首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Drug combination therapy, which is considered as an alternative to single drug therapy, can potentially reduce resistance and toxicity, and have synergistic efficacy. As drug combination therapies are widely used in the clinic for hypertension, asthma, and AIDS, they have also been proposed for the treatment of cancer. However, it is difficult to select and experimentally evaluate effective combinations because not only is the number of cancer drug combinations extremely large but also the effectiveness of drug combinations varies depending on the genetic variation of cancer patients. A computational approach that prioritizes the best drug combinations considering the genetic information of a cancer patient is necessary to reduce the search space.

Results

We propose an in-silico method for personalized drug combination therapy discovery. We predict the synergy between two drugs and a cell line using genomic information, targets of drugs, and pharmacological information. We calculate and predict the synergy scores of 583 drug combinations for 31 cancer cell lines. For feature dimension reduction, we select the mutations or expression levels of the genes in cancer-related pathways. We also used various machine learning models. Extremely Randomized Trees (ERT), a tree-based ensemble model, achieved the best performance in the synergy score prediction regression task. The correlation coefficient between the synergy scores predicted by ERT and the actual observations is 0.738. To compare with an existing drug combination synergy classification model, we reformulate the problem as a binary classification problem by thresholding the synergy scores. ERT achieved an F1 score of 0.954 when synergy scores of 20 and -20 were used as the threshold, which is 8.7% higher than that obtained by the state-of-the-art baseline model. Moreover, the model correctly predicts the most synergistic combination, from approximately 100 candidate drug combinations, as the top choice for 15 out of the 31 cell lines. For 28 out of the 31 cell lines, the model predicts the most synergistic combination in the top 10 of approximately 100 candidate drug combinations. Finally, we analyze the results, generate synergistic rules using the features, and validate the rules through the literature survey.

Conclusion

Using various types of genomic information of cancer cell lines, targets of drugs, and pharmacological information, a drug combination synergy prediction pipeline is proposed. The pipeline regresses the synergy level between two drugs and a cell line as well as classifies if there exists synergy or antagonism between them. Discovering new drug combinations by our pipeline may improve personalized cancer therapy.
  相似文献   

2.
The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification. Our approach can therefore efficiently discover novel drug combinations that selectively target cancer genes.  相似文献   

3.
Identification of druggable vulnerabilities is a main objective in triple-negative breast cancer (TNBC), where no curative therapies exist. Gene set enrichment analyses (GSEA) and a pharmacological evaluation using a library of compounds were used to select potential druggable combinations. MTT and studies with semi-solid media were performed to explore the activity of the combinations. TNBC cell lines (MDAMB-231, BT549, HS-578T and HCC3153) and an additional panel of 16 cell lines were used to assess the activity of the two compounds. Flow cytometry experiments and biochemical studies were also performed to explore the mechanism of action. GSEA were performed using several data sets (GSE21422, GSE26910, GSE3744, GSE65194 and GSE42568), and more than 35 compounds against the identified functions were evaluated to discover druggable opportunities. Analyses done with the Chou and Talalay algorithm confirmed the synergy of dasatinib and olaparib. The combination of both agents significantly induced apoptosis in a caspase-dependent manner and revealed a pleotropic effect on cell cycle: Dasatinib arrested cells in G0/G1 and olaparib in G2/M. Dasatinib inhibited pChk1 and induced DNA damage measured by pH2AX, and olaparib increased pH3. Finally, the effect of the combination was also evaluated in a panel of 18 cell lines representative of the most frequent solid tumours, observing a particularly synergism in ovarian cancer. Breast cancer, triple negative, dasatinib, olaparib, screening.  相似文献   

