首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

Hydrogen sulfide (H2S) is a promising cardioprotective agent and a potential modulator of cardiac ion currents. Yet its cardiac effects on humans are poorly understood due to lack of functional cardiomyocytes. This study investigates electrophysiological responses of human pluripotent stem cells (hPSCs) derived cardiomyocytes towards H2S.

Methods and Results

Cardiomyocytes of ventricular, atrial and nodal subtypes differentiated from H9 embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) were electrophysiologically characterized. The effect of NaHS, a donor of H2S, on action potential (AP), outward rectifier potassium currents (I Ks and I Kr), L-type Ca2+ currents (I CaL) and hyperpolarization-activated inward current (I f) were determined by patch-clamp electrophysiology and confocal calcium imaging. In a concentration-dependent manner, NaHS (100 to 300 µM) consistently altered the action potential properties including prolonging action potential duration (APD) and slowing down contracting rates of ventricular-and atrial-like cardiomyocytes derived from both hESCs and hiPSCs. Moreover, inhibitions of slow and rapid I K (I Ks and I Kr), I CaL and I f were found in NaHS treated cardiomyocytes and it could collectively contribute to the remodeling of AP properties.

Conclusions

This is the first demonstration of effects of H2S on cardiac electrophysiology of human ventricular-like, atrial-like and nodal-like cardiomyocytes. It reaffirmed the inhibitory effect of H2S on I CaL and revealed additional novel inhibitory effects on I f, I Ks and I Kr currents in human cardiomyocytes.  相似文献   

2.
Yan X  Gao S  Tang M  Xi J  Gao L  Zhu M  Luo H  Hu X  Zheng Y  Hescheler J  Liang H 《Cell calcium》2011,50(5):433-443
In fetal mammalian heart, constitutive adenylyl cyclase/cyclic AMP-dependent protein kinase A (cAMP-PKA)-mediated phosphorylation, independent of β-adrenergic receptor stimulation, could under such circumstances play an important role in sustaining the L-type calcium channel current (ICa,L) and regulating other PKA dependent phosphorylation targets. In this study, we investigated the regulation of L-type Ca2+ channel (LTCC) in murine embryonic ventricles. The data indicated a higher phosphorylation state of LTCC at early developmental stage (EDS, E9.5-E11.5) than late developmental stage (LDS, E16.5-E18.5). An intrinsic adenylyl cyclase (AC) activity, PKA activity and basal cAMP concentration were obviously higher at EDS than LDS. The cAMP increase in the presence of isobutylmethylxanthine (IBMX, nonselective phosphodiesterase inhibitor) was further augmented at LDS but not at EDS by chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA)-acetoxymethyl ester (BAPTA-AM). Furthermore, ICa,L increased with time after patch rupture in LDS cardiomyocytes dialyzed with pipette solution containing BAPTA whereas not at EDS. Thus we conclude that the high basal level of LTCC phosphorylation is due to the high intrinsic PKA activity and the high intrinsic AC activity at EDS. The latter is possibly owing to the little or no effect of Ca2+ influx via LTCCs on AC activity, leading to the inability to inhibit AC.  相似文献   

3.
BackgroundPrevailing data suggest that ATP-sensitive potassium channels (KATP) contribute to a surprising resistance to hypoxia in mammalian embryos, thus we aimed to characterize the developmental changes of KATP channels in murine fetal ventricular cardiomyocytes.MethodsPatch clamp was applied to investigate the functions of KATP. RT-PCR, Western blot were used to further characterize the molecular properties of KATP channels.ResultsSimilar KATP current density was detected in ventricular cardiomyocytes of late development stage (LDS) and early development stage (EDS). Molecular–biological study revealed the upregulation of Kir6.1/SUR2A in membrane and Kir6.2 remained constant during development. Kir6.1, Kir6.2, and SUR1 were detectable in the mitochondria without marked difference between EDS and LDS. Acute hypoxia–ischemia led to cessation of APs in 62.5% of tested EDS cells and no APs cessation was observed in LDS cells. SarcKATP blocker glibenclamide rescued 47% of EDS cells but converted 42.8% of LDS cells to APs cessations under hypoxia-ischemic condition. MitoKATP blocker 5-HD did not significantly influence the response to acute hypoxia–ischemia at either EDS or LDS. In summary, sarcKATP played distinct functional roles under acute hypoxia-ischemic condition in EDS and LDS fetal ventricular cardiomyocytes, with developmental changes in sarcKATP subunits. MitoKATP were not significantly involved in the response of fetal cardiomyocytes to acute hypoxia–ischemia and no developmental changes of KATP subunits were found in mitochondria.  相似文献   

4.

