首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The assembly of retroviruses is driven by oligomerization of the Gag polyprotein. We have used cryo-electron tomography together with subtomogram averaging to describe the three-dimensional structure of in vitro-assembled Gag particles from human immunodeficiency virus, Mason-Pfizer monkey virus, and Rous sarcoma virus. These represent three different retroviral genera: the lentiviruses, betaretroviruses and alpharetroviruses. Comparison of the three structures reveals the features of the supramolecular organization of Gag that are conserved between genera and therefore reflect general principles of Gag-Gag interactions and the features that are specific to certain genera. All three Gag proteins assemble to form approximately spherical hexameric lattices with irregular defects. In all three genera, the N-terminal domain of CA is arranged in hexameric rings around large holes. Where the rings meet, 2-fold densities, assigned to the C-terminal domain of CA, extend between adjacent rings, and link together at the 6-fold symmetry axis with a density, which extends toward the center of the particle into the nucleic acid layer. Although this general arrangement is conserved, differences can be seen throughout the CA and spacer peptide regions. These differences can be related to sequence differences among the genera. We conclude that the arrangement of the structural domains of CA is well conserved across genera, whereas the relationship between CA, the spacer peptide region, and the nucleic acid is more specific to each genus.Retrovirus assembly is driven by the oligomerization of Gag, a multidomain protein, including an N-terminal membrane binding domain (MA), a two-domain structural component (CA), and an RNA binding domain (NC). The Gag proteins of all orthoretroviruses, including the alpha-, beta-, and lentiretroviruses discussed here, share this conserved modular architecture (Fig. (Fig.1).1). Despite very weak sequence conservation, the tertiary structures of MA, CA, and NC are conserved among retroviruses. Outside these conserved domains the Gag proteins of different retroviruses exhibit substantial variability. Other domains may be present or absent, and the length and sequence of linker peptides may also vary (12) (Fig. (Fig.11).Open in a separate windowFIG. 1.Modular architecture of the full-length Gag proteins of HIV, M-PMV, and RSV. White rectangles illustrate Gag polyprotein cleavage products. The extent of the constructs used in the electron microscopic analysis is specified under each protein as a black rectangle. Gray triangles specify cleavage sites. Residue numbers are counted from the beginning of Gag.Oligomerization of Gag in an infected cell leads to the formation of roughly spherical immature virus particles, where Gag is arranged in a radial fashion with the N-terminal MA domain associated with a surrounding lipid bilayer, and the more C-terminal NC pointing toward the center of the particle (15, 44, 46). Subsequent multiple cleavages of Gag by the viral protease lead to a rearrangement of the virus. NC and the RNA condense in the center of the particle, CA assembles into a capsid or shell around the nucleoprotein, and MA remains associated with the viral membrane. This proteolytic maturation is required to generate an infectious virion (2). In contrast to the mature CA lattice, which has been extensively studied (11, 16, 36), the Gag lattice in immature particles is incompletely understood.Gag itself contains all of the necessary determinants for particle assembly. For example, the expression of Gag alone in an insect cell expression system is sufficient to generate viruslike particles (3, 17, 22, 38). Retroviral Gag proteins also can be assembled in vitro in the presence of nucleic acids to form spherical particles (9, 19, 39, 43, 47). The arrangement of Gag within these in vitro-assembled Gag particles is indistinguishable from that found in immature virus particles (6), and the in vitro assembly systems have proved valuable for unraveling the principles of virus assembly (18, 28, 29, 39). Multiple layers of interaction promote the assembly of Gag in vivo, including MA-membrane-MA interactions, CA-CA interactions, and NC-RNA-NC interactions. An extensive body of literature has explored which regions of Gag are required for assembly and which can be replaced or deleted without compromising assembly. MA-membrane-MA interactions contribute but are not essential. NC-RNA-NC interactions appear to function to nonspecifically link Gag molecules together and can be replaced both in vivo and in vitro by other interaction domains such as leucine zippers (4, 13, 20, 32, 48). The C-terminal domain of CA (referred to here as C-CA) and the stretch of amino acids immediately following this domain (termed the spacer peptide [SP] region) are critical for assembly and sensitive to mutation (1, 22, 27, 30).We set out to understand how the substantial sequence variation among Gag proteins in different retroviruses is manifested in structural differences in the immature Gag lattice. To do this, we studied three retroviruses from different genera: the lentivirus human immunodeficiency virus type 1 (HIV-1), the betaretrovirus Mason-Pfizer monkey virus (M-PMV), and the alpharetrovirus Rous sarcoma virus (RSV). These retroviruses are those for which in vitro assembly was first established and has been most extensively studied (6, 19, 24, 28, 29, 35, 43, 47).The domain structures of the three retroviruses differ most substantially upstream of CA. Both M-PMV and RSV have domains located between MA and CA that are absent in HIV (Fig. (Fig.1).1). In M-PMV there are 198 residues forming the pp24 and p12 domains; in RSV there are 84 residues forming the p2a, p2b, and p10 domains. The three retroviruses have different requirements for regions upstream of CA during assembly. The C-terminal 25 residues of p10 are essential for proper immature RSV assembly, both in vitro and in vivo, and these residues are inferred to interact directly with N-CA to stabilize the hexamer by forming contacts between adjacent N-CA domains (35). An equivalent assembly domain has not been described for other retroviruses. Within M-PMV p12 is the so-called internal scaffolding domain that is not essential for assembly in vitro (43) but is required for particle assembly when the precursor is expressed under the control of the M-PMV promoter (41). It is a key domain for the membrane-independent assembly of immature capsids (40).In HIV, five residues upstream of CA must be present for assembly of immature virus-like spherical particles in vitro, although larger upstream extensions, including part of MA, are required for efficient assembly