rearrangements occur before those of the IgL locus, and D-to-JH rearrangements precede V-to-DJH rearrangements (62). DJH joints are formed in any of the three open reading frames (ORFs). ORF1 is predominantly used in mature Igs, ORF2 is transcribed as a Dμ protein that provides negative signals to the B-cell precursors, and ORF3 frequently leads to stop codons (32, 33, 37). Germ line V, D, and J gene segments display short stretches of mutually homologous nucleotides (SSH), which are frequently used in gene rearrangements during perinatal periods, when N additions are absent (27, 32, 55, 57). The actual Ig V-region repertoires represent both the results of the NHEJ process associated with genomic VDJ recombination and those of antigen-independent and -dependent selection events. Although the core NHEJ components (Ku-Artemis-DNA-PK and XLF-XRCC4-DNA ligase IV) are by themselves able to join RAG-induced, incompatible DNA ends, family X DNA polymerases can be recruited to fill gaps created by imprecise coding ends with 3′ overhangs (DNA polymerase μ [Polμ] and Polλ) and/or to promote diversity through the addition of N nucleotides (TdT) (34, 56).The lymphoid differentiation pathways and clonotypic repertoires are developmentally regulated and differ between the embryo-fetal and adult periods (2, 44, 68). The perinatal B cells result from a wave of B lymphopoiesis occurring during the last third of mouse gestation (13, 14, 21, 70). Perinatal VH gene usage differs from that predominating in the adult (1, 69), and the former VDJ joints rarely display N additions, leading to V-region repertoires enriched in multi- and self-reactive specificities (36, 40). The program of B-cell differentiation starts at embryonic days 10 to 11 (E10 to E11) in embryo hematopoietic sites, after the emergence of multipotent progenitors (at E8.5 to E9.5) (18, 19, 23, 31, 51, 73). DJH rearrangements were detected in these early embryos, whereas full VDJH sequences were not observed before E14 (14, 18, 51, 66), when VJκ rearrangements were also found (63). The earliest mouse DJH/VDJH Ig sequences analyzed to date corresponded to late fetuses (E16) (14, 53). We reasoned that the true baseline of the Ig rearrangement process occurs in midgestation embryos, when the first DJHs are not yet transcribed and, consequently, not subjected to selection and are conditioned only for the evolutionarily established and developmentally regulated usage of distinct NHEJ machineries.We report here the sequence profiles of the earliest embryo E10 to E12 DJH joints. Unexpected frequencies of embryonic DJH joints bearing N nucleotides, in the absence of detectable TdT expression, were found. Moreover, the embryo DJH joints lacking N nucleotides (N) used fewer SSH to recombine than newborn DJHs, and these SSH were widely dispersed along the embryo D sequences, in contrast to the most joint-proximal ones, which predominated in newborn DJHs. Considering that Polμ is the closest relative of TdT (42% amino acid identity) (22), which is able to introduce N nucleotides in vitro (4, 22, 34, 39, 49) and to join DNA ends with minimal or even null complementarity (17, 58), and that it is expressed in early-embryo organs, we decided to investigate its putative contribution to the first embryo DJH joints. The DJH joints obtained from Polμ−/− embryos (48) showed a significant reduction of N nucleotides compared to wild-type (WT) embryos. Moreover, highly preserved DJH joints (with <3 deleted nucleotides) were selectively depleted in the Polμ−/− mouse embryos, while the remaining DJHs preferentially relied upon longer stretches of homology for end ligation. These findings support the idea that Polμ is active during early-embryo DJH rearrangements and that both its template-dependent and -independent ambivalent functions may be used to fill in small nucleotide gaps generated after asymmetric hairpin nicking and also to extend coding ends via a limited TdT-like activity.  相似文献   

3.