Background

Although fibroblast-to-myocyte electrical coupling is experimentally suggested, electrophysiology of cardiac fibroblasts is not as well established as contractile cardiac myocytes. The present study was therefore designed to characterize ion channels in cultured human cardiac fibroblasts.

Methods and Findings

A whole-cell patch voltage clamp technique and RT-PCR were employed to determine ion channels expression and their molecular identities. We found that multiple ion channels were heterogeneously expressed in human cardiac fibroblasts. These include a big conductance Ca2+-activated K+ current (BKCa) in most (88%) human cardiac fibroblasts, a delayed rectifier K+ current (IKDR) and a transient outward K+ current (Ito) in a small population (15 and 14%, respectively) of cells, an inwardly-rectifying K+ current (IKir) in 24% of cells, and a chloride current (ICl) in 7% of cells under isotonic conditions. In addition, two types of voltage-gated Na+ currents (INa) with distinct properties were present in most (61%) human cardiac fibroblasts. One was a slowly inactivated current with a persistent component, sensitive to tetrodotoxin (TTX) inhibition (INa.TTX, IC50 = 7.8 nM), the other was a rapidly inactivated current, relatively resistant to TTX (INa.TTXR, IC50 = 1.8 µM). RT-PCR revealed the molecular identities (mRNAs) of these ion channels in human cardiac fibroblasts, including KCa.1.1 (responsible for BKCa), Kv1.5, Kv1.6 (responsible for IKDR), Kv4.2, Kv4.3 (responsible for Ito), Kir2.1, Kir2.3 (for IKir), Clnc3 (for ICl), NaV1.2, NaV1.3, NaV1.6, NaV1.7 (for INa.TTX), and NaV1.5 (for INa.TTXR).

Conclusions

These results provide the first information that multiple ion channels are present in cultured human cardiac fibroblasts, and suggest the potential contribution of these ion channels to fibroblast-myocytes electrical coupling.  相似文献   

5.

Objectives

to assess the cardioprotective properties of a blueberry enriched diet (BD).

Background

Reactive oxygen species (ROS) play a major role in ischemia-related myocardial injury. The attempts to use synthetic antioxidants to block the detrimental effects of ROS have produced mixed or negative results precipitating the interest in natural products. Blueberries are readily available product with the highest antioxidant capacity among fruits and vegetables.

Methods and Results

Following 3-mo of BD or a regular control diet (CD), the threshold for mitochondrial permeability transition (tMPT) was measured in isolated cardiomyocytes obtained from young male Fischer-344 rats. Compared to CD, BD resulted in a 24% increase (p<0.001) of ROS indexed tMPT. The remaining animals were subjected to a permanent ligation of the left descending coronary artery. 24 hrs later resulting myocardial infarction (MI) in rats on BD was 22% less than in CD rats (p<0.01). Significantly less TUNEL(+) cardiomyocytes (2% vs 9%) and 40% less inflammation cells were observed in the myocardial area at risk of BD compared to CD rats (p<0.01). In the subgroup of rats, after coronary ligation the original diet was either continued or switched to the opposite one, and cardiac remodeling and MI expansion were followed by serial echocardiography for 10 weeks. Measurements suggested that continuation of BD or its withdrawal after MI attenuated or accelerated rates of post MI cardiac remodeling and MI expansion.

Conclusion

A blueberry-enriched diet protected the myocardium from induced ischemic damage and demonstrated the potential to attenuate the development of post MI chronic heart failure.  相似文献   