of regular particles, both for HIV and RSV. For HIV, if the entire MA domain is included, in vitro assembly requires the presence of inositol penta- or hexakis phosphate (8). If no sequences upstream of CA are present, the in vitro particles in both of these viruses adopt a mature-type tubular morphology (10, 18). It has been hypothesized that cleavage at the N terminus of N-CA during maturation leads to the N-terminal residues of CA folding back into the N-CA structure to form a β-hairpin. The β-hairpin is important for assembly of the mature CA lattice, whereas its absence is important for immature assembly (23, 42). These requirements explain why, in HIV and RSV, immature Gag lattice-like structures are formed only if regions upstream of CA are present (18). In M-PMV, an immature Gag lattice can be produced when the regions upstream of CA are deleted if this is combined with mutations (such as deleting the initial proline of CA), which prevent β-hairpin formation (43).During maturation, HIV and RSV Gag proteins are cleaved twice between CA and NC to release a small peptide called SP1 or SP. In RSV the most N-terminal of these two cleavages can occur at one of two possible positions such that the released peptide is either 9 or 12 amino acids long (33). In M-PMV only one cleavage occurs between CA and NC, and no short peptide is produced. The region between the final helix of CA and the Zn fingers has been proposed to adopt a helical bundle architecture in HIV and RSV based on bioinformatic prediction, on mutational analysis, and on structural studies (1, 22, 27, 45). In all three viruses, C-CA and the residues immediately downstream are critical for assembly and are sensitive to mutation. C-CA contains the major homology region, a group of residues that are highly conserved across the retroviruses.Cryo-electron tomography (cET) studies of immature virus particles (6, 45) have resolved the electron density of the HIV Gag lattice in three dimensions at low resolution. Using these methods, we have also described the three-dimensional architecture of in vitro-assembled HIV Gag particles (6). In immature viruses and in vitro-assembled particles, Gag is seen to adopt an 8 nm hexameric lattice, as was predicted from previous Fourier analysis of two-dimensional images (7, 46). The hexameric lattice is interrupted by irregularly shaped holes and cracks in the lattice (6, 45). A similar observation has been made using AFM of in vitro-assembled particles of M-PMV Gag (26). These holes and cracks allow an otherwise planar hexameric lattice to form the surface of an approximately spherical particle.The radial positions of the MA, CA, and NC domains had been assigned previously from cryo-electron micrographs (44, 46). Based on these assignments and the shape of the density, the position and relative orientations of CA domains can be modeled into the low-resolution structure of the HIV lattice (6, 45). Density ascribed to the N-terminal domain of CA (N-CA) forms rings around large holes at the 6-fold symmetry positions in the lattice. Below this layer, at the expected radius of the C-CA, are 2-fold densities, interpreted as corresponding to dimers of C-CA. These densities are linked by rodlike densities, which descend into the NC-nucleic acid layer.HIV is the only retrovirus for which the arrangement of Gag in the immature particle has been described in three dimensions. Prior to this work, important open questions were therefore: which features of the arrangement of Gag are conserved between genera and therefore reflect general principles of Gag-Gag interactions, and which features are specific to certain genera? We have applied subtomogram averaging of cryo-electron tomograms to generate reconstructions of in vitro-assembled Gag particles from HIV, M-PMV, and RSV. These allow identification of the general and variable features of the arrangement of Gag and the architecture of immature retroviruses.  相似文献   

2.
3.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

4.
Imprinted gene expression corresponds to parental allele-specific DNA CpG methylation and chromatin composition. Histone tail covalent modifications have been extensively studied, but it is not known whether modifications in the histone globular domains can also discriminate between the parental alleles. Using multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays, we measured the allele-specific enrichment of H3K79 methylation and H4K91 acetylation along the H19/Igf2 imprinted domain. Whereas H3K79me1, H3K79me2, and H4K91ac displayed a paternal-specific enrichment at the paternally expressed Igf2 locus, H3K79me3 was paternally biased at the maternally expressed H19 locus, including the paternally methylated imprinting control region (ICR). We found that these allele-specific differences depended on CTCF binding in the maternal ICR allele. We analyzed an additional 11 differentially methylated regions (DMRs) and found that, in general, H3K79me3 was associated with the CpG-methylated alleles, whereas H3K79me1, H3K79me2, and H4K91ac enrichment was specific to the unmethylated alleles. Our data suggest that allele-specific differences in the globular histone domains may constitute a layer of the “histone code” at imprinted genes.Imprinted genes are defined by the characteristic monoallelic silencing of either the paternally or maternally inherited allele. Most imprinted genes exist in imprinted gene clusters (10), and these clusters are usually associated with one or more differentially methylated regions (DMRs) (27, 65). DNA methylation at DMRs is essential for the allele-specific expression of most imprinted genes (31). Maternal or paternal allele-specific DNA methylation of a subset of DMRs (germ line DMRs) is gamete specific (27, 39). These maternal or paternal methylation differences are established during oogenesis or spermatogenesis, respectively, by the de novo DNA methyltransferases Dnmt3a and Dnmt3b together with Dnmt3L (5, 26, 48). The gamete-specific methylation differences set the stage for the parental allele-specific action of germ line DMRs, some of which have been shown to control the monoallelic expression of the associated genes in the respective domains (11, 34, 36, 53, 66, 71-73, 77). These DMRs are called imprinting control regions (ICRs).Two recurring themes have been reported for ICR action. ICRs can function as DNA methylation-regulated promoters of a noncoding RNA or as methylation-regulated insulators. Recent evidence suggests that both of these mechanisms involve chromatin organization by either the noncoding RNA (45, 50) or the CTCF insulator protein (17, 32) along the respective imprinted domains. The CTCF insulator binds in the unmethylated maternal allele of