The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S50s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, were 529.6 μg/ml and 0.29 μg/ml, respectively. The CB gene was then fused to the secretory signal peptide (sp) sequence from the barley α-amylase gene, and the new construct, pBI121-spCB, was used for the transformation of tomato plants. Integration of the CB gene into the tomato genome was confirmed by PCR, and its expression was confirmed by Western blot analyses. In vivo studies of the transgenic tomato plant demonstrated significant resistance to bacterial wilt and bacterial spot. The levels of CB expressed in transgenic tomato plants (∼0.05 μg in 50 mg of leaves) were far lower than the S50 determined in vitro. CB transgenic tomatoes could therefore be a new mode of bioprotection against these two plant diseases with significant agricultural applications.Bacterial plant diseases are a source of great losses in the annual yields of most crops (5). The agrochemical methods and conventional breeding commonly used to control these bacterially induced diseases have many drawbacks. Indiscriminate use of agrochemicals has a negative impact on human, as well as animal, health and contributes to environmental pollution. Conventional plant-breeding strategies have limited scope due to the paucity of genes with these traits in the usable gene pools and their time-consuming nature. Consequently, genetic engineering and transformation technology offer better tools to test the efficacies of genes for crop improvement and to provide a better understanding of their mechanisms. One advance is the possibility of creating transgenic plants that overexpress recombinant DNA or novel genes with resistance to pathogens (36). In particular, strengthening the biological defenses of a crop by the production of antibacterial proteins with other origins (not from plants) offers a novel strategy to increase the resistance of crops to diseases (35, 39, 41). These antimicrobial peptides (AMPs) include such peptides as cecropins (2, 15, 20, 23-24, 27, 31, 42, 50), magainins (1, 9, 14, 29, 47), sarcotoxin IA (35, 40), and tachyplesin I (3). The genes encoding these small AMPs in plants have been used in practice to enhance their resistance to bacterial and fungal pathogens (8, 22, 40). The expression of AMPs in vivo (mostly cecropins and a synthetic analog of cecropin and magainin) with either specific or broad-spectrum disease resistance in tobacco (14, 24, 27), potato (17, 42), rice (46), banana (9), and hybrid poplar (32) have been reported. The transgenic plants showed considerably greater resistance to certain pathogens than the wild types (4, 13, 24, 27, 42, 46, 50). However, detailed studies of transgenic tomatoes expressing natural cecropin have not yet been reported.The tomato (Solanum lycopersicum) is one of the most commonly consumed vegetables worldwide. The annual yield of tomatoes, however, is severely affected by two common bacterial diseases, bacterial wilt and bacterial spot, which are caused by infection with the Gram-negative bacteria Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, respectively. Currently available pesticides are ineffective against R. solanacearum, and thus bacterial wilt is a serious problem.Cecropins, one of the natural lytic peptides found in the giant silk moth, Hyalophora cecropia (25), are synthesized in lipid bodies as proteins consisting of 31 to 39 amino acid residues. They adopt an α-helical structure on interaction with bacterial membranes, resulting in the formation of ion channels (12). At low concentrations (0.1 μM to 5 μM), cecropins exhibit lytic antibacterial activity against a number of Gram-negative and some Gram-positive bacteria, but not against eukaryotic cells (11, 26, 33), thus making them potentially powerful tools for engineering bacterial resistance in crops. Moreover, cecropin B (CB) shows the strongest activity against Gram-negative bacteria within the cecropin family and therefore has been considered an excellent candidate for transformation into plants to improve their resistance against bacterial diseases.The introduction of genes encoding cecropins and their analogs into tobacco has been reported to have contradictory results regarding resistance against pathogens (20). However, subsequent investigations of these tobacco plants showed that the expression of CB in the plants did not result in accumulation of detectable levels of CB, presumably due to degradation of the peptide by host peptidases (20, 34). Therefore, protection of CB from cellular degradation is considered to be vital for the exploitation of its antibacterial activity in transgenic plants. The secretory sequences of several genes are helpful, because they cooperate with the desired genes to enhance extracellular secretion (24, 40, 46). In the present study, a natural CB gene was successfully transferred into tomatoes. The transgenic plants showed significant resistance to the tomato diseases bacterial wilt and bacterial spot, as well as with a chemically synthesized CB peptide.  相似文献   

4.
