首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In animals, circadian rhythms in physiology and behavior result from coherent rhythmic interactions between clocks in the brain and those throughout the body. Despite the many tissue specific clocks, most understanding of the molecular core clock mechanism comes from studies of the suprachiasmatic nuclei (SCN) of the hypothalamus and a few other cell types. Here we report establishment and genetic characterization of three cell-autonomous mouse clock models: 3T3 fibroblasts, 3T3-L1 adipocytes, and MMH-D3 hepatocytes. Each model is genetically tractable and has an integrated luciferase reporter that allows for longitudinal luminescence recording of rhythmic clock gene expression using an inexpensive off-the-shelf microplate reader. To test these cellular models, we generated a library of short hairpin RNAs (shRNAs) against a panel of known clock genes and evaluated their impact on circadian rhythms. Knockdown of Bmal1, Clock, Cry1, and Cry2 each resulted in similar phenotypes in all three models, consistent with previous studies. However, we observed cell type-specific knockdown phenotypes for the Period and Rev-Erb families of clock genes. In particular, Per1 and Per2, which have strong behavioral effects in knockout mice, appear to play different roles in regulating period length and amplitude in these peripheral systems. Per3, which has relatively modest behavioral effects in knockout mice, substantially affects period length in the three cellular models and in dissociated SCN neurons. In summary, this study establishes new cell-autonomous clock models that are of particular relevance to metabolism and suitable for screening for clock modifiers, and reveals previously under-appreciated cell type-specific functions of clock genes.  相似文献   

2.
3.
The circadian clock is finely regulated by posttranslational modifications of clock components. Mouse CRY2, a critical player in the mammalian clock, is phosphorylated at Ser557 for proteasome-mediated degradation, but its in vivo role in circadian organization was not revealed. Here, we generated CRY2(S557A) mutant mice, in which Ser557 phosphorylation is specifically abolished. The mutation lengthened free-running periods of the behavioral rhythms and PER2::LUC bioluminescence rhythms of cultured liver. In livers from mutant mice, the nuclear CRY2 level was elevated, with enhanced PER2 nuclear occupancy and suppression of E-box-regulated genes. Thus, Ser557 phosphorylation-dependent regulation of CRY2 is essential for proper clock oscillation in vivo.  相似文献   

4.
The ability of the rice (Oryza sativa L.) seedling to tolerate extended hypoxia during submergence is largely attributed to the biochemical adaptation of its coleoptile. Rice coleoptiles are capable of sustaining ATP production and cytoplasmic pH, unlike flood-sensitive organs, such as maize shoots. Fermentation reactions leading to the production of ethanol, alanine, succinate, and -aminobutyrate (GAB) are active in both types of tissues and thus may not account for the difference in tolerance. We have shown previously that rice coleoptiles undergo nitrate reduction and metabolism, which is efficient in alleviating cytoplasmic acidosis and regenerating NAD. Here, we employed 13C-2-acetate tracer methods with in vivo 13C NMR measurement, including in vivo isotopomer analysis, to probe the tricarboxylic acid (TCA) cycle and interacting pathways in rice coleoptiles during anaerobiosis. We found that the TCA cycle underwent multiple turns based on the metabolic scrambling of 13C label patterns in glutamine and malate. The in vivo kinetics of the 13C label incorporation into glutamic acid, glutamine, and GAB supports a separate pool of glutamate that was derived from the glutamate dehydrogenase reaction and subsequently decarboxylated to yield GAB. Both reactions consume additional H+ and/or NADH. Moreover, the higher rate of 13C enrichment at C-3 than C-2 of malate suggests the contribution of the glyoxylate cycle to malate synthesis, which could replenish the TCA cycle carbons diverted to GAB, glutamate, and glutamine synthesis. All of the above reactions contribute to the maintenance of glycolysis for energy production.  相似文献   