6.
Inflammation is now widely recognized as a key component of heart disease. Patients suffering from arrhythmias and heart failure have increased levels of tumor necrosis factor-α (TNFα) and interleukin-1β (IL-1β). Evidence suggests that these cytokines are important mediators of cardiac remodeling; however, their effects on ion channels and arrhythmogenesis remain incompletely understood. The L-type Ca2+ current (ICaL) is a major determinant of the plateau phase of cardiac action potential and has a critical excitation-contraction coupling role. Thus, altering its properties could have detrimental effects on cardiac electrical and contractile functions. Accordingly, the objective of this study was to elucidate the effect of TNFα and IL-1β on ICaL, while exploring the underlying regulatory mechanisms. Neonatal mouse ventricular myocytes were treated with a pathophysiological concentration (30 pg/ml) of TNFα and IL-1β for 24 h. Voltage-clamp recordings showed that TNFα had no effect on ICaL, whereas IL-1β decreased the current density by 36%. Although both IL-1β- and TNFα-treated myocytes showed significant increase in reactive oxidative species (ROS), Western blot experiments revealed that only IL-1β increased PKCϵ membrane translocation. The antioxidant N-acetyl-l-cysteine normalized ROS levels and restored ICaL density. Furthermore, the PKCϵ translocation inhibitor ϵ-V1-2 blocked the effect of IL-1β on ICaL. The reduction of ICaL by IL-1β was also seen in cultured adult ventricular myocytes. Overall, chronic IL-1β treatment decreased ICaL density in cardiomyocytes. These effects implicated ROS signaling and PKCϵ activation. These findings could contribute to explain the role of IL-1β in the development of arrhythmia and heart failure.  相似文献   

7.

Background

Apamin sensitive potassium current (I KAS), carried by the type 2 small conductance Ca2+-activated potassium (SK2) channels, plays an important role in post-shock action potential duration (APD) shortening and recurrent spontaneous ventricular fibrillation (VF) in failing ventricles.

Objective

To test the hypothesis that amiodarone inhibits I KAS in human embryonic kidney 293 (HEK-293) cells.

Methods

We used the patch-clamp technique to study I KAS in HEK-293 cells transiently expressing human SK2 before and after amiodarone administration.

Results

Amiodarone inhibited IKAS in a dose-dependent manner (IC50, 2.67±0.25 µM with 1 µM intrapipette Ca2+). Maximal inhibition was observed with 50 µM amiodarone which inhibited 85.6±3.1% of IKAS induced with 1 µM intrapipette Ca2+ (n = 3). IKAS inhibition by amiodarone was not voltage-dependent, but was Ca2+-dependent: 30 µM amiodarone inhibited 81.5±1.9% of I KAS induced with 1 µM Ca2+ (n = 4), and 16.4±4.9% with 250 nM Ca2+ (n = 5). Desethylamiodarone, a major metabolite of amiodarone, also exerts voltage-independent but Ca2+ dependent inhibition of I KAS.

Conclusion

Both amiodarone and desethylamiodarone inhibit I KAS at therapeutic concentrations. The inhibition is independent of time and voltage, but is dependent on the intracellular Ca2+ concentration. SK2 current inhibition may in part underlie amiodarone''s effects in preventing electrical storm in failing ventricles.  相似文献   

8.

Background

Inositol 1,4,5-trisphosphate receptors (IP3R1, 2, and 3) are intracellular Ca2+ release channels that regulate various vital processes. Although the ryanodine receptor type 2, another type of intracellular Ca2+ release channel, has been shown to play a role in embryonic cardiomyocytes, the functions of the IP3Rs in cardiogenesis remain unclear.

Methodology/Principal Findings

We found that IP3R1−/−-IP3R2−/− double-mutant mice died in utero with developmental defects of the ventricular myocardium and atrioventricular (AV) canal of the heart by embryonic day (E) 11.5, even though no cardiac defect was detectable in IP3R1−/− or IP3R2−/− single-mutant mice at this developmental stage. The double-mutant phenotype resembled that of mice deficient for calcineurin/NFATc signaling, and NFATc was inactive in embryonic hearts from the double knockout-mutant mice. The double mutation of IP3R1/R2 and pharmacologic inhibition of IP3Rs mimicked the phenotype of the AV valve defect that result from the inhibition of calcineurin, and it could be rescued by constitutively active calcineurin.

Conclusions/Significance

Our results suggest an essential role for IP3Rs in cardiogenesis in part through the regulation of calcineurin-NFAT signaling.  相似文献   

9.

Background/Aims

Resveratrol has been demonstrated to be protective in the cardiovascular system. The aim of this study was to assess the effects of resveratrol on hydrogen peroxide (H2O2)-induced increase in late sodium current (I Na.L) which augmented the reverse Na+-Ca2+ exchanger current (I NCX), and the diastolic intracellular Ca2+ concentration in ventricular myocytes.