5.
6.
7.
The seasonal dynamics of the small eukaryotic fraction (cell diameter, 0.2 to 5 μm) was investigated in a mesotrophic lake by tyramide signal amplification-fluorescence in situ hybridization targeting seven different phylogenetic groups: Chlorophyceae, Chrysophyceae, Cryptophyceae, Cercozoa, LKM11, Perkinsozoa (two clades), and Fungi. The abundance of small eukaryotes ranged from 1,692 to 10,782 cells ml−1. The dominant groups were the Chrysophyceae and the Chlorophyceae, which represented 19.6% and 17.9% of small eukaryotes, respectively. The results also confirmed the quantitative importance of putative parasites, Fungi and Perkinsozoa, in the small heterotrophic eukaryotic assemblage. The relative abundances recorded for the Perkinsozoa group reached as much as 31.6% of total targeted eukaryotes during the summer. The dynamics of Perkinsozoa clade 1 coincided with abundance variations in Peridinium and Ceratium spp. (Dinoflagellates), while the dynamics of Perkinsozoa clade 2 was linked to the presence of Dinobryon spp. (Chrysophyceae). Fungi, represented by chytrids, reached maximal abundance in December (569 cells ml−1) and were mainly correlated with the dynamics of diatoms, especially Melosira varians. A further new finding of this study is the recurrent presence of Cercozoa (6.2%) and LKM11 (4.5%) cells. This quantitative approach based on newly designed probes offers a promising means of in-depth analysis of microbial food webs in lakes, especially by revealing the phylogenetic composition of the small heterotrophic flagellate assemblage, for which an important fraction of cells are generally unidentified by classical microscopy (on average, 96.8% of the small heterotrophic flagellates were identified by the specific probes we used in this study).Recently developed molecular methods based on the amplification and sequencing of rRNA genes have made it possible to investigate picoeukaryote assemblage composition (pigmented or nonpigmented unicellular eukaryotes with cell diameters of <2 μm or <5 μm according to the studies) in various aquatic systems, independently of morphological identification and cultivation (14, 23, 27, 28, 29, 39). The essential role of picoplankton (both eukaryotic and prokaryotic) as a contributor to plankton biomass and to carbon and nutrient cycling has long been established (9), but the unexpected diversity among the smallest eukaryotes (cell diameters, <5 μm) was only recently revealed. Most of these data were obtained in oceanic systems, but a few recent studies conducted in lakes have also highlighted the broad diversity of 18S rRNA sequences affiliated with numerous phylogenetic groups: Chlorophyceae, Chrysophyceae, Cryptophyceae, Cercozoa, Fungi, Choanoflagellida, Bicosoecida, Ciliophora, Haptophyceae, Perkinsozoa, LKM11, Hyphochytridiomycota, Katablepharidaceae, Dinophyceae, and Eustigmatophyceae (22, 23, 24, 34). Thus, it has been possible to observe clear seasonal changes in small-eukaryote structure in an oligomesotrophic lake (23), and the lake-based studies generally report a dominance of heterotrophic cells within the lacustrine small-eukaryote assemblage. Moreover, the recurrent presence of sequences affiliated with parasitic groups has been highlighted in lakes of various trophic statuses (22, 23). Lepère et al. (25) reported the unexpected importance of two groups: first, fungi affiliated with two clades of chytrids known as parasites of various groups of microalgae; and second, members of the phylum Perkinsozoa belonging to two clades closely related to Perkinsus marinus and Parvilucifera infectans, which are parasites of bivalves and dinoflagellates, respectively (30), and whose systematic position has been controversial, since they are phylogenetically related to the Apicomplexa or the Dinoflagellata (6, 13).Although these data brought new insight into the structural diversity of lacustrine small eukaryotes, the relative importance, dynamics, and functional roles of these microorganisms from various phylogenetic groups are still largely unknown. We now need to research specific in situ abundances of previously undetected taxa. In this study, specially developed oligonucleotide probes, designed on the basis of molecular data obtained from sequencing (20, 21, 22, 23, 24, 25, 34), were used for fluorescence in situ hybridization (FISH) coupled with tyramide signal amplification (TSA) to investigate the composition, abundance, and dynamics of lacustrine small eukaryotes (<5 μm) in the mesotrophic Lake Bourget over 1 year. Special attention was paid to the dynamics of putative parasitic groups (Perkinsozoa, Fungi, Cercozoa).  相似文献   

8.