the H19/Igf2 ICR and blocks the access of the Igf2 promoters to the shared downstream enhancers. CTCF cannot bind in the methylated paternal ICR allele; hence, here the Igf2 promoters have access to the enhancers (4, 18, 24, 25, 62). When CTCF binding is abolished in the ICR of the maternal allele, Igf2 expression becomes biallelic, and H19 expression is missing from both alleles (17, 52, 58, 63). Importantly, CTCF is the single major organizer of the allele-specific chromatin along the H19/Igf2 imprinted domain (17). Significantly, CTCF recruits, at a distance, Polycomb-mediated H3K27me3 repressive marks at the Igf2 promoter and at the Igf2 DMRs (17, 32).A role for chromatin composition is suggested in the parental allele-specific expression of imprinted genes. Repressive histone tail covalent modifications, such as H3K9me2 H3K9me3, H4K20me3, H3K27me3, and the symmetrically methylated H4R3me2 marks, are generally associated with the methylated DMR alleles, while activating histone tail covalent modifications, such as acetylated histone tails and also H3K4me2 and H3K4me3, are characteristic of the unmethylated alleles (7-9, 12-15, 17, 21, 33, 35, 43, 44, 51, 55, 56, 67, 69, 74, 75). Importantly, the maintenance of imprinted gene expression depends on the allele-specific chromatin differences. ICR-dependent H3K9me2 and H3K27me3 enrichment in the paternal allele (67) is required for paternal repression of a set of imprinted genes along the Kcnq1 imprinted domain in the placenta (30). Imprinted Cdkn1c and Cd81 expression depends on H3K27 methyltransferase Ezh2 activity in the extraembryonic ectoderm (64). Similarly, H3K9 methyltransferase Ehmt2 is required for parental allele-specific expression of a number of imprinted genes, including Osbpl5, Cd81, Ascl2, Tfpi2, and Slc22a3 in the placenta (44, 45, 70).There is increasing evidence that covalent modifications, not only in the histone tails but also in the histone globular domains, carry essential information for development and gene regulation. The H3K79 methyltransferase gene is essential for development in Drosophila (60) and in mice (22). H3K79 methylation is required for telomeric heterochromatin silencing in Drosophila (60), Saccharomyces cerevisiae (47, 68), and mice (22). The H4K91 residue regulates nucleosome assembly (76). Whereas mutations at single acetylation sites in the histone tails have only minor consequences, mutation of the H4K91 site in the histone H4 globular domain causes severe defects in silent chromatin formation and DNA repair in yeast (37, 42, 76).Contrary to the abundant information that exists regarding the allele-specific chromatin composition at DMRs of imprinted genes, no information is available about the parental allele-specific marking in the histone globular domains at the DMRs. We hypothesized that chromatin marks in the globular domains of histones also distinguish the parental alleles of germ line DMRs. In order to demonstrate this, we measured the allele-specific enrichment of H3K79me1, H3K79me2, H3K79me3, and H4K91ac at 11 mouse DMRs using quantitative multiplex chromatin immunoprecipitation-single nucleotide primer extension (ChIP-SNuPE) assays. In general, H3K79me3 was associated with the methylated allele at most DMRs, whereas the unmethylated allele showed enrichment for H3K79me1, H3K79me2, and H4K91ac. These results are consistent with the possibility that allele-specific differences in the globular domains of histones contribute to the “histone code” at DMRs.  相似文献   

5.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

6.
A bioinformatic analysis of nearly 400 genomes indicates that the overwhelming majority of bacteria possess homologs of the Escherichia coli proteins FtsL, FtsB, and FtsQ, three proteins essential for cell division in that bacterium. These three bitopic membrane proteins form a subcomplex in vivo, independent of the other cell division proteins. Here we analyze the domains of E. coli FtsL that are involved in the interaction with other cell division proteins and important for the assembly of the divisome. We show that FtsL, as we have found previously with FtsB, packs an enormous amount of information in its sequence for interactions with proteins upstream and downstream in the assembly pathway. Given their size, it is likely that the sole function of the complex of these two proteins is to act as a scaffold for divisome assembly.The division of an Escherichia coli cell into two daughter cells requires a complex of proteins, the divisome, to coordinate the constriction of the three layers of the Gram-negative cell envelope. In E. coli, there are 10 proteins known to be essential for cell division; in the absence of any one of these proteins, cells continue to elongate and to replicate and segregate their chromosomes but fail to divide (29). Numerous additional nonessential proteins have been identified that localize to midcell and assist in cell division (7-9, 20, 25, 34, 56, 59).A localization dependency pathway has been determined for the 10 essential division proteins (FtsZ→FtsA/ZipA→FtsK→FtsQ→FtsL/FtsB→FtsW→FtsI→FtsN), suggesting that the divisome assembles in a hierarchical manner (29). Based on this pathway, a given protein depends on the presence of all upstream proteins (to the left) for its localization and that protein is then required for the localization of the downstream division proteins (to the right). While the localization dependency pathway of cell division proteins suggests that a sequence of interactions is necessary for divisome formation, recent work using a variety of techniques reveals that a more complex web of interactions among these proteins is necessary for a functionally stable complex (6, 10, 19, 23, 24, 30-32, 40). While numerous interactions have been identified between division proteins, further work is needed to define which domains are involved and which interactions are necessary for assembly of the divisome.One subcomplex of the divisome, composed of the bitopic membrane proteins FtsB, FtsL, and FtsQ, appears to be the bridge between the predominantly cytoplasmic cell division proteins and the predominantly periplasmic cell division proteins (10). FtsB, FtsL, and FtsQ share a similar topology: short amino-terminal cytoplasmic domains and larger carboxy-terminal periplasmic domains. This tripartite complex can be divided further into a subcomplex of FtsB and FtsL, which forms in the absence of FtsQ and interacts with the downstream division proteins FtsW and FtsI in the absence of FtsQ (30). The presence of an FtsB/FtsL/FtsQ subcomplex appears to be evolutionarily conserved, as there is evidence that the homologs of FtsB, FtsL, and FtsQ in the Gram-positive bacteria Bacillus subtilis and Streptococcus