5.
Intranasal treatment with C57BL/6 MSCs reduces lesion volume and improves motor and cognitive behavior in the neonatal hypoxic-ischemic (HI) mouse model. In this study, we investigated the potential of human MSCs (hMSCs) to treat HI brain injury in the neonatal mouse. Assessing the regenerative capacity of hMSCs is crucial for translation of our knowledge to the clinic. We determined the neuroregenerative potential of hMSCs in vitro and in vivo by intranasal administration 10 d post-HI in neonatal mice. HI was induced in P9 mouse pups. 1×106 or 2×106 hMSCs were administered intranasally 10 d post-HI. Motor behavior and lesion volume were measured 28 d post-HI. The in vitro capacity of hMSCs to induce differentiation of mouse neural stem cell (mNSC) was determined using a transwell co-culture differentiation assay. To determine which chemotactic factors may play a role in mediating migration of MSCs to the lesion, we performed a PCR array on 84 chemotactic factors 10 days following sham-operation, and at 10 and 17 days post-HI. Our results show that 2×106 hMSCs decrease lesion volume, improve motor behavior, and reduce scar formation and microglia activity. Moreover, we demonstrate that the differentiation assay reflects the neuroregenerative potential of hMSCs in vivo, as hMSCs induce mNSCs to differentiate into neurons in vitro. We also provide evidence that the chemotactic factor CXCL10 may play an important role in hMSC migration to the lesion site. This is suggested by our finding that CXCL10 is significantly upregulated at 10 days following HI, but not at 17 days after HI, a time when MSCs no longer reach the lesion when given intranasally. The results described in this work also tempt us to contemplate hMSCs not only as a potential treatment option for neonatal encephalopathy, but also for a plethora of degenerative and traumatic injuries of the nervous system.  相似文献   

6.
Lengthened circadian period of locomotor activity is a characteristic of a congenic strain of mice carrying a nonsense mutation in exon 5 of the carbonic anhydrase II gene, car2. The null mutation in car2 is located on a DBA/2J inbred strain insert on proximal chromosome 3, on an otherwise C57BL/6J genomic background. Since reducing the size of the congenic region would narrow the possible candidate genes for period, two recombinant congenic strains (R1 and R2) were developed from the original congenic strain. These new congenic strains were assessed for period, genetic composition, and the presence of immunoreactive carbonic anhydrase II. R1 mice were homozygous DBA/2J for the distal portion of the original DBA/2J insert, while R2 mice were homozygous DBA/2J for the proximal portion. R1 mice had a significantly lengthened period compared to R2 mice and wild-type C57BL/6J mice, indicating that the gene(s) affecting period is likely found within the reduced DBA/2J insert (?1 cM) in the R1 mice. The R1 mice also possessed the null mutation in car2. This study confirmed the presence of a gene(s) affecting period on proximal chromosome 3 and significantly reduced the size of the congenic region and the number of candidate genes. Future studies will focus on identifying the gene influencing period.  相似文献   

7.
In Vitro System for Production of Mouse Mammary Tumor Virus   总被引:15,自引:2,他引:13       下载免费PDF全文
An in vitro system for production, purification, and concentration of mouse mammary tumor virus is described. Monolayer cultures of C(3)H mouse mammary tumor cells propagated at 34 C in roller bottles in the presence of dexamethasone, a glucocorticoid hormone, release B-type particles which possess ribonucleic acid and a ribonucleic acid-dependent deoxyribonucleic acid polymerase. One thousandfold concentration by ultracentrifugation with subsequent gradient fractionation yielded > 7 x 10(10) particles per ml in the 1.16- to 1.18-g/ml region. Mouse mammary tumor virus produced in this system was free of detectable C-type virus.  相似文献   

8.
采用75分钟和150分钟两种精卵作用时间,对经6℃低温处理2小时和6小时的小鼠卵母细胞进行体外受精。精卵作用75分钟后,经6℃处理的卵子无一受精,而对照组的受精率为30.7%。作用150分钟后,低温处理2小时、6小时和对照组的受精率分别为62.0%,36.55%和76.0%。并对试验所出现的现象作了讨论。  相似文献   

9.