Methods

I Na.L, I NCX, L-type Ca2+ current (I Ca.L) and intracellular Ca2+ properties were determined using whole-cell patch-clamp techniques and dual-excitation fluorescence photomultiplier system (IonOptix), respectively, in rabbit ventricular myocytes.

Results

Resveratrol (10, 20, 40 and 80 µM) decreased I Na.L in myocytes both in the absence and presence of H2O2 (300 µM) in a concentration dependent manner. Ranolazine (3–9 µM) and tetrodotoxin (TTX, 4 µM), I Na.L inhibitors, decreased I Na.L in cardiomyocytes in the presence of 300 µM H2O2. H2O2 (300 µM) increased the reverse I NCX and this increase was significantly attenuated by either 20 µM resveratrol or 4 µM ranolazine or 4 µM TTX. In addition, 10 µM resveratrol and 2 µM TTX significantly depressed the increase by 150 µM H2O2 of the diastolic intracellular Ca2+ fura-2 fluorescence intensity (FFI), fura-fluorescence intensity change (△FFI), maximal velocity of intracellular Ca2+ transient rise and decay. As expected, 2 µM TTX had no effect on I Ca.L.

Conclusion

Resveratrol protects the cardiomyocytes by inhibiting the H2O2-induced augmentation of I Na.L.and may contribute to the reduction of ischemia-induced lethal arrhythmias.  相似文献   

10.

Background

Apamin is commonly used as a small-conductance Ca2+-activated K+ (SK) current inhibitor. However, the specificity of apamin in cardiac tissues remains unclear.

Objective

To test the hypothesis that apamin does not inhibit any major cardiac ion currents.

Methods

We studied human embryonic kidney (HEK) 293 cells that expressed human voltage-gated Na+, K+ and Ca2+ currents and isolated rabbit ventricular myocytes. Whole-cell patch clamp techniques were used to determine ionic current densities before and after apamin administration.

Results

Ca2+ currents (CACNA1c+CACNB2b) were not affected by apamin (500 nM) (data are presented as median [25th percentile;75th percentile] (from –16 [–20;–10] to –17 [–19;–13] pA/pF, P = NS), but were reduced by nifedipine to –1.6 [–3.2;–1.3] pA/pF (p = 0.008). Na+ currents (SCN5A) were not affected by apamin (from –261 [–282;–145] to –268 [–379;–132] pA/pF, P = NS), but were reduced by flecainide to –57 [–70;–47] pA/pF (p = 0.018). None of the major K+ currents (I Ks, I Kr, I K1 and I to) were inhibited by 500 nM of apamin (KCNQ1+KCNE1, from 28 [20]; [37] to 23 [18]; [32] pA/pF; KCNH2+KCNE2, from 28 [24]; [30] to 27 [24]; [29] pA/pF; KCNJ2, from –46 [–48;–40] to –46 [–51;–35] pA/pF; KCND3, from 608 [505;748] to 606 [454;684]). Apamin did not inhibit the I Na or I CaL in isolated rabbit ventricular myocytes (I Na, from –67 [–75;–59] to –68 [–71;–59] pA/pF; I CaL, from –16 [–17;–14] to –14 [–15;–13] pA/pF, P = NS for both).

Conclusions

Apamin does not inhibit human cardiac Na+ currents, L-type Ca2+ currents or other major K+ currents. These findings indicate that apamin is a specific SK current inhibitor in hearts as well as in other organs.  相似文献   

11.

Introduction

Mitragynine is a major bioactive compound of Kratom, which is derived from the leave extracts of Mitragyna speciosa Korth or Mitragyna speciosa (M. speciosa), a medicinal plant from South East Asia used legally in many countries as stimulant with opioid-like effects for the treatment of chronic pain and opioid-withdrawal symptoms. Fatal incidents with Mitragynine have been associated with cardiac arrest. In this study, we determined the cardiotoxicity of Mitragynine and other chemical constituents isolated using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).