pneumoniae also assemble into complexes (18, 52, 55).The assembly of the FtsB/FtsL/FtsQ complex is important for the stabilization and localization of one or more of its component proteins in both E. coli and B. subtilis (11, 16, 18, 33). In E. coli, FtsB and FtsL are codependent for their stabilization and for localization to midcell, while FtsQ does not require either FtsB or FtsL for its stabilization or localization to midcell (11, 33). Both FtsL and FtsB require FtsQ for localization to midcell, and in the absence of FtsQ the levels of full-length FtsB are significantly reduced (11, 33). The observed reduction in full-length FtsB levels that occurs in the absence of FtsQ or FtsL results from the degradation of the FtsB C terminus (33). However, the C-terminally degraded FtsB generated upon depletion of FtsQ can still interact with and stabilize FtsL (33).While a portion of the FtsB C terminus is dispensable for interaction with FtsL and for the recruitment of the downstream division proteins FtsW and FtsI, it is required for interaction with FtsQ (33). Correspondingly, the FtsQ C terminus also appears to be important for interaction with FtsB and FtsL (32, 61). The interaction between FtsB and FtsL appears to be mediated by the predicted coiled-coil motifs within the periplasmic domains of the two proteins, although only the membrane-proximal half of the FtsB coiled coil is necessary for interaction with FtsL (10, 32, 33). Additionally, the transmembrane domains of FtsB and FtsL are important for their interaction with each other, while the cytoplasmic domain of FtsL is not necessary for interaction with FtsB, which has only a short 3-amino-acid cytoplasmic domain (10, 33).In this study, we focused on the interaction domains of FtsL. We find that, as with FtsB, the C terminus of FtsL is required for the interaction of FtsQ with the FtsB/FtsL subcomplex while the cytoplasmic domain of FtsL is involved in recruitment of the downstream division proteins. Finally, we provide a comprehensive analysis of the presence of FtsB, FtsL, and FtsQ homologs among bacteria and find that the proteins of this complex are likely more widely distributed among bacteria than was previously thought.  相似文献   

7.
Factors potentially contributing to the lower incidence of Lyme borreliosis (LB) in the far-western than in the northeastern United States include tick host-seeking behavior resulting in fewer human tick encounters, lower densities of Borrelia burgdorferi-infected vector ticks in peridomestic environments, and genetic variation among B. burgdorferi spirochetes to which humans are exposed. We determined the population structure of B. burgdorferi in over 200 infected nymphs of the primary bridging vector to humans, Ixodes pacificus, collected in Mendocino County, CA. This was accomplished by sequence typing the spirochete lipoprotein ospC and the 16S-23S rRNA intergenic spacer (IGS). Thirteen ospC alleles belonging to 12 genotypes were found in California, and the two most abundant, ospC genotypes H3 and E3, have not been detected in ticks in the Northeast. The most prevalent ospC and IGS biallelic profile in the population, found in about 22% of ticks, was a new B. burgdorferi strain defined by ospC genotype H3. Eight of the most common ospC genotypes in the northeastern United States, including genotypes I and K that are associated with disseminated human infections, were absent in Mendocino County nymphs. ospC H3 was associated with hardwood-dominated habitats where western gray squirrels, the reservoir host, are commonly infected with LB spirochetes. The differences in B. burgdorferi population structure in California ticks compared to the Northeast emphasize the need for a greater understanding of the genetic diversity of spirochetes infecting California LB patients.In the United States, Lyme borreliosis (LB) is the most commonly reported vector-borne illness and is caused by infection with the spirochete Borrelia burgdorferi (3, 9, 52). The signs and symptoms of LB can include a rash, erythema migrans, fever, fatigue, arthritis, carditis, and neurological manifestations (50, 51). The black-legged tick, Ixodes scapularis, and the western black-legged tick, Ixodes pacificus, are the primary vectors of B. burgdorferi to humans in the United States, with the former in the northeastern and north-central parts of the country and the latter in the Far West (9, 10). These ticks perpetuate enzootic transmission cycles together with a vertebrate reservoir host such as the white-footed mouse, Peromyscus leucopus, in the Northeast and Midwest (24, 35), or the western gray squirrel, Sciurus griseus, in California (31, 46).B. burgdorferi is a spirochete species with a largely clonal population structure (14, 16) comprising several different strains or lineages (8). The polymorphic ospC gene of B. burgdorferi encodes a surface lipoprotein that increases expression within the tick during blood feeding (47) and is required for initial infection of mammalian hosts (25, 55). To date, approximately 20 North American ospC genotypes have been described (40, 45, 49, 56). At least four, and possibly up to nine, of these genotypes are associated with B. burgdorferi invasiveness in humans (1, 15, 17, 49, 57). Restriction fragment length polymorphism (RFLP) and, subsequently, sequence analysis of the 16S-23S rRNA intergenic spacer (IGS) are used as molecular typing tools to investigate genotypic variation in B. burgdorferi (2, 36, 38, 44, 44, 57). The locus maintains a high level of variation between related species, and this variation reflects the heterogeneity found at the genomic level of the organism (37). The IGS and ospC loci appear to be linked (2, 8, 26, 45, 57), but the studies to date have not been representative of the full range of diversity of B. burgdorferi in North America.Previous studies in the northeastern and midwestern United States have utilized IGS and ospC genotyping to elucidate B. burgdorferi evolution, host strain specificity, vector-reservoir associations, and disease risk to humans. In California, only six ospC and five IGS genotypes have been described heretofore in samples from LB patients or I. pacificus ticks (40, 49, 56) compared to approximately 20 ospC and IGS genotypes identified in ticks, vertebrate hosts, or humans from the Northeast and Midwest (8, 40, 45, 49, 56). Here, we employ sequence analysis of both the ospC gene and IGS region to describe the population structure of B. burgdorferi in more than 200 infected I. pacificus nymphs from Mendocino County, CA, where the incidence of LB is among the highest in the state (11). Further, we compare the Mendocino County spirochete population to populations found in the Northeast.  相似文献   

8.
