首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of the herpes simplex virus type 1 tegument protein VP22 during infection is as yet undefined. We have previously shown that VP22 has the unusual property of efficient intercellular transport, such that the protein spreads from single expressing cells into large numbers of surrounding cells. We also noted that in cells expressing VP22 by transient transfection, the protein localizes in a distinctive cytoplasmic filamentous pattern. Here we show that this pattern represents a colocalization between VP22 and cellular microtubules. Moreover, we show that VP22 reorganizes microtubules into thick bundles which are easily distinguishable from nonbundled microtubules. These bundles are highly resistant to microtubule-depolymerizing agents such as nocodazole and incubation at 4°C, suggesting that VP22 has the capacity to stabilize the microtubule network. In addition, we show that the microtubules contained in these bundles are modified by acetylation, a marker for microtubule stability. Analysis of infected cells by both immunofluorescence and measurement of microtubule acetylation further showed that colocalization between VP22 and microtubules, and induction of microtubule acetylation, also occurs during infection. Taken together, these results suggest that VP22 exhibits the properties of a classical microtubule-associated protein (MAP) during both transfection and infection. This is the first demonstration of a MAP encoded by an animal virus.

The eukaryotic cytoskeleton, which comprises actin microfilaments, intermediate filaments (IFs), and microtubules (MTs), performs a broad range of complex activities within the cell. These include various aspects of cell motility (2, 3), the determination of cell shape and internal architecture (17, 32), and vesicle trafficking and chromosome movement during mitosis (18, 25, 29). Furthermore, the individual components of the cytoskeleton are interlinked to form a dynamic network accessing every area of the cytoplasm (41) and the plasma membrane (10, 39), providing a framework which coordinates multiple cellular processes. The involvement in so many cellular activities is likely to make the cytoskeleton a primary target for exploitation during virus infection of host cells. Surprisingly, however, there is relatively little detailed information on virus interactions with the host cytoskeleton, and it is only recently that data suggesting that viruses may utilize the positioning and dynamics of the cytoskeletal network to their own advantage have begun to emerge.The majority of virus-induced cytoskeletal alterations documented to date involve the overall disruption of one or more elements of the cytoskeleton. For example, retroviruses and poliovirus encode proteases which induce the cleavage of cytoskeleton-associated proteins, thereby broadly increasing the dynamics of the cytoskeleton, resulting in disruption of the cell structure as infection progresses, and the appearance of well-characterized cytopathic effects (20, 43). A more specific disruption of the cytoskeleton occurs during infection by the rhabdovirus vesicular stomatitis virus, where the direct interaction of the virus matrix protein with tubulin results in the inhibition of MT assembly (33). Human immunodeficiency virus and papillomaviruses, on the other hand, encode activities which induce the collapse of the IF network, a property which may promote virus release from the cell (13, 23).By contrast, examples of virus activities which induce cytoskeletal polymerization and/or stabilization are much rarer. One example is the baculovirus Autographa californica nuclear polyhedrosis virus, which has been shown to induce the appearance of thick actin cables between the plasma membrane and the nucleus at early times after infection (8) and to induce actin filaments in the nucleus at late times (7). These features have been proposed to be involved in virus transport from the cell surface to the nucleus and nucleocapsid morphogenesis, respectively. However, the best-characterized viral exploitation of the host cell cytoskeleton is that of vaccinia virus, which has been shown to induce actin polymerization directly behind its virus particle as a means of propelling the virus through the cell (11, 12). The virus protein(s) responsible for this activity has not yet been identified, but it has been shown that disruption of the actin cytoskeleton in infected cells inhibits virus release, indicating that actin is essential to the virus replicative cycle (35).The herpes simplex virus type 1 (HSV-1) structural protein VP22, a component of the viral tegument, has an as yet undefined role in virus replication. However, we have recently shown that VP22 has the unusual property of intercellular transport when it is expressed during both infection and transient transfection (14). Moreover, we demonstrated that such VP22 transport occurs via a mechanism potentially involving actin microfilaments, suggesting that VP22 exhibits a cytoskeletal interaction. In this report, we demonstrate that VP22 interacts with another component of the cellular cytoskeleton, the MT network. We show that VP22 colocalizes with MTs in both transfected and infected cells and induces the appearance of thick MT bundles. Furthermore, we show that these VP22-induced MT bundles are highly stabilized in comparison to normal MTs and are resistant to both drug and cold treatment. As a consequence of VP22-induced stabilization, MTs are extensively modified by acetylation, a property also demonstrated in infected cells. Taken together, these results suggest that VP22 exhibits the properties of a classical cellular MT-associated protein (MAP) with powerful MT-stabilizing properties and represents the first demonstration of a MAP encoded by an animal virus.  相似文献   