Purpose

The antineoplastic efficacy of anthracyclines is limited by their cardiac toxicity. In this study, we evaluated the toxicity of doxorubicin, non-pegylated liposomal-delivered doxorubicin, and epirubicin in HL-1 adult cardiomyocytes in culture as well as in the mouse in vivo.

Methods

The cardiomyocytes were incubated with the three anthracyclines (1 µM) to assess reactive oxygen generation, DNA damage and apoptotic cell death. CF-1 mice (10/group) received doxorubicin, epirubicin or non-pegylated liposomal-doxorubicin (10 mg/kg) and cardiac function was monitored by Doppler echocardiography to measure left ventricular ejection fraction (LVEF), heart rate (HR) and cardiac output (CO) both prior to and 10 days after drug treatment.

Results

In HL-1 cells, non-pegylated liposomal-doxorubicin generated significantly less reactive oxygen species (ROS), as well as less DNA damage and apoptosis activation when compared with doxorubicin and epirubicin. Cultured breast tumor cells showed similar sensitivity to the three anthracyclines. In the healthy mouse, non-pegylated liposomal doxorubicin showed a minimal and non-significant decrease in LVEF with no change in HR or CO, compared to doxorubicin and epirubicin.

Conclusion

This study provides evidence for reduced cardiac toxicity of non-pegylated-liposomal doxorubicin characterized by attenuation of ROS generation, DNA damage and apoptosis in comparison to epirubicin and doxorubicin.  相似文献   

10.
小鼠卵母细胞体外成熟、体外受精的效果观察   总被引:2,自引:0,他引:2  
目的 研究不同培养条件对小鼠卵母细胞体外成熟及体外受精率的影响。方法 小鼠卵母细胞分别在含有FSH、BSA和胰岛素的培养液中体外成熟,在Whitten 氏液中体外受精,比较体外成熟率、体外受精率。结果 1- 裸卵(DO) 的体外成熟率、体外受精率(81-4% ,31-0 % ) 均高于卵丘卵母细胞复合体(COC)(48-6 % ,27-1% ) 。2- 在培养液中添加FSH、胰岛素和BSA,卵母细胞的体外成熟率为77-9 % ,82-3% 、60-7% ;体外受精率为77-2 % 、72-6 % 、26-7% ;2 - 细胞率为49-2 % 、34-2 % 、10-0% 。胰岛素组的卵母细胞IVM 率最高,但IVF率、2 - 细胞率低于FSH 组。3- 添加BSA的两组的体外受精率只有26-7 % 、25-8 % ,显著低于其他组,其体外成熟率也较添加FSH 和胰岛素的组成。4- 排出第一极体(PbI) 的卵母细胞的体外受精率和2 - 细胞率(85-9 % ,22-4% ) 均高于GV期卵母细胞(71-1 % ,12-9 % ) 。结论 1- 卵丘卵母细胞(COC) 较裸卵(DO) 的体外成熟率、体外受精率都低,差异显著(P成熟< 0-01;P受精< 0-05) 。2-FSH 和胰岛素均能提高小鼠卵母细胞的体外成熟率、体外受精率。3-BSA可以降低小鼠卵母细胞体外受精率,差异极显著。4-GV 期卵母细胞的体外受精率显著低于体外培养的排出第一极体的卵母细胞(P2 - cell < 0-05,P受精<0-05)  相似文献   

11.

Background

It has been shown that selenium-binding protein 1 (SBP1) is significantly downregulated in different human cancers. Its regulation and function have not yet been established.

Methodology and Principal Findings

We show that the SBP1 promoter is hypermethylated in colon cancer tissues and human colon cancer cells. Treatment with 5′-Aza-2′-deoxycytidine leads to demethylation of the SBP1 promoter and to an increase of SBP1 promoter activity, rescues SBP1 mRNA and protein expression in human colon cancer cells. Additionally, overexpression of SBP1 sensitizes colon cancer cells to H2O2-induced apoptosis, inhibits cancer cell migration in vitro and inhibits tumor growth in nude mice.