Methods and Results

The rapid delayed rectifier potassium current (I Kr), L-type Ca2+ current (I Ca,L) and action potential duration (APD) were measured by whole cell patch-clamp. The expression of KCNH2 and cytotoxicity was determined by real-time PCR and Caspase activity measurements. After significant I Kr suppression by Mitragynine (10 µM) was confirmed in hERG-HEK cells, we systematically examined the effects of Mitragynine and other chemical constituents in hiPSC-CMs. Mitragynine, Paynantheine, Speciogynine and Speciociliatine, dosage-dependently (0.1∼100 µM) suppressed I Kr in hiPSC-CMs by 67% ∼84% with IC50 ranged from 0.91 to 2.47 µM. Moreover, Mitragynine (10 µM) significantly prolonged APD at 50 and 90% repolarization (APD50 and APD90) (439.0±11.6 vs. 585.2±45.5 ms and 536.0±22.6 vs. 705.9±46.1 ms, respectively) and induced arrhythmia, without altering the L-type Ca2+ current. Neither the expression,and intracellular distribution of KCNH2/Kv11.1, nor the Caspase 3 activity were significantly affected by Mitragynine.

Conclusions

Our study indicates that Mitragynine and its analogues may potentiate Torsade de Pointes through inhibition of I Kr in human cardiomyocytes.  相似文献   

12.
The hyperpolarization-activated current (I(f)) plays an important role in determining the spontaneous rate of cardiac pacemaker cells. The automatic rhythmicity also exists in working cells of embryonic heart, therefore we studied developmental changes in functional expression and beta-adrenergic regulation of I(f) in embryonic mouse heart. The expression of I(f) is high in early developmental stage (EDS) (10.5 d after coitus) ventricular myocytes, low in intermediate developmental stage (IDS) (13.5 d) atrial or ventricular myocytes and even lower in late developmental stage (LDS) (16.5 d) atrial or ventricular myocytes, indicating that these cells of the EDS embryonic heart have some properties of pacemaker cells. Beta-adrenergic agonist isoproterenol (ISO) stimulates I(f) in LDS but not in EDS cardiomyocytes, indicating that the beta-adrenergic regulation of I(f) is not mature in EDS embryonic heart. But forskolin (a direct activator of adenylate cyclase) and 8-Br-cAMP (a membrane-permeable analogue of cAMP) increase the amplitude of I(f) in EDS cells, indicating that adenylate cyclase and cAMP function fairly well at early stage of development. Furthermore, the results demonstrate that I(f) is modulated by phosphorylation via cAMP dependent PKA both in EDS and LDS cells.  相似文献   

13.

Background

In India there are very few population based data on prevalence of depression. The aim of the study was to determine the prevalence of depression in an urban south Indian population.

Methods and Findings

Subjects were recruited from the Chennai Urban Rural Epidemiology Study (CURES), involving 26,001 subjects randomly recruited from 46 of the 155 corporation wards of Chennai (formerly Madras) city in South India. 25,455 subjects participated in this study (response rate 97.9%). Depression was assessed using a self-reported and previously validated instrument, the Patient Health Questionnaire (PHQ) – 12. Age adjustment was made according to the 2001 census of India. The overall prevalence of depression was 15.1% (age-adjusted, 15.9%) and was higher in females (females 16.3% vs. males 13.9%, p<0.0001). The odds ratio (OR) for depression in female subjects was 1.20 [Confidence Intervals (CI): 1.12–1.28, p<0.001] compared to male subjects. Depressed mood was the most common symptom (30.8%), followed by tiredness (30.0%) while more severe symptoms such as suicidal thoughts (12.4%) and speech and motor retardation (12.4%) were less common. There was an increasing trend in the prevalence of depression with age among both female (p<0.001) and male subjects (p<0.001). The prevalence of depression was higher in the low income group (19.3%) compared to the higher income group (5.9%, p<0.001). Prevalence of depression was also higher among divorced (26.5%) and widowed (20%) compared to currently married subjects (15.4%, p<0.001).

Conclusions

This is the largest population-based study from India to report on prevalence of depression and shows that among urban south Indians, the prevalence of depression was 15.1%. Age, female gender and lower socio-economic status are some of the factors associated with depression in this population.  相似文献   

14.

Background

There is a clear relationship between depression and diabetes. However, the directionality of the relationship remains unclear and very little research has considered a multi-ethnic population. The aim of this study was to determine the prevalence of depression in a White-European (WE) and South-Asian (SA) population attending a community diabetes screening programme, and to explore the association of depression with screen-detected Type 2 diabetes mellitus (T2DM) and impaired glucose regulation (IGR).