2.
3.
Assembly of the herpesvirus tegument is poorly understood but is believed to involve interactions between outer tegument proteins and the cytoplasmic domains of envelope glycoproteins. Here, we present the detailed characterization of a multicomponent glycoprotein-tegument complex found in herpes simplex virus 1 (HSV-1)-infected cells. We demonstrate that the tegument protein VP22 bridges a complex between glycoprotein E (gE) and glycoprotein M (gM). Glycoprotein I (gI), the known binding partner of gE, is also recruited into this gE-VP22-gM complex but is not required for its formation. Exclusion of the glycoproteins gB and gD and VP22''s major binding partner VP16 demonstrates that recruitment of virion components into this complex is highly selective. The immediate-early protein ICP0, which requires VP22 for packaging into the virion, is also assembled into this gE-VP22-gM-gI complex in a VP22-dependent fashion. Although subcomplexes containing VP22 and ICP0 can be formed when either gE or gM are absent, optimal complex formation requires both glycoproteins. Furthermore, and in line with complex formation, neither of these glycoproteins is individually required for VP22 or ICP0 packaging into the virion, but deletion of gE and gM greatly reduces assembly of both VP22 and ICP0. Double deletion of gE and gM also results in small plaque size, reduced virus yield, and defective secondary envelopment, similar to the phenotype previously shown for pseudorabies virus. Hence, we suggest that optimal gE-VP22-gM-gI-ICP0 complex formation correlates with efficient virus morphogenesis and spread. These data give novel insights into the poorly understood process of tegument acquisition.  相似文献   

4.
The herpes simplex virus protein VP22 is a major phosphoprotein of infected cells. In this study, we identify two serine phosphorylation sites within VP22 and show that the N-terminal site is a substrate for casein kinase II, while the extreme C-terminal site is a substrate for another, as yet unidentified, cellular kinase. Furthermore, we show that a mutant of VP22 which has both sites altered is unable to incorporate phosphate in vivo, confirming that there are no other phosphorylation sites within VP22.  相似文献   

5.
Growing evidence indicates that herpes simplex virus type 1 (HSV-1) acquires its final envelope in the trans-Golgi network (TGN). During the envelopment process, the viral nucleocapsid as well as the envelope and tegument proteins must arrive at this site in order to be incorporated into assembling virions. To gain a better understanding of how these proteins associate with cellular membranes and target to the correct compartment, we have been studying the intracellular trafficking properties of the small tegument protein encoded by the U(L)11 gene of HSV-1. This 96-amino-acid, myristylated protein accumulates on the cytoplasmic face of internal membranes, where it is thought to play a role in nucleocapsid envelopment and egress. When expressed in the absence of other HSV-1 proteins, the UL11 protein localizes to the Golgi apparatus, and previous deletion analyses have revealed that the membrane-trafficking information is contained within the first 49 amino acids. The goal of this study was to map the functional domains required for proper Golgi membrane localization. In addition to N-terminal myristylation, which allows for weak membrane binding, UL11 appears to be palmitylated on one or more of three consecutive N-terminal cysteines. Using membrane-pelleting experiments and confocal microscopy, we show that palmitylation of UL11 is required for both Golgi targeting specificity and strong membrane binding. Furthermore, we found that a conserved acidic cluster within the first half of UL11 is required for the recycling of this tegument protein from the plasma membrane to the Golgi apparatus. Taken together, our results demonstrate that UL11 has highly dynamic membrane-trafficking properties, which suggests that it may play multiple roles on the plasma membrane as well as on the nuclear and TGN membranes.  相似文献   