9.
10.
An intracellular multiplication F (IcmF) family protein is a conserved component of a newly identified type VI secretion system (T6SS) encoded in many animal and plant-associated Proteobacteria. We have previously identified ImpLM, an IcmF family protein that is required for the secretion of the T6SS substrate hemolysin-coregulated protein (Hcp) from the plant-pathogenic bacterium Agrobacterium tumefaciens. In this study, we characterized the topology of ImpLM and the importance of its nucleotide-binding Walker A motif involved in Hcp secretion from A. tumefaciens. A combination of β-lactamase-green fluorescent protein fusion and biochemical fractionation analyses revealed that ImpLM is an integral polytopic inner membrane protein comprising three transmembrane domains bordered by an N-terminal domain facing the cytoplasm and a C-terminal domain exposed to the periplasm. impLM mutants with substitutions or deletions in the Walker A motif failed to complement the impLM deletion mutant for Hcp secretion, which provided evidence that ImpLM may bind and/or hydrolyze nucleoside triphosphates to mediate T6SS machine assembly and/or substrate secretion. Protein-protein interaction and protein stability analyses indicated that there is a physical interaction between ImpLM and another essential T6SS component, ImpKL. Topology and biochemical fractionation analyses suggested that ImpKL is an integral bitopic inner membrane protein with an N-terminal domain facing the cytoplasm and a C-terminal OmpA-like domain exposed to the periplasm. Further comprehensive yeast two-hybrid assays dissecting ImpLM-ImpKL interaction domains suggested that ImpLM interacts with ImpKL via the N-terminal cytoplasmic domains of the proteins. In conclusion, ImpLM interacts with ImpKL, and its Walker A motif is required for its function in mediation of Hcp secretion from A. tumefaciens.Many pathogenic gram-negative bacteria employ protein secretion systems formed by macromolecular complexes to deliver proteins or protein-DNA complexes across the bacterial membrane. In addition to the general secretory (Sec) pathway (18, 52) and twin-arginine translocation (Tat) pathway (7, 34), which transport proteins across the inner membrane into the periplasm, at least six distinct protein secretion systems occur in gram-negative bacteria (28, 46, 66). These systems are able to secrete proteins from the cytoplasm or periplasm to the external environment or the host cell and include the well-documented type I to type V secretion systems (T1SS to T5SS) (10, 15, 23, 26, 30) and a recently discovered type VI secretion system (T6SS) (4, 8, 22, 41, 48, 49). These systems use ATPase or a proton motive force to energize assembly of the protein secretion machinery and/or substrate translocation (2, 6, 41, 44, 60).Agrobacterium tumefaciens is a soilborne pathogenic gram-negative bacterium that causes crown gall disease in a wide range of plants. Using an archetypal T4SS (9), A. tumefaciens translocates oncogenic transferred DNA and effector proteins to the host and ultimately integrates transferred DNA into the host genome. Because of its unique interkingdom DNA transfer, this bacterium has been extensively studied and used to transform foreign DNA into plants and fungi (11, 24, 40, 67). In addition to the T4SS, A. tumefaciens encodes several other secretion systems, including the Sec pathway, the Tat pathway, T1SS, T5SS, and the recently identified T6SS (72). T6SS is highly conserved and widely distributed in animal- and plant-associated Proteobacteria and plays an important role in the virulence of several human and animal pathogens (14, 19, 41, 48, 56, 63, 74). However, T6SS seems to play only a minor role or even a negative role in infection or virulence of the plant-associated pathogens or symbionts studied to date (5, 37-39, 72).T6SS was initially designated IAHP (IcmF-associated homologous protein) clusters (13). Before T6SS was documented by Pukatzki et al. in Vibrio cholerae (48), mutations in this gene cluster in the plant symbiont Rhizobium leguminosarum (5) and the fish pathogen Edwardsiella tarda (51) caused defects in protein secretion. In V. cholerae, T6SS was responsible for the loss of cytotoxicity for amoebae and for secretion of two proteins lacking a signal peptide, hemolysin-coregulated protein (Hcp) and valine-glycine repeat protein (VgrG). Secretion of Hcp is the hallmark of T6SS. Interestingly, mutation of hcp blocks the secretion of VgrG proteins (VgrG-1, VgrG-2, and VgrG-3), and, conversely, vgrG-1 and vgrG-2 are both required for secretion of the Hcp and VgrG proteins from V. cholerae (47, 48). Similarly, a requirement of Hcp for VgrG secretion and a requirement of VgrG for Hcp secretion have also been shown for E. tarda (74). Because Hcp forms a hexameric ring (41) stacked in a tube-like structure in vitro (3, 35) and VgrG has a predicted trimeric phage tail spike-like structure similar to that of the T4 phage gp5-gp27 complex (47), Hcp and VgrG have been postulated to form an extracellular translocon. This model is further supported by two recent crystallography studies showing that Hcp, VgrG, and a T4 phage gp25-like protein resembled membrane penetration tails of bacteriophages (35, 45).Little is known about the topology and structure of T6SS machinery subunits and the distinction between genes encoding machinery subunits and genes encoding regulatory proteins. Posttranslational regulation via the phosphorylation of Fha1 by a serine-threonine kinase (PpkA) is required for Hcp secretion from Pseudomonas aeruginosa (42). Genetic evidence for P. aeruginosa suggested that the T6SS may utilize a ClpV-like AAA+ ATPase to provide the energy for machinery assembly or substrate translocation (41). A recent study of V. cholerae suggested that ClpV ATPase activity is responsible for remodeling the VipA/VipB tubules which are crucial for type VI substrate secretion (6). An outer membrane lipoprotein, SciN, is an essential T6SS component for mediating Hcp secretion from enteroaggregative Escherichia coli (1). A systematic study of the T6SS machinery in E. tarda revealed that 13 of 16 genes in the evp gene cluster are essential for secretion of T6S substrates (74), which suggests the core components of the T6SS. Interestingly, most of the core components conserved in T6SS are predicted soluble proteins without recognizable signal peptide and transmembrane (TM) domains.The intracellular multiplication F (IcmF) and