We have optimized the display of the B domain of staphylococcal protein A on the surface of Lactococcus lactis. The maximum binding capacity was estimated at 0.146 μg of antibody per 108 cells and was sustained at 86% after treatment with simulated gastric juice. A tumor necrosis factor alpha (TNF-α)-binding affibody was also displayed and bound TNF-α, which could be useful in the treatment of inflammatory bowel disease.Lactic acid bacteria (LAB) have received considerable attention in recent years, based on their record of safe usage as a constituent of fermented foods and their health-promoting effects as probiotics (5). Recombinant LAB could also be used in therapy, with most applications aimed at the delivery of antigens or therapeutic proteins to human mucosal surfaces (27). Another potential application of recombinant LAB involves surface attachment of affinity molecules, such as antibodies, single-chain variable fragments (scFv), or specific oligosaccharides, which can target pathogens, toxins, or inflammatory mediators in the human intestine (9, 22).We describe the surface display of two types of affinity molecule, the B domain and the tumor necrosis factor alpha (TNF-α)-binding affibody, on a model LAB, Lactococcus lactis. The B domain, which is one out of five antibody-binding domains of staphylococcal protein A (15), was already used as a model protein (2). The surface display of the B domain was reported for Escherichia coli in a biosensor application (8), for Saccharomyces cerevisiae as a whole-cell immunoadsorbent (16), and for certain viruses for specific cell targeting (20).The affinity of the B domain or its synthetic homologue, the Z domain (17), for the antibody Fc region has been redirected to several other proteins by randomization of amino acids involved in the interaction, using the genetic combinatorial library and phage display (18). The variants of the Z domain were termed “affibodies” and were directed against various proteins (reviewed in reference 19) and also against TNF-α (7).TNF-α is well established as a proinflammatory cytokine in the pathology of inflammatory bowel disease (IBD), and monoclonal antibodies against TNF-α are routinely used in parenteral therapy (23) but can have systemic side effects. The abundant presence of TNF-α in the stool samples of IBD patients (4) and the successful treatment of experimental colitis in rats by oral administration of avian IgY (28) justify the oral delivery of an agent with the capability of removing TNF-α in IBD. We have therefore replaced the B domain in our surface-displayed fusion protein with an affibody against TNF-α (7) as a second type of binding molecule. LAB with surface-displayed affibody against TNF-α could be used to bind TNF-α in the intestine, with the potential for use in the treatment of IBD. This novel approach could also overcome the problems with the gastrointestinal stability of antibodies.  相似文献   

9.
10.
11.
12.
13.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

14.
15.
16.