6.
Homologs of the essential large tegument protein pUL36 of herpes simplex virus 1 are conserved throughout the Herpesviridae, complex with pUL37, and form part of the capsid-associated “inner” tegument. pUL36 is crucial for transport of the incoming capsid to and docking at the nuclear pore early after infection as well as for virion maturation in the cytoplasm. Its extreme C terminus is essential for pUL36 function interacting with pUL25 on nucleocapsids to start tegumentation (K. Coller, J. Lee, A. Ueda, and G. Smith, J. Virol. 81:11790-11797, 2007). However, controversy exists about the cellular compartment in which pUL36 is added to the nascent virus particle. We generated monospecific rabbit antisera against four different regions spanning most of pUL36 of the alphaherpesvirus pseudorabies virus (PrV). By immunofluorescence and immunoelectron microscopy, we then analyzed the intracellular location of pUL36 after transient expression and during PrV infection. While reactivities of all four sera were comparable, none of them showed specific intranuclear staining during PrV infection. In immunoelectron microscopy, neither of the sera stained primary enveloped virions in the perinuclear cleft, whereas extracellular mature virus particles were extensively labeled. However, transient expression of pUL36 alone resulted in partial localization to the nucleus, presumably mediated by nuclear localization signals (NLS) whose functionality was demonstrated by fusion of the putative NLS to green fluorescent protein (GFP) and GFP-tagged pUL25. Since PrV pUL36 can enter the nucleus when expressed in isolation, the NLS may be masked during infection. Thus, our studies show that during PrV infection pUL36 is not detectable in the nucleus or on primary enveloped virions, correlating with the notion that the tegument of mature virus particles, including pUL36, is acquired in the cytosol.The herpesvirus virion is composed of an icosahedral nucleocapsid containing the viral genome, an envelope of cellular origin with inserted viral (glyco)proteins, and a tegument which links nucleocapsid and envelope comparable to the matrix of RNA viruses. The herpesvirus tegument contains a multitude of viral and cellular proteins (reviewed in references 45 and 46). Tegument proteins execute various regulatory and structural functions, including activation of viral gene expression (2), modulation of the host cell for virus replication (26, 51, 55), and mediation of posttranslational modification of proteins (10, 27, 50). Numerous interactions have been identified among tegument proteins, between tegument and capsid proteins, and between tegument and envelope proteins (7, 14, 16, 18, 33, 36, 42, 53, 58-61).The largest tegument proteins found in the herpesviruses are homologs of pUL36 of herpes simplex virus type 1 (HSV-1). Pseudorabies virus (PrV) pUL36 consists of 3,084 amino acids (aa) with a molecular mass of 324 kDa (33). PrV and HSV-1 pUL36 are essential for viral replication (13, 15). In their absence, nonenveloped nucleocapsids accumulate in the cytoplasm. Whereas in several studies nuclear stages like cleavage and packaging of the viral DNA as well as nuclear egress were not found affected (13, 15), another study indicated an effect of pUL36 deletion on PrV nuclear egress (41).pUL36 homologs complex with another tegument protein, pUL37, as has been shown for HSV-1 (59), PrV (15, 33), and human cytomegalovirus (3, 23), and the interacting region on pUL36 has been delineated for PrV (33) and identified at the amino acid level for HSV-1 (47). Deletion of the pUL37 interaction domain from PrV pUL36 impedes virion formation in the cytosol but does not block it completely, yielding a phenotype similar to that of a pUL37 deletion mutant (31). This indicates an important but nonessential role for pUL37 and the pUL37 interaction domain in pUL36 in virion formation (15). In contrast, absence of pUL37 completely blocks virion formation in HSV-1 (11, 38).pUL36 is stably attached to the nucleocapsid (39, 43, 56), remains associated with incoming particles during transport along microtubules to the nuclear pore (21, 40, 52), and is required for intracellular nucleocapsid transport during egress (41). In contrast, absence of pUL37 delays nuclear translocation of incoming PrV nucleocapsids but does not abolish it (35). HSV-1 pUL36 is involved not only in transport but also in docking of nucleocapsids to the nuclear pore (9), and proteolytic cleavage of pUL36 appears to be necessary for release of HSV-1 DNA into the nucleus (24).Immunoelectron microscopical studies of PrV-infected cells showed that pUL36 is added to nucleocapsids prior to the addition of pUL37 (33). Since neither pUL36 nor pUL37 was detected on primary enveloped PrV virions, it was concluded that acquisition of tegument takes place in the cytoplasm (20). However, conflicting data exist whether pUL36 is present in the nucleus, and whether it is already added onto the capsids in this cellular compartment. Indirect immunofluorescence, immunoelectron microscopy and mass spectrometry of intranuclear capsids yielded discrepant results. By immunofluorescence HSV-1 pUL36 was detected both in the cytoplasm and in the nucleus (1, 42, 48). However, whereas one study detected the protein on nuclear C-capsids by Western blotting (6), it was not found by cryo-electron microscopy and mass spectrometry (57). In contrast, the C terminus of PrV pUL36 was suggested to direct pUL36 to capsid assemblons in the nucleus (37) by binding to capsid-associated pUL25 (8), although pUL36 could not be detected in the nucleus during PrV infection (33). These differing results in HSV-1 and between HSV-1 and PrV might be due to the fact that pUL36 could be processed during the replication cycle and that the resulting subdomains may exhibit selective localization patterns (24, 28).Amino acid sequence analyses of HSV-1 and PrV pUL36 revealed several putative nuclear localization signals (NLS) (1, 4, 5, 49). HSV-1 pUL36 contains four of these NLS motifs (49). Functionality in nuclear localization of a reporter protein was shown for the NLS motif at aa 425 (1). This motif is highly conserved in herpesvirus pUL36 homologs pointing to an important function (1). Besides this conserved NLS (designated in this report as NLS1), two other NLS motifs are predicted in PrV pUL36. One is located adjacent to NLS1 (aa 288 to 296) at aa 315 to 321 (NLS2), and a third putative NLS motif is present in the C-terminal half of the protein (aa 1679 to 1682; NLS3) (4). Whereas this may be indicative for a role for pUL36 inside the nucleus, NLS motifs might also be involved in transport to the nucleus along microtubules (54) and docking at the nuclear pore complex (49).The discrepancy in pUL36 localization and the putative presence of pUL36 cleavage products with specialized functions and localization prompted us to generate monospecific antisera covering the major part of PrV pUL36 and to study localization of PrV pUL36 by immunofluorescence during viral replication and after transient transfection and by immunoelectron microscopy of infected cells.  相似文献   

7.
8.
单纯疱疹病毒1型(HSV-1)为有包膜的DNA病毒,能引起皮肤性疱疹、角膜炎、脑炎等症状.HSV-1感染细胞后,要么进入裂解性感染阶段,要么进入潜伏感染阶段.受感染的细胞常会启动免疫系统抵抗病毒,而病毒却通过某种机制巧妙地逃避宿主的免疫反应并进入潜伏.进入潜伏感染阶段的病毒又会因机体受某种刺激而被激活进入裂解感染期.在这期间,有两个关键的病毒蛋白一间层蛋白(Viral protein 16,VP16)和内膜蛋白(Virion host shutoff protein,VHS)倍受关注,它们既是HSV-1的结构蛋白,在病毒复制晚期参与病毒颗粒的组装,同时又作为重要的功能蛋白,在病毒感染早期发挥重要的转录调节功能.下面就这两个蛋白相关功能的研究进展作一简要综述:  相似文献   