H (IcmH) proteins are among the few core components with obvious TM domains (8). In Legionella pneumophila Dot/Icm T4SSb, IcmF and IcmH are both membrane localized and partially required for L. pneumophila replication in macrophages (58, 70, 75). IcmF and IcmH are thought to interact with each other in stabilizing the T4SS complex in L. pneumophila (58). In T6SS, IcmF is one of the essential components required for secretion of Hcp from several animal pathogens, including V. cholerae (48), Aeromonas hydrophila (63), E. tarda (74), and P. aeruginosa (41), as well as the plant pathogens A. tumefaciens (72) and Pectobacterium atrosepticum (39). In E. tarda, IcmF (EvpO) interacted with IcmH (EvpN), EvpL, and EvpA in a yeast two-hybrid assay, and its putative nucleotide-binding site (Walker A motif) was not essential for secretion of T6SS substrates (74).In this study, we characterized the topology and interactions of the IcmF and IcmH family proteins ImpLM and ImpKL, which are two essential components of the T6SS of A. tumefaciens. We adapted the nomenclature proposed by Cascales (8), using the annotated gene designation followed by the letter indicated by Shalom et al. (59). Our data indicate that ImpLM and ImpKL are both integral inner membrane proteins and interact with each other via their N-terminal domains residing in the cytoplasm. We also provide genetic evidence showing that ImpLM may function as a nucleoside triphosphate (NTP)-binding protein or nucleoside triphosphatase to mediate T6S machinery assembly and/or substrate secretion.  相似文献   

11.
The sequestration of iron by mammalian hosts represents a significant obstacle to the establishment of a bacterial infection. In response, pathogenic bacteria have evolved mechanisms to acquire iron from host heme. Bacillus anthracis, the causative agent of anthrax, utilizes secreted hemophores to scavenge heme from host hemoglobin, thereby facilitating iron acquisition from extracellular heme pools and delivery to iron-regulated surface determinant (Isd) proteins covalently attached to the cell wall. However, several Gram-positive pathogens, including B. anthracis, contain genes that encode near iron transporter (NEAT) proteins that are genomically distant from the genetically linked Isd locus. NEAT domains are protein modules that partake in several functions related to heme transport, including binding heme and hemoglobin. This finding raises interesting questions concerning the relative role of these NEAT proteins, relative to hemophores and the Isd system, in iron uptake. Here, we present evidence that a B. anthracis S-layer homology (SLH) protein harboring a NEAT domain binds and directionally transfers heme to the Isd system via the cell wall protein IsdC. This finding suggests that the Isd system can receive heme from multiple inputs and may reflect an adaptation of B. anthracis to changing iron reservoirs during an infection. Understanding the mechanism of heme uptake in pathogenic bacteria is important for the development of novel therapeutics to prevent and treat bacterial infections.Pathogenic bacteria need to acquire iron to survive in mammalian hosts (12). However, the host sequesters most iron in the porphyrin heme, and heme itself is often bound to proteins such as hemoglobin (14, 28, 85). Circulating hemoglobin can serve as a source of heme-iron for replicating bacteria in infected hosts, but the precise mechanisms of heme extraction, transport, and assimilation remain unclear (25, 46, 79, 86). An understanding of how bacterial pathogens import heme will lead to the development of new anti-infectives that inhibit heme uptake, thereby preventing or treating infections caused by these bacteria (47, 68).The mechanisms of transport of biological molecules into a bacterial cell are influenced by the compositional, structural, and topological makeup of the cell envelope. Gram-negative bacteria utilize specific proteins to transport heme through the outer membrane, periplasm, and inner membrane (83, 84). Instead of an outer membrane and periplasm, Gram-positive bacteria contain a thick cell wall (59, 60). Proteins covalently anchored to the cell wall provide a functional link between extracellular heme reservoirs and intracellular iron utilization pathways (46). In addition, several Gram-positive and Gram-negative bacterial genera also contain an outermost structure termed the S (surface)-layer (75). The S-layer is a crystalline array of protein that surrounds the bacterial cell and may serve a multitude of functions, including maintenance of cell architecture and protection from host immune components (6, 7, 18, 19, 56). In bacterial pathogens that manifest an S-layer, the “force field” function of this structure raises questions concerning how small molecules such as heme can be successfully passed from the extracellular milieu to cell wall proteins for delivery into the cell cytoplasm.Bacillus anthracis is a Gram-positive, spore-forming bacterium that is the etiological agent of anthrax disease (30, 33). The life cycle of B. anthracis begins after a phagocytosed spore germinates into a vegetative cell inside a mammalian host (2, 40, 69, 78). Virulence determinants produced by the vegetative cells facilitate bacterial growth, dissemination to major organ systems, and eventually host death (76-78). The release of aerosolized spores into areas with large concentrations of people is a serious public health concern (30).Heme acquisition in B. anthracis is mediated by the action of IsdX1 and IsdX2, two extracellular hemophores that extract heme from host hemoglobin and deliver the iron-porphyrin to cell wall-localized IsdC (21, 45). Both IsdX1 and IsdX2 harbor near iron transporter domains (NEATs), a conserved protein module found in Gram-positive bacteria that mediates heme uptake from hemoglobin and contributes to bacterial pathogenesis upon infection (3, 8, 21, 31, 44, 46, 49, 50, 67, 81, 86). Hypothesizing that B. anthracis may contain additional mechanisms for heme transport, we provide evidence that B. anthracis S-layer protein K (BslK), an S-layer homology (SLH) and NEAT protein (32, 43), is surface localized and binds and transfers heme to IsdC in a rapid, contact-dependent manner. These results suggest that the Isd system is not a self-contained conduit for heme trafficking and imply that there is functional cross talk between differentially localized NEAT proteins to promote heme uptake during infection.  相似文献   

12.