4.
Identifying effective therapeutic drug combinations that modulate complex signaling pathways in platelets is central to the advancement of effective anti-thrombotic therapies. However, there is no systems model of the platelet that predicts responses to different inhibitor combinations. We developed an approach which goes beyond current inhibitor-inhibitor combination screening to efficiently consider other signaling aspects that may give insights into the behaviour of the platelet as a system. We investigated combinations of platelet inhibitors and activators. We evaluated three distinct strands of information, namely: activator-inhibitor combination screens (testing a panel of inhibitors against a panel of activators); inhibitor-inhibitor synergy screens; and activator-activator synergy screens. We demonstrated how these analyses may be efficiently performed, both experimentally and computationally, to identify particular combinations of most interest. Robust tests of activator-activator synergy and of inhibitor-inhibitor synergy required combinations to show significant excesses over the double doses of each component. Modeling identified multiple effects of an inhibitor of the P2Y12 ADP receptor, and complementarity between inhibitor-inhibitor synergy effects and activator-inhibitor combination effects. This approach accelerates the mapping of combination effects of compounds to develop combinations that may be therapeutically beneficial. We integrated the three information sources into a unified model that predicted the benefits of a triple drug combination targeting ADP, thromboxane and thrombin signaling.  相似文献   

5.
Pandit B  Gartel AL 《PloS one》2011,6(2):e17110
Thiazole antibiotic, thiostrepton was recently identified as proteasome inhibitor. We investigated the therapeutic potential of the combination of thiostrepton and proteasome inhibitor bortezomib (Velcade) on various human tumor cell lines. Combination of sub-lethal concentrations of thiostrepton and bortezomib induced potent apoptosis and inhibition of long-term colony formation in a wide variety of human cancer cell lines. The synergistic relationship between thiostrepton and bortezomib combination was also quantitatively demonstrated by calculating their combination index values that were much lower than 1 in all studied cell lines. The synergy between these drugs was based on their proteasome inhibitory activities, because thiostrepton modification, thiostrepton methyl ester, which did not have intact quinaldic acid ring and did not inhibit proteasome activity failed to demonstrate any synergy in combination with bortezomib.  相似文献   

6.
A newer generation of anti-cancer drugs targeting underlying somatic genetic driver events have resulted in high single-agent or single-pathway response rates in selected patients, but few patients achieve complete responses and a sizeable fraction of patients relapse within a year. Thus, there is a pressing need for identification of combinations of targeted agents which induce more complete responses and prevent disease progression. We describe the results of a combination screen of an unprecedented scale in mammalian cells performed using a collection of targeted, clinically tractable agents across a large panel of melanoma cell lines. We find that even the most synergistic drug pairs are effective only in a discrete number of cell lines, underlying a strong context dependency for synergy, with strong, widespread synergies often corresponding to non-specific or off-target drug effects such as multidrug resistance protein 1 (MDR1) transporter inhibition. We identified drugs sensitizing cell lines that are BRAFV600E mutant but intrinsically resistant to BRAF inhibitor PLX4720, including the vascular endothelial growth factor receptor/kinase insert domain receptor (VEGFR/KDR) and platelet derived growth factor receptor (PDGFR) family inhibitor cediranib. The combination of cediranib and PLX4720 induced apoptosis in vitro and tumor regression in animal models. This synergistic interaction is likely due to engagement of multiple receptor tyrosine kinases (RTKs), demonstrating the potential of drug- rather than gene-specific combination discovery approaches. Patients with elevated biopsy KDR expression showed decreased progression free survival in trials of mitogen-activated protein kinase (MAPK) kinase pathway inhibitors. Thus, high-throughput unbiased screening of targeted drug combinations, with appropriate library selection and mechanistic follow-up, can yield clinically-actionable drug combinations.  相似文献   

7.
Recent studies have demonstrated that diphtheria toxin (DTX) also mediates target cell lysis, and the mechanism of cytotoxicity has many features similar to those of cytotoxicity mediated by TNF-alpha. Thus, we hypothesized that DTX and TNF-alpha, used in combination, may result in either additive or synergistic cytotoxic activity. This was examined on three human ovarian carcinoma cell lines chosen for their differing sensitivities to TNF-alpha and DTX, i.e., 222, which is sensitive to both TNF-alpha and DTX, 222TR, a TNF-alpha-resistant DTX-sensitive variant of 222, and SKOV-3, which is resistant to both DTX and TNF-alpha. The simultaneous use of DTX and TNF-alpha at suboptimal concentrations resulted in synergistic cytotoxic activity against all three lines tested, thus overcoming the TNF-alpha resistance of 222TR and the double resistance of SKOV-3. DNA fragmentation was observed in all three lines treated with DTX and TNF-alpha and occurred as early as 4 h after treatment. Cycloheximide, actinomycin D, or emetine, at concentrations causing greater than 90% protein synthesis inhibition, did not result in cytotoxicity alone or synergy with TNF-alpha, suggesting that synergy by DTX was not due to its ability to inhibit protein synthesis. The use of energy poisons and pH conditions that inhibit DTX-mediated cytotoxicity resulted in the abrogation of synergy. These findings show that the two cytotoxic agents TNF-alpha and DTX, when used at suboptimal concentrations, synergize in their cytotoxic activity against sensitive and resistant cell lines. Because the SKOV-3 cell line used here is also resistant to chemotherapeutic drugs, combination treatment with DTX and TNF-alpha may be beneficial in overcoming drug resistance.  相似文献   