9.
单纯疱疹病毒1型(HSV-1)为有包膜的DNA病毒,能引起皮肤性疱疹、角膜炎、脑炎等症状。HSV-1感染细胞后,要么进入裂解性感染阶段,要么进入潜伏感染阶段。受感染的细胞常会启动免疫系统抵抗病毒,而病毒却通过某种机制巧妙地逃避宿主的免疫反应并进入潜伏。进入潜伏感染阶段的病毒又会因机体受某种刺激而被激活进入裂解感染期。在这期间,有两个关键的病毒蛋白一间层蛋白(Viral protein16,VP16)和内膜蛋白(Virion host shutoff protein,VHS)倍受关注,它们既是HSV-1的结构蛋白,在病毒复制晚期参与病毒颗粒的组装,同时又作为重要的功能蛋白…  相似文献   

10.
The mechanism by which herpesviruses acquire their tegument is not yet clear. One model is that outer tegument proteins are recruited by the cytoplasmic tails of viral glycoproteins. In the case of herpes simplex virus tegument protein VP22, interactions with the glycoproteins gE and gD have been shown. We have previously shown that the C-terminal half of VP22 contains the necessary signal for assembly into the virus. Here, we show that during infection VP22 interacts with gE and gM, as well as its tegument partner VP16. However, by using a range of techniques we were unable to demonstrate VP22 binding to gD. By using pulldown assays, we show that while the cytoplasmic tails of both gE and gM interact with VP22, only gE interacts efficiently with the C-terminal packaging domain of VP22. Furthermore, gE but not gM can recruit VP22 to the Golgi/trans-Golgi network region of the cell in the absence of other virus proteins. To examine the role of the gE-VP22 interaction in infection, we constructed a recombinant virus expressing a mutant VP22 protein with a 14-residue deletion that is unable to bind gE (ΔgEbind). Coimmunoprecipitation assays confirmed that this variant of VP22 was unable to complex with gE. Moreover, VP22 was no longer recruited to its characteristic cytoplasmic trafficking complexes but exhibited a diffuse localization. Importantly, packaging of this variant into virions was abrogated. The mutant virus exhibited poor growth in epithelial cells, similar to the defect we have observed for a VP22 knockout virus. These results suggest that deletion of just 14 residues from the VP22 protein is sufficient to inhibit binding to gE and hence recruitment to the viral envelope and assembly into the virus, resulting in a growth phenotype equivalent to that produced by deleting the entire reading frame.The herpesvirus tegument is the virion compartment located between the DNA-containing capsid and the virus envelope (6). Although it is well defined that the viral capsid assembles in the nucleus (37, 38) and the viral envelope is acquired from cellular membranes (3, 24), the mechanism of tegument protein acquisition is still to be established. At least 20 virus-encoded components are recruited into the herpes simplex virus type 1 (HSV-1) tegument (32), and there is increasing evidence to suggest that subsets of these proteins may be added as assembly progresses along the maturation pathway (28). To ensure efficient incorporation, it is likely that individual tegument proteins are specifically targeted to their cellular site of recruitment. Such targeting could involve interaction with a viral partner, a cellular partner, or both. A clearer understanding of how individual tegument proteins are acquired by newly assembling virions will help to define the herpesvirus assembly pathway.A number of protein-protein interactions between individual tegument proteins (13, 40, 42), and between tegument proteins and glycoproteins (19, 20, 22, 32), have been described that may provide useful insight into the assembly process. In particular, the interaction of tegument proteins with the cytoplasmic tails of virus glycoproteins provides an attractive mechanism for the virion recruitment of at least the outer components of the tegument. In the case of VP22, the homologues from pseudorabies virus (PRV) and HSV-1 have been shown to interact with the cytoplasmic tail of gE (19, 20, 32). However, the role of this interaction in virus infection has not yet been clearly defined and the fact that additional glycoprotein interactions have been described, with gM in the case of PRV and gD in the case of HSV-1, may point to potential redundancy in the mechanism of VP22 packaging (4, 19, 20). In addition, we and others have previously shown that HSV-1 VP22 interacts directly with a second tegument protein, namely, VP16 (13, 33), an interaction that could provide an alternative route for VP22 to enter the virion. In a previous study, we concluded that the region of VP22 containing its VP16 interaction domain was required but not sufficient for optimal VP22 packaging into the assembling virion, with an additional C-terminal determinant also involved (23). We also demonstrated that the same region of VP22 that was required for virion packaging was essential to target the protein to its characteristic cytoplasmic trafficking complexes, suggesting that these specific sites may be the location in the cell for VP22 assembly into the virion (23). Since that study, O''Regan and coworkers have reported that the C-terminal half of HSV-1 VP22 also contains the binding site for gE (32), providing a possible candidate for an additional VP22 binding partner. Furthermore, as HSV-1 VP22 has been shown to bind to gD and PRV VP22 interacts with gM, it is possible that the C terminus of VP22 contains a gD and/or a gM binding site (4, 20).In the present study, we aimed to clarify the molecular mechanism by which VP22 is recruited into the virus particle. We show that HSV-1 VP22 binds efficiently to VP16, gE, and gM in the infected cell, but we cannot detect an interaction with gD. We show that the packaging domain of VP22 binds to the cytoplasmic tail of gE but not gM and that the same region of VP22 is recruited to the secretory pathway by gE in the absence of other virus proteins. Finally, we show that a mutant VP22 protein lacking a 14-residue peptide from its packaging domain is unable to interact with gE during infection, exhibits a different subcellular localization, and fails to assemble into the virus particle. This is the first characterization of a single protein-protein interaction essential for the packaging of an HSV-1 tegument protein.  相似文献   