13.
14.
Claudin-1, a component of tight junctions between liver hepatocytes, is a hepatitis C virus (HCV) late-stage entry cofactor. To investigate the structural and functional roles of various claudin-1 domains in HCV entry, we applied a mutagenesis strategy. Putative functional intracellular claudin-1 domains were not important. However, we identified seven novel residues in the first extracellular loop that are critical for entry of HCV isolates drawn from six different subtypes. Most of the critical residues belong to the highly conserved claudin motif W30-GLW51-C54-C64. Alanine substitutions of these residues did not impair claudin-1 cell surface expression or lateral protein interactions within the plasma membrane, including claudin-1-claudin-1 and claudin-1-CD81 interactions. However, these mutants no longer localized to cell-cell contacts. Based on our observations, we propose that cell-cell contacts formed by claudin-1 may generate specialized membrane domains that are amenable to HCV entry.Hepatitis C virus (HCV) is a major human pathogen that affects approximately 3% of the global population, leading to cirrhosis and hepatocellular carcinoma in chronically infected individuals (5, 23, 42). Hepatocytes are the major target cells of HCV (11), and entry follows a complex cascade of interactions with several cellular factors (6, 8, 12, 17). Infectious viral particles are associated with lipoproteins and initially attach to target cells via glycosaminoglycans and the low-density lipoprotein receptor (1, 7, 31). These interactions are followed by direct binding of the E2 envelope glycoprotein to the scavenger receptor class B type I (SR-B1) and then to the CD81 tetraspanin (14, 15, 33, 36). Early studies showed that CD81 and SR-B1 were necessary but not sufficient for HCV entry, and claudin-1 was discovered to be a requisite HCV entry cofactor that appears to act at a very late stage of the process (18).Claudin-1 is a member of the claudin protein family that participates in the formation of tight junctions between adjacent cells (25, 30, 37). Tight junctions regulate the paracellular transport of solutes, water, and ions and also generate apical-basal cell polarity (25, 37). In the liver, the apical surfaces of hepatocytes form bile canaliculi, whereas the basolateral surfaces face the underside of the endothelial layer that lines liver sinusoids. Claudin-1 is highly expressed in tight junctions formed by liver hepatocytes as well as on all hepatoma cell lines that are permissive to HCV entry (18, 24, 28). Importantly, nonhepatic cell lines that are engineered to express claudin-1 become permissive to HCV entry (18). Claudin-6 and -9 are two other members of the human claudin family that enable HCV entry into nonpermissive cells (28, 43).The precise role of claudin-1 in HCV entry remains to be determined. A direct interaction between claudins and HCV particles or soluble E2 envelope glycoprotein has not been demonstrated (18; T. Dragic, unpublished data). It is possible that claudin-1 interacts with HCV entry receptors SR-B1 or CD81, thereby modulating their ability to bind to E2. Alternatively, claudin-1 may ferry the receptor-virus complex to fusion-permissive intracellular compartments. Recent studies show that claudin-1 colocalizes with the CD81 tetraspanin at the cell surface of permissive cell lines (22, 34, 41). With respect to nonpermissive cells, one group observed that claudin-1 was predominantly intracellular (41), whereas another reported associations of claudin-1 and CD81 at the cell surface, similar to what is observed in permissive cells (22).Claudins comprise four transmembrane domains along with two extracellular loops and two cytoplasmic domains (19, 20, 25, 30, 37). The first extracellular loop (ECL1) participates in pore formation and influences paracellular charge selectivity (25, 37). It has been shown that the ECL1 of claudin-1 is required for HCV entry (18). All human claudins comprise a highly conserved motif, W30-GLW51-C54-C64, in the crown of ECL1 (25, 37). The exact function of this domain is unknown, and we hypothesized that it is important for HCV entry. The second extracellular loop is required for the holding function and oligomerization of the protein (25). Claudin-1 also comprises various signaling domains and a PDZ binding motif in the intracellular C terminus that binds ZO-1, another major component of tight junctions (30, 32, 37). We further hypothesized that some of these domains may play a role in HCV entry.To understand the role of claudin-1 in HCV infection, we developed a mutagenesis strategy targeting the putative sites for internalization, glycosylation, palmitoylation, and phosphorylation. The functionality of these domains has been described by others (4, 16, 25, 35, 37, 40). We also mutagenized charged and bulky residues in ECL1, including all six residues within the highly conserved motif W30-GLW51-C54-C64. None of the intracellular domains were found to affect HCV entry. However, we identified seven residues in ECL1 that are critical for entry mediated by envelope glycoproteins derived from several HCV subtypes, including all six residues of the conserved motif. These mutants were still expressed at the cell surface and able to form lateral homophilic interactions within the plasma membrane as well as to engage in lateral interactions with CD81. In contrast, they no longer engaged in homophilic trans interactions at cell-cell contacts. We conclude that the highly conserved motif W30-GLW51-C54-C64 of claudin-1 is important for HCV entry into target cells and participates in the formation of cell-cell contacts.  相似文献   

15.