Conclusion and Significance

These data demonstrate that SBP1 has tumor suppressor functions that are inhibited in colorectal cancer through epigenetic silencing.  相似文献   

12.
The translation of in vitro findings to clinical outcomes is often elusive. Trauma/hemorrhagic shock (T/HS) results in hepatic hypoxia that drives inflammation. We hypothesize that in silico methods would help bridge in vitro hepatocyte data and clinical T/HS, in which the liver is a primary site of inflammation. Primary mouse hepatocytes were cultured under hypoxia (1% O2) or normoxia (21% O2) for 1–72 h, and both the cell supernatants and protein lysates were assayed for 18 inflammatory mediators by Luminex™ technology. Statistical analysis and data-driven modeling were employed to characterize the main components of the cellular response. Statistical analyses, hierarchical and k-means clustering, Principal Component Analysis, and Dynamic Network Analysis suggested MCP-1/CCL2 and IL-1α as central coordinators of hepatocyte-mediated inflammation in C57BL/6 mouse hepatocytes. Hepatocytes from MCP-1-null mice had altered dynamic inflammatory networks. Circulating MCP-1 levels segregated human T/HS survivors from non-survivors. Furthermore, T/HS survivors with elevated early levels of plasma MCP-1 post-injury had longer total lengths of stay, longer intensive care unit lengths of stay, and prolonged requirement for mechanical ventilation vs. those with low plasma MCP-1. This study identifies MCP-1 as a main driver of the response of hepatocytes in vitro and as a biomarker for clinical outcomes in T/HS, and suggests an experimental and computational framework for discovery of novel clinical biomarkers in inflammatory diseases.  相似文献   

13.
Previous attempts to construct a mouse adenovirus type 1 early region 3 (E3) null mutant by initiator codon mutagenesis were unsuccessful because one of the E3 proteins, gp11K, is synthesized as a fusion protein from a late viral mRNA (A. N. Cauthen and K. R. Spindler, Virology 259:119-128, 1999). Therefore, a different mutagenesis strategy was employed that inserted termination codons into all three reading frames of the E3 proteins. This strategy produced a mutant, pmE314, that was null for the expression of E3 proteins as determined by immunoprecipitation with E3-specific antisera. This mutant grew as well as wild-type (wt) virus in both 3T6 mouse fibroblasts and mouse brain microvascular endothelial cells. However, the 50% lethal dose for pmE314 in adult NIH Swiss outbred mice was approximately 6 log units higher than that of wt virus, indicating that pmE314 was less virulent in mice. In situ hybridization experiments revealed that the absence of the E3 proteins did not alter the tropism of the mutant virus from that of wt virus. When the histopathology was evaluated, the characteristics of the pmE314 infection at both doses administered were strikingly different from those exhibited by wt virus. The central nervous system of wt-infected mice exhibited damage to the endothelium and recruitment of inflammatory cells, whereas the central nervous system of pmE314-infected mice showed no inflammatory response and only mild signs of endothelial damage.  相似文献   