8.
Antibiotic resistance among bacterial pathogens is a serious problem for human and veterinary medicine, which necessitates the development of novel therapeutics and antimicrobial strategies. Some plant-derived compounds, e.g. pentacyclic triterpenoids such as oleanolic acid (OA) and ursolic acid (UA), have potential as a new class of antibacterial agents as they are active against many bacterial species, both Gram-positive and Gram-negative, and specifically target the cell envelope. The aim of the present study was to investigate the influence of OA and UA on the susceptibility of four bacterial pathogens (Pseudomonas aeruginosa, Listeria monocytogenes, Staphylococcus aureus and Staphylococcus epidermidis) to the β-lactam antibiotics ampicillin (Ap) and oxacillin (Ox). Antimicrobial assays were conducted with bacteria growing in liquid suspension cultures (planktonic cells) or as biofilms. Using FICI value estimation and the time-kill method it was demonstrated that in some combinations, the tested compounds acted in synergy to lower the susceptibility of S. aureus, S. epidermidis and L. monocytogenes to ampicillin and oxacillin, but no synergy was observed for P. aeruginosa. These results indicate that OA and UA may be useful when administered in combination with β-lactam antibiotics to combat bacterial infections caused by some Gram-positive pathogens.  相似文献   

9.
10.
There is a rising tide of concern about the antibiotic resistance issue. To reduce the possibility of antibiotic-resistant infections, a new generation of antimicrobials must be developed. Antimicrobial peptides are potential alternatives to antibiotics that can be used alone or together with conventional antibiotics to combat antimicrobial resistance. In this work, lead compounds LP-23, DP-23, SA4, and SPO from previously published studies were synthesized by solid-phase peptide synthesis and their antimicrobial evaluation was carried out against various bacterial and fungal strains. Peptide combinations with antibiotics were evaluated by using the checkerboard method and their minimal inhibitory concentration (MIC) in combination was calculated by using the fractional inhibitory concentration (FIC) index. Cytotoxicity evaluations of these peptides further confirmed their selectivity toward microbial cells. Based on the FIC values, LP-23, DP-23, and SPO demonstrated synergy in combination with gentamicin against a gentamicin-resistant clinical isolate of Escherichia coli. For Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium, seven combinations exhibited synergistic effects between peptide/peptoids and the tested antibiotics. Additionally, almost all the combinations of peptides/peptoids with amphotericin B and fluconazole also showed effective synergy against Aspergillus niger and Aspergillus flavus. The synergy found between LP-23, DP-23, SA4, and SPO with the selected antibiotics may have the potential to be used as a combination therapy against various microbial infections.  相似文献   

11.
Ruthenium-based compounds have intriguing anti-cancer properties, and some of these novel compounds are currently in clinical trials. To continue the development of new metal-based drug combinations, we coupled ruthenium (Ru) with the azole compounds ketoconazole (KTZ) and clotrimazole (CTZ), which are well-known antifungal agents that also display anticancer properties. We report the activity of a series of 12 Ru–KTZ and Ru–CTZ compounds against three prostate tumor cell lines with different androgen sensitivity, as well as cervical cancer and lymphoblastic lymphoma cell lines. In addition, human cell lines were used to evaluate the toxicity against non-transformed cells and to establish selectivity indexes. Our results indicate that the combination of ruthenium and KTZ/CTZ in a single molecule results in complexes that are more cytotoxic than the individual components alone, displaying in some cases low micromolar CC50 values and high selectivity indexes. Additionally, all compounds are more cytotoxic against prostate cell lines with lower cytotoxicity against non-transformed epidermal cell lines. Some of the compounds were found to primarily induce cell death via apoptosis yet weakly interact with DNA. Our studies also demonstrate that the cytotoxicity induced by our Ru-based compounds is not directly related to their ability to interact with DNA.  相似文献   