11.
Six genes, including UL32, have been implicated in the cleavage and packaging of herpesvirus DNA into preassembled capsids. We have isolated a UL32 insertion mutant which is capable of near-wild-type levels of viral DNA synthesis; however, the mutant virus is unable to cleave and package viral DNA, consistent with the phenotype of a previously isolated temperature-sensitive herpes simplex virus type 1 mutant, tsN20 (P. A. Schaffer, G. M. Aron, N. Biswal, and M. Benyesh-Melnick, Virology 52:57–71, 1973). A polyclonal antibody which recognizes UL32 was previously used by Chang et al. (Y. E. Chang, A. P. Poon, and B. Roizman, J. Virol. 70:3938–3946, 1996) to demonstrate that UL32 accumulates predominantly in the cytoplasm of infected cells. In this report, a functional epitope-tagged version of UL32 showed that while UL32 is predominantly cytoplasmic, some nuclear staining which colocalizes with the major DNA binding protein (ICP8, UL29) in replication compartments can be detected. We have also used a monoclonal antibody (5C) specific for the hexon form of major capsid protein VP5 to study the distribution of capsids during infection. In cells infected with wild-type KOS (6 and 8 h postinfection), 5C staining patterns indicate that capsids are present in nuclei within replication compartments. These results suggest that cleavage and packaging occur in replication compartments at least at 6 and 8 h postinfection. Cells infected with the UL32 mutant exhibit a hexon staining pattern which is more diffusely distributed throughout the nucleus and which is not restricted to replication compartments. We propose that UL32 may play a role in “bringing” preassembled capsids to the sites of DNA packaging and that the failure to localize to replication compartments may explain the cleavage/packaging defect exhibited by this mutant. These results suggest that the UL32 protein is required at a step distinct from those at which other cleavage and packaging proteins are required and may be involved in the correct localization of capsids within infected cells.During infection of cells with herpes simplex virus type 1 (HSV-1), the large concatemeric products of DNA replication are cleaved to unit length and packaged into preassembled capsids. Capsids are icosahedral structures composed of 150 hexons and 12 pentons. Three types of capsids (A, B, and C) can be isolated from infected cells by velocity centrifugation (20). C capsids contain the viral DNA genome; B capsids contain the scaffolding protein; and A capsids contain neither DNA nor the scaffolding protein. Pulse chase experiments with another alphaherpesvirus, equine herpesvirus 1, indicate that at least some B capsids can package DNA and mature into infectious virions, while A capsids cannot (46). By analogy with the bacteriophages, these results suggest that B capsids represent procapsids which are intermediates in the packaging process. However, a new intermediate in the assembly process has recently been identified (41, 62). These newly identified capsid forms observed in in vitro assembly extracts have the same protein content as B capsids but are more spherical; these capsids are unstable and adopt the more angular form characteristic of B capsids after prolonged incubation in vitro. These results suggest that the unstable spherical forms may represent the true procapsid intermediate (41, 62).In many bacteriophages, the procapsid contains at least three essential components: an icosahedrally arranged protein shell, an internal scaffold, and a dodecameric ring called the portal vertex through or around which the phage DNA is taken up (8, 11, 18). For HSV-1, the outer shell is composed of four proteins: the major capsid protein, VP5; a small protein bound to hexons, VP26; and a triplex structure made up of heterotrimers of VP19C and VP23 (reviewed in reference 56). VP24, VP21, and VP22a are found in the interior of the capsid and are encoded by overlapping genes UL26 and UL26.5; VP21 and VP22a are present in B but not A or C capsids and are considered to make up the internal scaffold (reviewed in reference 56). Although bacteriophages contain a portal vertex, no such structure has been observed in HSV-1 capsids. Whether the herpesviruses have a unique portal vertex through which viral DNA is taken up is unclear; it is possible that this type of unique vertex is only needed in viruses which have a tail. Capsids indistinguishable from those isolated from HSV-1-infected cells have been observed in extracts from insect cells infected with recombinant baculoviruses bearing HSV-1 capsid genes (42, 60). Therefore, it is clear that these proteins are sufficient for capsid assembly in vitro; however, it is not known whether capsids formed in vitro are competent for DNA uptake. It is possible that minor components of capsids play important roles in genome encapsidation.In addition to the capsid proteins, at least six genes are essential for the encapsidation of viral DNA: the UL6, UL15, UL25, UL28, UL32, and UL33 genes. Temperature-sensitive (ts) strains with mutations in these genes have similar phenotypes, in that viral DNA can be replicated but not cleaved and packaged (1, 2, 4, 6, 48, 51, 54, 55, 66). Strains with null mutations in the UL6, UL15, UL25, UL28, and UL33 genes have been isolated and characterized, thereby confirming the roles of these genes in cleavage and packaging (5, 27, 37, 45, 59, 68). Despite the identification of these required genes, the mechanism by which viral DNA is cleaved and packaged is not understood, nor has the role of any of the gene products been determined. The UL6 and UL25 proteins have been detected in A, B, and C capsids as well as in virions (3, 28, 37, 44); however, the precise role of these two proteins in capsids remains to be determined.A ts UL32 mutant, tsN20, defective in cleavage and packaging, has been reported previously (51). Because mutants with lesions resulting in temperature sensitivity are often prone to problems associated with incomplete penetrance at the nonpermissive temperature, we isolated a UL32 insertion mutant, hr64. Characterization of hr64 confirms that UL32 is essential for cleavage and packaging. Previous studies demonstrated that UL32 localizes to the cytoplasm of infected cells (13). We have used a functional epitope-tagged version of UL32 to confirm that in infected cells, this protein is mainly cytoplasmic, although some nuclear staining was observed.HSV-1 DNA replication occurs in globular nuclear domains termed “replication compartments” initially identified by ICP8 (UL29) staining patterns in an immunofluorescence assay (49). All seven replication proteins have now been localized within replication compartments (10, 24, 2931, 43) as has regulatory protein ICP4 (26, 50). Ward et al. have recently reported that at late times after infection (18 h), capsids accumulate in the nucleus in regions distinct from replication compartments (64). These authors suggest that these regions represent assembly stations in which DNA is packaged. We report herein, however, that at 6 and 8 h postinfection, capsids colocalize with ICP8 in replication compartments. This suggests that at these early times, cleavage and packaging occur within replication compartments. Furthermore, we report that in cells infected with the UL32 mutant virus, capsids are distributed throughout the nucleus, accumulating in regions outside the replication compartments. This suggests that UL32 may play a role in the efficient localization of capsids in infected cells.  相似文献   