14.
In Vivo and In Vitro Analysis of Baculovirus ie-2 Mutants   总被引:1,自引:0,他引:1       下载免费PDF全文
Upon transient expression in cell culture, the ie-2 gene of Autographa californica nuclear polyhedrosis virus (AcMNPV) displays three functions: trans activation of viral promoters, direct or indirect stimulation of virus origin-specific DNA replication, and arrest of the cell cycle. The ability of IE2 to trans stimulate DNA replication and coupled late gene expression is observed in a cell line derived from Spodoptera frugiperda but not in a cell line derived from Trichoplusia ni. This finding suggested that IE-2 may exert cell line-specific or host-specific effects. To examine the role of ie-2 in the context of infection and its possible influence on the host range, we constructed recombinants of AcMNPV containing deletions of different functional regions within ie-2 and characterized them in cell lines and larvae of S. frugiperda and T. ni. The ie-2 mutant viruses exhibited delays in viral DNA synthesis, late gene expression, budded virus production, and occlusion body formation in SF-21 cells but not in TN-5B1-4 cells. In TN-5B1-4 cells, the ie-2 mutants produced more budded virus and fewer occlusion bodies but the infection proceeded without delay. Examination of the effects of ie-2 and the respective mutants on immediate-early viral promoters in transient expression assays revealed striking differences in the relative levels of expression and differences in responses to ie-2 and its mutant forms in different cell lines. In T. ni and S. frugiperda larvae, the infectivities of the occluded form of ie-2 mutant viruses by the normal oral route of infection was 100- and 1,000-fold lower, respectively, than that of wild-type AcMNPV. The reduction in oral infectivity was traced to the absence of virions within the occlusion bodies. The infectivity of the budded form of ie-2 mutants by hemocoelic injection was similar to that of wild-type virus in both species. Thus, ie-2 mutants are viable but exhibit cell line-specific effects on temporal regulation of the infection process. Due to its effect on virion occlusion, mutants of IE-2 were essentially noninfectious by the normal route of infection in both species tested. However, since budded viruses exhibited normal infectivity upon hemocoelic injection, we conclude that ie-2 does not affect host range per se. The possibility that IE-2 exerts tissue-specific effects has not been ruled out.  相似文献   

15.
We reported recently that the presenilin homologue signal peptide peptidase-like 2a (SPPL2a) is essential for B cell development by cleaving the N-terminal fragment (NTF) of the invariant chain (li, CD74). Based on this, we suggested that pharmacological modulation of SPPL2a may represent a novel approach to deplete B cells in autoimmune disorders. With regard to reported overlapping substrate spectra of SPPL2a and its close homologue, SPPL2b, we investigated the role of SPPL2b in CD74 NTF proteolysis and its impact on B and dendritic cell homeostasis. In heterologous expression experiments, SPPL2b was found to cleave CD74 NTF with an efficiency simliar to that of SPPL2a. For in vivo analysis, SPPL2b single-deficient and SPPL2a/SPPL2b double-deficient mice were generated and examined for CD74 NTF turnover/accumulation, B cell maturation and functionality, and dendritic cell homeostasis. We demonstrate that in vivo SPPL2b does not exhibit a physiologically relevant contribution to CD74 proteolysis in B and dendritic cells. Furthermore, we reveal that both proteases exhibit divergent subcellular localizations in B cells and different expression profiles in murine tissues. These findings suggest distinct functions of SPPL2a and SPPL2b and, based on a high abundance of SPPL2b in brain, a physiological role of this protease in the central nervous system.  相似文献   

16.
Explants of adult mouse subcommissural organs were subjected to primary tissue culture on a feeder layer prepared from mouse embryonic fibroblasts. The explants quickly anchored and developed into three tissue types: (i) cystic explants. (ii) solid explants, and (iii) subcolonies. Secretory material was localized immunocytochemically in all of these three types of specimens. Electron microscopical investigations support the idea that a discharge of secretory material takes place into the culture medium.  相似文献   

17.
The dorsal and ventral hippocampal regions (dHP and vHP) are proposed to have distinct functions. Electrophysiological studies have revealed intra-hippocampal variances along the dorsoventral axis. Nevertheless, the extra-hippocampal influences of dHP and vHP activities remain unclear. In this study, we compared the spatial distribution of brain-wide responses upon dHP or vHP activation and further estimate connection strengths between the dHP and the vHP with corresponding extra-hippocampal areas. To achieve this, we first investigated responses of local field potential (LFP) and multi unit activities (MUA) upon light stimulation in the hippocampus of an anesthetized transgenic mouse, whose CA1 pyramidal neurons expressed a step-function opsin variant of channelrhodopsin-2 (ChR2). Optogenetic stimulation increased hippocampal LFP power at theta, gamma, and ultra-fast frequency bands, and augmented MUA, indicating light-induced activation of CA1 pyramidal neurons. Brain-wide responses examined using fMRI revealed that optogenetic activation at the dHP or vHP caused blood oxygenation level-dependent (BOLD) fMRI signals in situ. Although activation at the dHP induced BOLD responses at the vHP, the opposite was not observed. Outside the hippocampal formation, activation at the dHP, but not the vHP, evoked BOLD responses at the retrosplenial cortex (RSP), which is in line with anatomical evidence. In contrast, BOLD responses at the lateral septum (LS) were induced only upon vHP activation, even though both dHP and vHP send axonal fibers to the LS. Our findings suggest that the primary targets of dHP and vHP activation are distinct, which concurs with attributed functions of the dHP and RSP in spatial memory, as well as of the vHP and LS in emotional responses.  相似文献   