12.
The polycation poly(ethylenimine) (PEI) was used to deliver the plasmids coding for various combinations of caspases to Cox-2 overexpressing cancer cell lines. It was found that the expression of the delivered genes, controlled by the Cox-2 promoter, correlated with the expression of the endogenous Cox-2 gene in each cell line in a relatively linear manner. Among the various caspase combination regimens, the combination of caspase 3 plus caspase 9 proved to be the most effective because of an apparent synergy between the two gene products, and produced phosphatidylserine flipping in addition to fragmentation of genomic DNA. Caspase 1 appeared to work independently of either caspases 3 or 9, as no synergistic effect was observed. Transfections with genes coding for granzyme B and caspase 8 yielded a lesser amount of cell death. The delivery of a combination of caspase genes could be readily moved to in vivo research of bladder and colon cancer treatments, and holds great applicability to a wide array of additional tumor types.  相似文献   

13.
AIMS: To examine the effect on the leakage of low molecular weight cytoplasmic constituents from Staphylococcus aureus using phenolics singly and in combination, and to see if the observations could be modelled using a non-linear dose response. METHODS AND RESULTS: The rate of potassium, phosphate and adenosine triphosphate leakage was examined in the presence of chlorocresol and m-cresol. Individually, leakage was observed only at long contact times or high concentrations. Combined at these ineffective concentrations, the cytoplasmic pool of all constituents studied was released within minutes. Both chlorocresol and m-cresol were shown to have non-linear dose responses. A rate model for the combinations, which takes account of these non-linear responses, accurately predicted the observations. CONCLUSIONS: Antimicrobials, which when used alone exhibit a non-linear dose response, will also give a non-linear dose response in combination. The simple linear-additive model ignores the concept of the dilution coefficient and will always describe the phenomenon of synergy for combinations where one or more of the components has a dilution coefficient greater than one. This has been borne out by examination of the purported prime lesion of chlorocresol and m-cresol, alone and in combination. SIGNIFICANCE AND IMPACT OF THE STUDY: Studies aimed at producing synergistic mixtures of antimicrobials, which ignore the non-linear additive effect, may waste valuable research effort looking for a physiological explanation for an apparent synergy, where none, in-fact, exists. Patents granted on the basis of analyses using the linear-additive model for combinations of compounds with non-linear dose responses may no longer be supportable.  相似文献   

14.
Histone deacetylase inhibitors (HDACi) are novel chemotherapeutics undergoing evaluation in clinical trials for the potential treatment of patients with multiple myeloma (MM). Although HDACi have demonstrable synergy when combined with proteasome inhibitors (PIs), recent evidence indicates that combination of HDACi and PI is beneficial only in a subset of patients with advanced MM, clearly indicating that other rational combinations should be explored. In this context we hypothesized that understanding the molecular signature associated with inherent resistance to HDACi would provide a basis for the identification of therapeutic combinations with improved clinical efficacy. Using human myeloma cell lines (HMCL) categorized as sensitive, intermediate or resistant to HDACi, gene expression profiling (GEP) and gene ontology enrichment analyses were performed to determine if a genetic signature associated with inherent resistance to HDACi-resistance could be identified. Correlation of GEP to increasing or decreasing sensitivity to HDACi indicated a unique 35-gene signature that was significantly enriched for two pathways – regulation of actin cytoskeleton and protein processing in endoplasmic reticulum. When HMCL and primary MM samples were treated with a combination of HDACi and agents targeting the signaling pathways integral to the actin cytoskeleton, synergistic cell death was observed in all instances, thus providing a rationale for combining these agents with HDACi for the treatment of MM to overcome resistance. This report validates a molecular approach for the identification of HDACi partner drugs and provides an experimental framework for the identification of novel therapeutic combinations for anti-MM treatment.  相似文献   