12.
In addition to eleven glycoproteins, the herpes simplex virus type 2 (HSV-2) genome encodes several proteins with potential membrane-spanning segments but no asparagine-linked carbohydrates. One of these is UL45. Fractionation of infected cells showed that HSV-2 UL45 is an integral membrane protein, and analysis of UL45 mutants with potential glycosylation sites showed that it has a type II membrane orientation, the first HSV protein known to have this orientation. Furthermore, it is detectable in infected cells at a time similar to that when glycoproteins gB and gD are detected, consistent with a role in cell-cell fusion, which has previously been found for HSV-1 UL45.  相似文献   

13.
Herpes simplex virus 1 fuses with the plasma membrane of a host cell, and the incoming capsids are efficiently and rapidly transported across the cytosol to the nuclear pore complexes, where the viral DNA genomes are released into the nucleoplasm. Using biochemical assays, immunofluorescence, and immunoelectron microscopy in the presence and absence of microtubule depolymerizing agents, it was shown that the cytosolic capsid transport in Vero cells was mediated by microtubules. Antibody labeling revealed the attachment of dynein, a minus end–directed, microtubule-dependent motor, to the viral capsids. We propose that the incoming capsids bind to microtubules and use dynein to propel them from the cell periphery to the nucleus.  相似文献   

14.
UL16 is a tegument protein of herpes simplex virus (HSV) that is conserved among all members of the Herpesviridae, but its function is poorly understood. Previous studies revealed that UL16 is associated with capsids in the cytoplasm and interacts with the membrane protein UL11, which suggested a “bridging” function during cytoplasmic envelopment, but this conjecture has not been tested. To gain further insight, cells infected with UL16-null mutants were examined by electron microscopy. No defects in the transport of capsids to cytoplasmic membranes were observed, but the wrapping of capsids with membranes was delayed. Moreover, clusters of cytoplasmic capsids were often observed, but only near membranes, where they were wrapped to produce multiple capsids within a single envelope. Normal virion production was restored when UL16 was expressed either by complementing cells or from a novel position in the HSV genome. When the composition of the UL16-null viruses was analyzed, a reduction in the packaging of glycoprotein E (gE) was observed, which was not surprising, since it has been reported that UL16 interacts with this glycoprotein. However, levels of the tegument protein VP22 were also dramatically reduced in virions, even though this gE-binding protein has been shown not to depend on its membrane partner for packaging. Cotransfection experiments revealed that UL16 and VP22 can interact in the absence of other viral proteins. These results extend the UL16 interaction network beyond its previously identified binding partners to include VP22 and provide evidence that UL16 plays an important function at the membrane during virion production.  相似文献   

15.
The role of phosphorylation in the dissociation of structural components of the herpes simplex virus type 1 (HSV-1) tegument was investigated, using an in vitro assay. Addition of physiological concentrations of ATP and magnesium to wild-type virions in the presence of detergent promoted the release of VP13/14 and VP22. VP1/2 and the UL13 protein kinase were not significantly solubilized. However, using a virus with an inactivated UL13 protein, we found that the release of VP22 was severely impaired. Addition of casein kinase II (CKII) to UL13 mutant virions promoted VP22 release. Heat inactivation of virions or addition of phosphatase inhibited the release of both proteins. Incorporation of radiolabeled ATP into the assay demonstrated the phosphorylation of VP1/2, VP13/14, VP16, and VP22. Incubation of detergent-purified, heat-inactivated capsid-tegument with recombinant kinases showed VP1/2 phosphorylation by CKII, VP13/14 phosphorylation by CKII, protein kinase A (PKA), and PKC, VP16 phosphorylation by PKA, and VP22 phosphorylation by CKII and PKC. Proteolytic mapping and phosphoamino acid analysis of phosphorylated VP22 correlated with previously published work. The phosphorylation of virion-associated VP13/14, VP16, and VP22 was demonstrated in cells infected in the presence of cycloheximide. Use of equine herpesvirus 1 in the in vitro release assay resulted in the enhanced release of VP10, the homolog of HSV-1 VP13/14. These results suggest that the dissociation of major tegument proteins from alphaherpesvirus virions in infected cells may be initiated by phosphorylation events mediated by both virion-associated and cellular kinases.  相似文献   