The filovirus VP40 protein is capable of budding from mammalian cells in the form of virus-like particles (VLPs) that are morphologically indistinguishable from infectious virions. Ebola virus VP40 (eVP40) contains well-characterized overlapping L domains, which play a key role in mediating efficient virus egress. L domains represent only one component required for efficient budding and, therefore, there is a need to identify and characterize additional domains important for VP40 function. We demonstrate here that the 96LPLGVA101 sequence of eVP40 and the corresponding 84LPLGIM89 sequence of Marburg virus VP40 (mVP40) are critical for efficient release of VP40 VLPs. Indeed, deletion of these motifs essentially abolished the ability of eVP40 and mVP40 to bud as VLPs. To address the mechanism by which the 96LPLGVA101 motif of eVP40 contributes to egress, a series of point mutations were introduced into this motif. These mutants were then compared to the eVP40 wild type in a VLP budding assay to assess budding competency. Confocal microscopy and gel filtration analyses were performed to assess their pattern of intracellular localization and ability to oligomerize, respectively. Our results show that mutations disrupting the 96LPLGVA101 motif resulted in both altered patterns of intracellular localization and self-assembly compared to wild-type controls. Interestingly, coexpression of either Ebola virus GP-WT or mVP40-WT with eVP40-ΔLPLGVA failed to rescue the budding defective eVP40-ΔLPLGVA mutant into VLPs; however, coexpression of eVP40-WT with mVP40-ΔLPLGIM successfully rescued budding of mVP40-ΔLPLGIM into VLPs at mVP40-WT levels. In sum, our findings implicate the LPLGVA and LPLGIM motifs of eVP40 and mVP40, respectively, as being important for VP40 structure/stability and budding.Ebola and Marburg viruses are members of the family Filoviridae. Filoviruses are filamentous, negative-sense, single-stranded RNA viruses that cause lethal hemorrhagic fevers in both humans and nonhuman primates (5). Filoviruses encode seven viral proteins including: NP (major nucleoprotein), VP35 (phosphoprotein), VP40 (matrix protein), GP (glycoprotein), VP30 (minor nucleoprotein), VP24 (secondary matrix protein), and L (RNA-dependent RNA polymerase) (2, 5, 10, 12, 45). Numerous studies have shown that expression of Ebola virus VP40 (eVP40) alone in mammalian cells leads to the production of virus-like particles (VLPs) with filamentous morphology which is indistinguishable from infectious Ebola virus particles (12, 17, 18, 25, 26, 27, 30, 31, 34, 49). Like many enveloped viruses such as rhabdovirus (11) and arenaviruses (44), Ebola virus encodes late-assembly or L domains, which are sequences required for the membrane fission event that separates viral and cellular membranes to release nascent virion particles (1, 5, 7, 10, 12, 18, 25, 27, 34). Thus far, four classes of L domains have been identified which were defined by their conserved amino acid core sequences: the Pro-Thr/Ser-Ala-Pro (PT/SAP) motif (25, 27), the Pro-Pro-x-Tyr (PPxY) motif (11, 12, 18, 19, 41, 53), the Tyr-x-x-Leu (YxxL) motif (3, 15, 27, 37), and the Phe-Pro-Ile-Val (FPIV) motif (39). Both PTAP and the PPxY motifs are essential for efficient particle release for eVP40 (25, 27, 48, 49), whereas mVP40 contains only a PPxY motif. L domains are believed to act as docking sites for the recruitment of cellular proteins involved in endocytic trafficking and multivesicular body biogenesis to facilitate virus-cell separation (8, 13, 14, 16, 28, 29, 33, 36, 43, 50, 51).In addition to L domains, oligomerization, and plasma-membrane localization of VP40 are two functions of the protein that are critical for efficient budding of VLPs and virions. Specific sequences involved in self-assembly and membrane localization have yet to be defined precisely. However, recent reports have attempted to identify regions of VP40 that are important for its overall function in assembly and budding. For example, the amino acid region 212KLR214 located at the C-terminal region was found to be important for efficient release of eVP40 VLPs, with Leu213 being the most critical (30). Mutation of the 212KLR214 region resulted in altered patterns of cellular localization and oligomerization of eVP40 compared to those of the wild-type genotype (30). In addition, the proline at position 53 was also implicated as being essential for eVP40 VLP release and plasma-membrane localization (54).In a more recent study, a YPLGVG motif within the M protein of Nipah virus (NiV) was shown to be important for stability, membrane binding, and budding of NiV VLPs (35). Whether this NiV M motif represents a new class of L domain remains to be determined. However, it is clear that this YPLGVG motif of NiV M is important for budding, perhaps involving a novel mechanism (35). Our rationale for investigating the corresponding, conserved motifs present within the Ebola and Marburg virus VP40 proteins was based primarily on these findings with NiV. In addition, Ebola virus VP40 motif maps close to the hinge region separating the N- and C-terminal domains of VP40 (4). Thus, the 96LPLGVA101 motif of eVP40 is predicted to be important for the overall stability and function of VP40 during egress. Findings presented here indicate that disruption of these filovirus VP40 motifs results in a severe defect in VLP budding, due in part to impairment in overall VP40 structure, stability and/or intracellular localization.  相似文献   

16.
17.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

18.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

19.
20.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号