18.
Uric acid (UA) levels in mouse blood have been reported to range widely from 0.1 μM to 760 μM. The aim of this study was to demonstrate false in vitro and in vivo elevations of UA levels in mouse blood. Male ICR mice were anesthetized with pentobarbital (breathing mice) or sacrificed with overdose ether (non-breathing mice). Collected blood was dispensed into MiniCollect® tubes and incubated in vitro for 0 or 30 min at room temperature. After separation of plasma or serum, the levels of UA and hypoxanthine were determined using HPLC. From the non-incubated plasma of breathing mice, the true value of UA level in vivo was 13.5 ± 1.4 μM. However, UA levels in mouse blood increased by a factor of 3.9 following incubation in vitro. This “false in vitro elevation” of UA levels in mouse blood after blood sampling was inhibited by allopurinol, a xanthine oxidase inhibitor. Xanthine oxidase was converted to UA in mouse serum from hypoxanthine which was released from blood cells during incubation. Plasma UA levels from non-breathing mice were 19 times higher than those from breathing mice. This “false in vivo elevation” of UA levels before blood sampling was inhibited by pre-treatment with phentolamine, an α-antagonist. Over-anesthesia with ether might induce α-vasoconstriction and ischemia and thus degrade intracellular ATP to UA. For the accurate measurement of UA levels in mouse blood, the false in vitro and in vivo elevations of UA level must be avoided by immediate separation of plasma after blood sampling from anesthetized breathing mice.  相似文献   

19.
L Ma  R Ranganathan 《PloS one》2012,7(8):e42581
An oscillator consisting of KaiA, KaiB, and KaiC proteins comprises the core of cyanobacterial circadian clock. While one key reaction in this process-KaiC phosphorylation-has been extensively investigated and modeled, other key processes, such as the interactions among Kai proteins, are not understood well. Specifically, different experimental techniques have yielded inconsistent views about Kai A, B, and C interactions. Here, we first propose a mathematical model of cyanobacterial circadian clock that explains the recently observed dynamics of the four phospho-states of KaiC as well as the interactions among the three Kai proteins. Simulations of the model show that the interaction between KaiB and KaiC oscillates with the same period as the phosphorylation of KaiC, but displays a phase delay of ~8 hr relative to the total phosphorylated KaiC. Secondly, this prediction on KaiB-C interaction are evaluated using a novel FRET (Fluorescence Resonance Energy Transfer)-based assay by tagging fluorescent proteins Cerulean and Venus to KaiC and KaiB, respectively, and reconstituting fluorescent protein-labeled in vitro clock. The data show that the KaiB∶KaiC interaction indeed oscillates with ~24 hr periodicity and ~8 hr phase delay relative to KaiC phosphorylation, consistent with model prediction. Moreover, it is noteworthy that our model indicates that the interlinked positive and negative feedback loops are the underlying mechanism for oscillation, with the serine phosphorylated-state (the "S-state") of KaiC being a hub for the feedback loops. Because the kinetics of the KaiB-C interaction faithfully follows that of the S-state, the FRET measurement may provide an important real-time probe in quantitative study of the cyanobacterial circadian clock.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号