15.
AZD6244 and MK2206 are targeted small-molecule drugs that inhibit MEK and AKT respectively. The efficacy of this combination in lung cancer is unknown. Our previous work showed the importance of activated AKT in mediating resistance of non-small cell lung cancer (NSCLC) to AZD6244. Thus we hypothesized that dual inhibition of both downstream MEK and AKT pathways would induce synergistic antitumor activity. In this study, we evaluated the efficacy of AZD6244 and MK2206 individually on a large panel of lung cancer cell lines. Then, we treated 28 human lung cancer cell lines with a combination of AZD6244 and MK2206 at clinically applicable drug molar ratios. The AZD6244-MK2206 combination therapy resulted in a synergistic effect on inhibition of lung cancer cell growth compared to the results of single drug treatment alone. MK2206 enhanced AZD6244-induced Bim overexpression and apoptosis in A549 and H157 cells. When we tested the combination of AZD6244 and MK2206 at ratios of 8∶1, 4∶1, 2∶1, and 1∶8, we found that the synergistic effect of the combination therapy was ratio-dependent. At ratios of 8∶1, 4∶1, and 2∶1, the drug combination consistently demonstrated synergy, whereas decreasing the ratio to 1∶8 resulted in a loss of synergy and produced an additive or antagonistic effect in most cell lines. Furthermore, the AZD6244-MK2206 combination therapy showed synergy in the suppression of A549 and H157 xenograft tumor growth and increased mean animal survival time. The AZD6244-MK2206 combination therapy resulted in effective inhibition of both p-ERK and p-AKT expression in tumor tissue. In addition, a significant increase of apoptosis was detected in tumor tissue from mice treated with AZD6244-MK2206 compared with that from the single agent treated mice. Our study suggests that the combination of AZD6244 and MK2206 has a significant synergistic effect on tumor growth in vitro and in vivo and leads to increased survival rates in mice bearing highly aggressive human lung tumors.  相似文献   

16.
Mueck AO  Seeger H  Huober J 《Life sciences》2004,75(10):1205-1210
2-Methoxyestradiol (2ME) is an endogenous estradiol metabolite, which acts antiproliferative in various tumor cell lines independent of the hormone receptor status. We investigated whether combinations of 2ME with various chemotherapeutic or endocrine compounds may result in an additive effect on the proliferation of human breast cancer cells. The breast cancer cell lines MCF-7 (receptor-positive), BM (receptor-negative) and a MCF-7 line transfected with the aromatase gene were used. All cell lines were incubated in the concentration range of 0.8 microM to 25 microM with 2ME alone and in equimolar combinations with the following compounds: epirubicine, daunorubicine, paclitaxel, docetaxel, carboplatin, vinorelbine, 5-fluorouracil, mafosfamide and 4-OH tamoxifen. The effect of letrozole and 2ME alone and in equimolar combinations was tested in the concentration range of 0.6 to 1 microM. Proliferation was measured after 4 days using the ATP-chemosensitivity test. In MCF-7 cells 2ME in combination with 4OH-tamoxifen, epirubicine, docetaxel, 5-fluoprouracil, mafosfamide and carboplatin led to an additive effect. In BM cells only 2ME combined with 4OH-tamoxifen, daunorubicine and mafosfamide showed an additive action. Both letrozole and 2ME were nearly similar effective in inhibition of the aromatase gene. Here no additive effect was found. 2ME displayed antiproliferative actions in various human breast cancer cells. In addition 2ME was able to increase the antiproliferative property of certain antihormones and cytostatic substances. Furthermore 2ME exhibits a similar property as compared to letrozole in inhibiting the aromatase activity. Since 2ME was well tolerated in a recently conducted phase II trial in patients with refractory metastatic breast cancer, the combination of 2ME with chemotherapeutics or antihormones may offer a new clinically relevant treatment regimen.  相似文献   

17.
Combinatorial therapies have been recently proposed to improve the efficacy of anticancer treatment. The Synergy Finder R package is a software used to analyze pre-clinical drug combination datasets. Here, we report the major updates to the Synergy Finder R package for improved interpretation and annotation of drug combination screening results. Unlike the existing implementations, the updated Synergy Finder R package includes five main innovations. 1) We extend the mathematical models to higher...  相似文献   