16.
17.
Homologs of the pseudorabies virus (PrV) essential large tegument protein pUL36 are conserved throughout the Herpesviridae. pUL36 functions during transport of the nucleocapsid to and docking at the nuclear pore as well as during virion formation after nuclear egress in the cytoplasm. Deletion analyses revealed several nonessential regions within the 3,084-amino-acid PrV pUL36 (S. Böttcher, B. G. Klupp, H. Granzow, W. Fuchs, K. Michael, and T. C. Mettenleiter, J. Virol. 80:9910-9915, 2006; S. Böttcher, H. Granzow, C. Maresch, B. Möhl, B. G. Klupp, and T. C. Mettenleiter, J. Virol. 81:13403-13411, 2007), while the C-terminal 62 amino acids are essential for virus replication (K. Coller, J. Lee, A. Ueda, and G. Smith, J. Virol. 81:11790-11797, 2007). To identify additional functional domains, we performed random mutagenesis of PrV pUL36 by transposon-mediated insertion of a 15-bp linker. By this approach, 26 pUL36 insertion mutants were selected and tested in transient transfection assays for their ability to complement one-step growth and/or viral spread of a PrV UL36 null mutant. Ten insertion mutants in the N-terminal half and 10 in the C terminus complemented both, whereas six insertion mutants clustering in the center of the protein did not complement in either assay. Interestingly, several insertions within conserved parts yielded positive complementation, including those located within the essential C-terminal 62 amino acids. For 15 mutants that mediated productive replication, stable virus recombinants were isolated and further characterized by plaque assay, in vitro growth analysis, and electron microscopy. Except for three mutant viruses, most insertion mutants replicated like wild-type PrV. Two insertion mutants, at amino acids (aa) 597 and 689, were impaired in one-step growth and viral spread and exhibited a defect in virion maturation in the cytoplasm. In contrast, one functional insertion (aa 1800) in a region which otherwise yielded only nonfunctional insertion mutants was impaired in viral spread but not in one-step growth without a distinctive ultrastructural phenotype. In summary, these studies extend and refine previous analyses of PrV pUL36 and demonstrate the different sensitivities of different regions of the protein to functional loss by insertion.The herpesvirus particle is composed of four structural elements. The DNA genome-containing core is enclosed in an icosahedral capsid, which, in turn, is embedded in a proteinaceous layer termed the tegument and enveloped by a cell-derived membrane containing viral glycoproteins (35). The tegument of the Alphaherpesvirinae contains more than 15 different viral and several cellular proteins and can be structurally and functionally separated into at least two layers: a capsid-proximal “inner” part and an envelope-associated “outer” part (reviewed in references 34 and 35). The largest tegument proteins in all herpesviruses analyzed so far are homologs of herpes simplex virus type 1 (HSV-1) pUL36, which are essential for viral replication. pUL36, its interaction partner, pUL37, and the pUS3 kinase are part of the inner tegument and remain associated with nucleocapsids during their transport along microtubules to the nuclear pore (2, 3, 19, 31). In contrast, other tegument proteins like pUL46, pUL47, and pUL49 rapidly diffuse in the cytoplasm after fusion of the virion envelope with the plasma membrane. Proteolytic cleavage of HSV-1 pUL36 after docking of the nucleocapsid to the nuclear pore appears to be required for release of viral DNA into the nucleus (22). Besides these roles early in infection, pUL36 also functions during later stages of replication in virion maturation. After assembly in the nucleus, nucleocapsids are translocated to the cytoplasm by budding at the inner nuclear membrane and fusion with the outer nuclear membrane (34). Although functional nuclear localization motifs have been described for pseudorabies virus (PrV) and HSV-1 pUL36 (1, 37), in PrV-infected cells, pUL36 was never detected in the nucleus but was added to nascent virions early after nuclear egress (18, 27, 31, 37). It has been suggested that pUL36 interacts either directly (9, 32, 42, 44) or indirectly via capsid-associated pUL25 (10) with the capsid shell starting the tegumentation process in the cytosol.In PrV, pUL36 is the only tegument protein which has been shown to be truly essential. It consists of 3,084 amino acids (aa), resulting in a molecular mass of more than 300 kDa (27). Deletion of pUL36 in HSV-1 and PrV abolished viral replication. Ultrastructurally, similar phenotypes with nonenveloped nucleocapsids present in the cytoplasm and the lack of extracellular particles indicated a defect in virion maturation in the cytoplasm (13, 16). Several functional domains have been identified in pUL36. The interaction domain of pUL36 with pUL37 (5, 16, 20, 27, 36, 42) could be located in the N-terminal part of PrV and HSV-1 pUL36 (16, 36) (Fig. (Fig.1).1). Deletion of the pUL37 binding site in PrV pUL36 (PrV-UL36BSF) resulted in a similar phenotype to deletion of pUL37 with an impairment of secondary envelopment in the cytoplasm (16, 26). Unlike in PrV, pUL37 is essential for replication in HSV-1 (14, 30).Open in a separate windowFIG. 1.Schematic overview of PrV pUL36 and corresponding insertion mutants. (A) Diagram of the PrV genome with the unique long (UL) and unique short (US) regions as well as repeat regions (internal repeat, IR; terminal repeat, TR). The positions of BamHI restriction sites are indicated, and restriction fragments are numbered according to their size. (B) Schematic diagram of the UL36 open reading frame with conserved regions. Pfam analysis (4; http://www.sanger.ac.uk/Software/Pfam/) delineated two highly conserved PfamA domains within pUL36 homologs of herpesviruses of all three herpesvirus subfamilies [box I, Herpes_teg_N PrV (p)UL36, aa 11 to 178] and of alphaherpesviruses [box II, Herpes_UL36 PrV (p)UL36, aa 1000 to 1251] as well as PfamB domains (hatched rectangles) (6) (C) Known essential and nonessential regions in PrV pUL36. Nonessential regions are shown in gray, with the positions of the amino acids deleted in the corresponding constructs (6, 8). Deletions tested by Lee et al. (28) are shown below, marked by arrows. The essential C terminus is shown in black. Besides the N-terminal deletion Δ6-225, none of the truncated proteins was functional. (D) Predicted or identified motifs in pUL36: USP (Cys26), active-site cysteine of the deubiquitinating activity (24); pUL37 interaction domain (16, 27); NLS, nuclear localization signal (37); leucine zipper (27); and late domain motifs PPKY and PSAP (6). (E) Locations of linker insertions in pUL36 are indicated by arrows and the position of the amino acid immediately preceding the insertion. Insertions shown by arrows pointing upwards yielded functional proteins, while arrows pointing downwards indicate nonfunctional mutants. Insertions resulting in proteins which were impaired but not fully deficient in complementation are underlined. For orientation, the BamHI site separating BamHI fragments 1 and 2 is indicated.A second functional domain in the N terminus of pUL36 comprises a ubiquitin-specific cysteine protease (USP) activity which could be identified in all three herpesvirus subfamilies (24, 40, 41). Interestingly, the USP activity is not essential for virus replication in cell culture (7, 21, 25, 43). However, it is relevant for oncogenicity of Marek′s disease virus (MDV) (21) and for virion maturation and neuroinvasion of PrV (7, 8, 29).Several other regions in PrV pUL36 were deleted without abolishing virus replication (6, 8, 28). While deletion of nearly 1/3 of the protein in the C-terminal part (aa 2087 to 2981) had only a slight effect, deletion of a region containing two leucine zipper motifs impaired virus replication and spread more strongly (8). The highly conserved C-terminal 62 amino acids, except for the extreme C-terminal 6 amino acids, are essential for virus replication (6, 28). Due to the size of the protein, a more detailed mutagenesis analysis has, however, not yet been undertaken.Therefore, the aim of our study was to construct random insertion mutants of PrV pUL36 using transposon-mediated insertion mutagenesis resulting in a 5-amino-acid linker insertion. Mutant proteins were analyzed functionally in transient transfection assays for complementation, and stable recombinants were isolated and further characterized.  相似文献   