Endothelial cell (EC) migration, cell-cell adhesion, and the formation of branching point structures are considered hallmarks of angiogenesis; however, the underlying mechanisms of these processes are not well understood. Lipid phosphate phosphatase 3 (LPP3) is a recently described p120-catenin-associated integrin ligand localized in adherens junctions (AJs) of ECs. Here, we tested the hypothesis that LPP3 stimulates β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) to induce EC migration and formation of branching point structures. In subconfluent ECs, LPP3 induced expression of fibronectin via β-catenin/LEF-1 signaling in a phosphatase and tensin homologue (PTEN)-dependent manner. In confluent ECs, depletion of p120-catenin restored LPP3-mediated β-catenin/LEF-1 signaling. Depletion of LPP3 resulted in destabilization of β-catenin, which in turn reduced fibronectin synthesis and deposition, which resulted in inhibition of EC migration. Accordingly, reexpression of β-catenin but not p120-catenin in LPP3-depleted ECs restored de novo synthesis of fibronectin, which mediated EC migration and formation of branching point structures. In confluent ECs, however, a fraction of p120-catenin associated and colocalized with LPP3 at the plasma membrane, via the C-terminal cytoplasmic domain, thereby limiting the ability of LPP3 to stimulate β-catenin/LEF-1 signaling. Thus, our study identified a key role for LPP3 in orchestrating PTEN-mediated β-catenin/LEF-1 signaling in EC migration, cell-cell adhesion, and formation of branching point structures.Angiogenesis, the formation of new blood vessels, involves several well-coordinated cellular processes, including endothelial cell (EC) migration, synthesis and deposition of extracellular matrix proteins, such as fibronectin, cell-cell adhesion, and formation of branching point structures (1-3, 19, 33); however, less is known about the underlying mechanisms of these processes (6, 8, 12, 14, 16, 17). For example, adherens junctions (AJs), which mediate cell-cell adhesion between ECs, may be involved in limiting the extent of cell migration (2, 14, 38, 40). VE-cadherin, a protein found in AJs, is a single-pass transmembrane polypeptide responsible for calcium-dependent homophilic interactions through its extracellular domains (2, 38, 40). The VE-cadherin cytoplasmic domain interacts with the Armadillo domain-containing proteins, β-catenin, γ-catenin (plakoglobin), and p120-catenin (p120ctn) (2, 15, 38, 40, 43). Genetic and biochemical evidence documents a crucial role of β-catenin in regulating cell adhesion as well as proliferation secondary to the central position of β-catenin in the Wnt signaling pathway (13, 16, 25, 31, 44). In addition, the juxtamembrane protein p120ctn regulates AJ stability via binding to VE-cadherin (2, 7, 9, 15, 21, 28, 32, 43). The absence of regulation or inappropriate regulation of β-catenin and VE-cadherin functions is linked to cardiovascular disease and tumor progression (2, 6).We previously identified lipid phosphate phosphatase 3 (LPP3), also known as phosphatidic acid phosphatase 2b (PAP2b), in a functional assay of angiogenesis (18, 19, 41, 42). LPP3 not only exhibits lipid phosphatase activity but also functions as a cell-associated integrin ligand (18, 19, 35, 41, 42). The known LPPs (LPP1, LPP2, and LPP3) (20-23) are six transmembrane domain-containing plasma membrane-bound enzymes that dephosphorylate sphingosine-1-phosphate (S1P) and its structural homologues, and thus, these phosphatases generate lipid mediators (4, 5, 23, 35, 39). All LPPs, which contain a single N-glycosylation site and a putative lipid phosphatase motif, are situated such that their N and C termini are within the cell (4, 5, 22, 23, 35, 39). Only the LPP3 isoform contains an Arg-Gly-Asp (RGD) sequence in the second extracellular loop, and this RGD sequence enables LPP3 to bind integrins (18, 19, 22). Transfection experiments with green fluorescent protein (GFP)-tagged LPP1 and LPP3 showed that LPP1 is apically sorted, whereas LPP3 colocalized with E-cadherin at cell-cell contact sites with other Madin-Darby canine kidney (MDCK) cells (22). Mutagenesis and domain swapping experiments established that LPP1 contains an apical targeting signal sequence (FDKTRL) in its N-terminal segment. In contrast, LPP3 contains a dityrosine (109Y/110Y) basolateral sorting motif (22). Interestingly, conventional deletion of Lpp3 is embryonic lethal, since the Lpp3 gene plays a critical role in extraembryonic vasculogenesis independent of its lipid phosphatase activity (11). In addition, an LPP3-neutralizing antibody was shown to prevent cell-cell interactions (19, 42) and angiogenesis (42). Here, we addressed the hypothesis that LPP3 plays a key role in EC migration, cell-cell adhesion, and formation of branching point structures by stimulating β-catenin/lymphoid enhancer binding factor 1 (β-catenin/LEF-1) signaling.  相似文献   

17.