18.
A model of antibiotic synergy based on a molecular mechanism of action which blocked sequential steps in a single metabolic pathway was tested. Twenty-five strains each of Pseudomonas, Klebsiella, and Serratia were tested in vitro against three different two drug combinations of vancomycin, carbenicillin, or cephalothin. Synergy was observed when vancomycin was combined with either carbenicillin or cephalothin against isolates of Pseudomonas or Serratia, whereas the combination of carbenicillin and cephalothin did not result in significant synergy against these isolates. The presence of synergy was not related to the sensitivity or resistance of the isolates to the drugs in the combination. Synergy was also observed with all three antibiotic combinations against Klebsiella isolates which may be related to enzyme inactivation by one of the drugs in the combination. These observations support the hypothetical model of antibiotic synergy based on sequential blocking of one biochemical pathway.  相似文献   

19.
《Translational oncology》2022,15(12):101230
KRAS is mutated in approximately 25% of Non-small Cell Lung Cancer (NSCLC) patients and first specific inhibitors showed promising responses that may be improved by concurrent interference with downstream signaling pathways. Cell lines exhibiting KRAS mutations show specific sensitivities to modulators affecting glucose utilization, signal transduction and cell survival. Novel SOS1-directed inhibitors with a broader anticancer coverage such as BAY-293 and BI-3406 inhibit KRAS through the hindrance of SOS1-KRAS interactions. The aim of this study was to check the putative synergy of BAY-293 with modulators having revealed specific vulnerabilities of KRAS-mutated cell lines. The present investigation tested the cytotoxicity of BAY-293 combinations against a series of Osimertinib-resistant primary NSCLC cell lines using MTT tests and calculation of combination indices according to the Chou-Talalay method. The results show that BAY-293 synergizes with modulators of glucose metabolism, inhibitors of cellular proliferation, several chemotherapeutics and a range of diverse modulators, thus corroborating the chemosensitivities of cells expressing mutated KRAS. In conclusion, BAY-293 exerts cytotoxicity with a wide range of drugs against Osimertinib-resistant primary NSCLC cell lines. The administration of pan-KRAS inhibitors alone may be limited in vivo by toxicity to normal tissues but made feasible by its use as part of suitable drug combinations. This study shows that BAY-293 combinations are active against NSCLC cells not further amenable to mutated EGFR-directed targeted therapy and results likewise hold relevance for pancreatic and colon cancer.  相似文献   

20.
《Translational oncology》2021,14(12):101230
KRAS is mutated in approximately 25% of Non-small Cell Lung Cancer (NSCLC) patients and first specific inhibitors showed promising responses that may be improved by concurrent interference with downstream signaling pathways. Cell lines exhibiting KRAS mutations show specific sensitivities to modulators affecting glucose utilization, signal transduction and cell survival. Novel SOS1-directed inhibitors with a broader anticancer coverage such as BAY-293 and BI-3406 inhibit KRAS through the hindrance of SOS1-KRAS interactions. The aim of this study was to check the putative synergy of BAY-293 with modulators having revealed specific vulnerabilities of KRAS-mutated cell lines. The present investigation tested the cytotoxicity of BAY-293 combinations against a series of Osimertinib-resistant primary NSCLC cell lines using MTT tests and calculation of combination indices according to the Chou-Talalay method. The results show that BAY-293 synergizes with modulators of glucose metabolism, inhibitors of cellular proliferation, several chemotherapeutics and a range of diverse modulators, thus corroborating the chemosensitivities of cells expressing mutated KRAS. In conclusion, BAY-293 exerts cytotoxicity with a wide range of drugs against Osimertinib-resistant primary NSCLC cell lines. The administration of pan-KRAS inhibitors alone may be limited in vivo by toxicity to normal tissues but made feasible by its use as part of suitable drug combinations. This study shows that BAY-293 combinations are active against NSCLC cells not further amenable to mutated EGFR-directed targeted therapy and results likewise hold relevance for pancreatic and colon cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号