18.
UL21 is a conserved protein in the tegument of alphaherpesviruses and has multiple important albeit poorly understood functions in viral replication and pathogenesis. To provide a roadmap for exploration of the multiple roles of UL21, we determined the crystal structure of its conserved N-terminal domain from herpes simplex virus 1 to 2.0-Å resolution, which revealed a novel sail-like protein fold. Evolutionarily conserved surface patches highlight residues of potential importance for future targeting by mutagenesis.  相似文献   

19.
Ubiquitination/deubiquitination of key factors represent crucial steps in the biogenesis of multivesicular body (MVB) and sorting of transmembrane proteins. We and others previously demonstrated that MVB is involved in herpes simplex virus 1 (HSV-1) envelopment and budding. Here, we report that the HSV-1 large tegument protein, VP1/2, interacts with and regulates the ubiquitination of Tsg101, a cellular protein essential in MVB formation, thus identifying the first cellular substrate of a herpesviral deubiquitinating enzyme.  相似文献   

20.
Herpesvirus capsids are regular icosahedrons with a diameter of a 125 nm and are made up of 162 capsomeres arranged on a T = 16 lattice. The capsomeres (VP5) interact with the triplex structure, which is a unique structural feature of herpesvirus capsid shells. The triplex is a heterotrimeric complex; one molecule of VP19C and two of VP23 form a three-pronged structure that acts to stabilize the capsid shell through interactions with adjacent capsomeres. VP19C interacts with VP23 and with the major capsid protein VP5 and is required for the nuclear localization of VP23. Mutation of VP19C results in the abrogation of capsid shell synthesis. Analysis of the sequence of VP19C showed the N-terminus of VP19C is very basic and glycine rich. It was hypothesized that this domain could potentially bind to DNA. In this study an electrophoretic mobility shift assay (EMSA) and a DNA condensation assay were performed to demonstrate that VP19C can bind DNA. Purified VP19C was able to bind to both a DNA fragment of HSV-1 origin as well as a bacterial plasmid sequence indicating that this activity is non-specific. Ultra-structural imaging of the nucleo-protein complexes revealed that VP19C condensed the DNA and forms toroidal DNA structures. Both the DNA binding and condensing properties of VP19C were mapped to the N-terminal 72 amino acids of the protein. Mutational studies revealed that the positively charged arginine residues in this N-terminal domain are required for this binding. This DNA binding activity, which resides in a non-conserved region of the protein could be required for stabilization of HSV-1 DNA association in the capsid shell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号