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been widely used for structural characterization of bacterial endotoxins (lipid A). However, the mass spectrometric behavior of the lipid A molecule is highly dependent on the matrix. Furthermore, this dependence is strongly linked to phosphorylation patterns. Using lipid A from Escherichia coli O116 as a model system, we have investigated the effects of different matrices and comatrix compounds on the analysis of lipid A. In this paper, we report a highly sensitive matrix system for lipid A analysis, which consists of 5-chloro-2-mercaptobenzothiazole matrix and EDTA ammonium salt comatrix. This matrix system enhances the sensitivity of the analysis of diphosphorylated lipid A species by more than 100-fold and in addition provides tolerance to high concentrations of sodium dodecyl sulfate (SDS) and tolerance to sodium chloride and calcium chloride at 10 μM, 100 μM, and 10 μM concentrations. The method was further evaluated for analysis of lipid A species with different phosphorylation patterns and from different bacteria, including Helicobacter pylori, Salmonella enterica serovar Riogrande, and Francisella novicida.Lipopolysaccharide (LPS) is a major component of the outer membranes of Gram-negative bacteria (21). Typically, LPS molecules consist of a hydrophilic carbohydrate portion and a hydrophobic lipid A (or endotoxin). The lipid A molecule consists of a fatty acyl substituted β-d-GlcN-(1-6)-α-GlcN disaccharide unit that usually carries phosphate groups. Diphosphorylated lipid A is generally presumed to be phosphorylated at C-1 and C-4′ positions (9); however, lipid A moieties containing pyrophosphate (PP) groups have also been reported (13). The presence of phosphate groups in lipid A greatly affects the endotoxic properties of LPS (22). Deletion of either of these groups reduces an endotoxic activity of the resulting monophosphorylated LPS by approximately 100-fold (18). For example, monophosphorylated lipid A has been used as an adjuvant in a hepatitis B vaccine in Europe (1, 12).Mass spectrometry (MS) has been widely used to gain information about the heterogeneity, i.e., the number of different species of lipid A families and a distribution of fatty acids on each glucosamine residue (2, 3, 9, 16, 20, 23, 28, 29, 30, 32, 35, 36). Detailed structural information, including the phosphorylation pattern of lipid A, can be obtained by tandem mass spectrometry. Several matrices have been used for the analysis of lipid A using matrix-assisted laser desorption ionization-time of flight MS (MALDI-TOF MS), including 2,5-dihydroxybenzoic acid (DHB), 2,4,6-trihydroxyacetophenone (THAP), and 6-aza-2-thiothymine (ATT) (8). Although DHB has been widely used for peptide analysis, it produces uneven crystals and leads to poor spot-to-spot reproducibility (3, 6, 11). Furthermore, the low solubility in the solvent compatible with lipid A and nonuniformity in a matrix layer (crystals) can lead to variations in the ionization yield across the sample resulting in formation of “hot” (or “sweet”) spots (14). On the other hand, 5-chloro-2-mercaptobenzothiazole (CMBT) was found to offer excellent spot-to-spot reproducibility because of the homogeneous crystallization of the analyte/matrix mixture over the sample spot (33). CMBT is soluble in methanol-chloroform-water (4:4:1, vol:vol:vol), a solvent compatible with lipid A molecules, especially hexaacylated species. Thus, it has been widely used for lipid A analysis (4, 9, 23, 35, 33). Interestingly, different preparation procedures for analysis of lipid A species dictate a selection of the preferred matrix system (10). For example, lipid A prepared using a TRI Reagent-based procedure with a CMBT matrix was preferable for the detection of phosphoethanolamine modifications (35). On the other hand, the analysis of lipid A prepared using an LPS extraction kit-based procedure with DHB was preferable for the detection of aminoarabinose modification (10). In addition, divalent cations, such as Ca2+ or Mg2+, can bridge the phosphorylated negatively charged groups between neighboring LPS molecules to form aggregates (24). Thus, there is a need for technologies capable of characterizing lipid A from biologically relevant samples in an accurate, rapid, and highly sensitive manner. Here we attempt to establish an optimized MALDI MS matrix system for the sensitive analysis of lipid A, especially its diphosphorylated forms, including both pyrophosphorylated and bisphosphorylated species. We also propose to incorporate a complex reagent (additive or comatrix) for reducing the interference of cations (5, 7, 15).  相似文献   

18.
19.
20.
Fifteen nonrepetitive ampicillin-resistant Salmonella spp. were identified among 91 Salmonella sp. isolates during nationwide surveillance of Salmonella in waste from 131 chicken farms during 2006 and 2007. Additional phenotyping and genetic characterization of these 15 isolates by using indicator cephalosporins demonstrated that resistance to ampicillin and reduced susceptibility to cefoxitin in three isolates was caused by TEM-1 and DHA-1 β-lactamases. Plasmid profiling and Southern blot analysis of these three DHA-1-positive Salmonella serovar Indiana isolates and previously reported unrelated clinical isolates of DHA-1-positive Salmonella serovar Montevideo, Klebsiella pneumoniae, and Escherichia coli from humans and swine indicated the involvement of the large-size plasmid. Restriction enzyme digestion of the plasmids from the transconjugants showed variable restriction patterns except for the two Salmonella serovar Indiana isolates identified in this study. To the best of our knowledge, this is the first report of the presence of the DHA-1 gene among Salmonella spp. of animal origin.Nontyphoidal Salmonella (NTS) strains are a significant cause of gastrointestinal infections of food origin. These microbes are a heterogeneous group of medically important Gram-negative bacteria and can infect a wide range of animals, including humans (3, 6, 9-11, 25).Currently, no antimicrobial therapies are recommended for the treatment of NTS infection unless a patient is of extreme age, has an underlying disease, or is infected with an invasive Salmonella sp. However, the use of antibiotics in treatment of clinical enteric infection has been heavily compromised by emerging multidrug-resistant microbes (4, 17, 18, 23). In particular, resistance due to extended-spectrum β-lactamases (ESBLs) and AmpC β-lactamases is of special concern as these enzymes confer resistance to some of the front-line antibiotics used to treat enteric infection in humans and animals (4, 13, 14, 19).Four classes of β-lactamases are known to confer resistance to β-lactam antibiotics. Among these, plasmid-mediated class A and class C β-lactamases have been frequently reported, whereas class B and class D β-lactamases are relatively rare (4). TEM and SHV enzymes of class A β-lactamases are generally found in Gram-negative bacteria and are derived by one or more amino acid substitutions around the active site of the enzyme that is responsible for the ESBL phenotype (4). Recently, the CTX-M enzyme of class A β-lactamases has been increasingly reported from enteric microbes, like Salmonella and Escherichia coli (4, 5, 9, 15). These have greater activity against cefotaxime than do other oxyimino-β-lactam substrates, like ceftazidime, ceftriaxone, or cefepime (4, 5). Plasmid-mediated AmpC β-lactamases, like DHA and CMY, are not inhibited by clavulanic acid and have been isolated from a wide variety of clinical and community-acquired microbes (2, 4, 13, 14, 16). These β-lactamases are native to the chromosomes of many Gram-negative bacilli but are missing in some genera, like Salmonella (4). The majority of β-lactamases reported in Salmonella to date have been derived from human clinical isolates, and only limited information is available regarding Salmonella spp. derived from farm animals, although isolates from both humans and animals are of clinical and epidemiological importance (4, 15, 25).In light of this knowledge gap, our study focused on assessing the distribution of Salmonella serovars in poultry farms in South Korea. Subsequently, isolates were analyzed for resistance to antibiotics commonly used in farms. Phenotypic and genetic characteristics of ampicillin-resistant Salmonella isolates were tested to gain insight into what β-lactamases were prevalent among these strains. We also characterized DHA-1-associated plasmids in these Salmonella spp. and compared them with clinical isolates of Salmonella, Klebsiella pneumoniae, and Escherichia coli from humans and from swine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号