Methodology/Principal Findings

Participants were recruited from general practices in Leicestershire (United Kingdom) between August 2004 and December 2007. 4682 WE (40–75 years) and 1327 SA participants (25–75 years) underwent an Oral Glucose Tolerance Test, detailed history, anthropometric measurements and completed the World Health Organisation-Five (WHO-5) Wellbeing Index. Depression was defined by a WHO-5 wellbeing score ≤13. Unadjusted prevalence of depression for people in the total sample with T2DM and IGR was 21.3% (21.6% in WE, 20.6% in SA, p = 0.75) and 26.0% (25.3% in WE, 28.9% in SA, p = 0.65) respectively. For people with normal glucose tolerance, the prevalence was 25.1% (24.9% in WE, 26.4% in SA, p = 0.86). Age-adjusted prevalences were higher for females than males. Odds ratios adjusted for age, gender, and ethnicity, showed no significant increase in prevalent depression for people with T2DM (OR = 0.95, 95%CI 0.62 to 1.45) or IGR (OR = 1.17, 95%CI 0.96 to1.42).

Conclusions

Prior to the knowledge of diagnosis, depression was not significantly more prevalent in people with screen detected T2DM or IGR. Differences in prevalent depression between WE and SA people were also not identified. In this multi-ethnic population, female gender was significantly associated with depression.  相似文献   

15.

Rationale

Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs) are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs.

Method and Result

We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2)-positive cardiomyocytes appeared robustly with 30–70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1) antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7–8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95–98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium), CD140b (pericytes) and TRA-1-60 (undifferentiated hESCs/hiPSCs). 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5−10×105 VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines.

Conclusion

We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from hESC/hiPSCs. These findings would offer a valuable technological basis for hESC/hiPSC-based cell therapy.  相似文献   

16.
17.

Background

Several anti-viral drugs have demonstrated efficacy in preventing Cytomegalovirus (CMV) infections in solid organ transplant (SOT) patients. The recently approved valganciclovir is the most commonly used and most expensive drug for CMV prevention. The safety and efficacy data have been drawn from a single trial. We hypothesized that valganciclovir may not be as safe as nor more effective than other therapies for CMV prevention.

Methods

All experimental and analytical studies that compared valganciclovir with other therapies for prevention of CMV infection after SOT were selected. Based on meta-analytic and multivariate regression methodologies we critically analyzed all available evidence.

Findings

Nine studies were included (N = 1,831). In trials comparing valganciclovir with ganciclovir, the risk for CMV disease is 0.98 (95% Confidence Interval (95%CI) 0.67 to 1.43; P = 0.92; I2 = 0%). Valganciclovir was significantly associated with the risk of absolute neutropenia (<1,500/mm3) compared with all therapies (Odds Ratio (OR) 3.63 95%CI 1.75 to 7.53; P = 0.001; I2 = 0%); with ganciclovir only (OR 2.88, 95%CI 1.27 to 6.53; P = 0.01; I2 = 0%); or with non-ganciclovir therapies (OR 8.30, 95%CI 1.51 to 45.58; P = 0.01; I2 = 10%). For a neutropenia cut-off of <1,000/mm3, the risk remained elevated (OR 1.97, 95%CI 1.03 to 3.67; P = 0.04; I2 = 0%). For every 24 patients who receive valganciclovir prophylaxis, one more will develop neutropenia compared to other therapies. The risk of late-onset CMV disease with valganciclovir was similar to ganciclovir and higher than those with non-ganciclovir therapies (OR 8.95, 95%CI 1.07 to 74.83; P = 0.04; I2 = 0%]. One more patient will develop late-onset CMV disease for every 25 who receive valganciclovir compared to treatment with non-ganciclovir therapies. The risk of CMV tissue-invasive disease in liver recipients receiving valganciclovir was 4.5 times the risk seen with ganciclovir [95%CI 1.00 to 20.14] (p = 0.04). All results remained consistent across different study designs, valganciclovir doses, and CMV serostatus.

Conclusions

Valganciclovir shows no superior efficacy and significantly higher risk of absolute neutropenia, CMV late-onset disease, and CMV tissue-invasive disease compared to other standard therapies. Due to the availability of efficacious, safer, and lower cost drugs (high-dose acyclovir, valacyclovir, ganciclovir), our results do not favor the use of valganciclovir as a first-line agent for CMV preemptive or universal prophylaxis in SOT patients.  相似文献   

18.

Background

The production of cardiomyocytes from human induced pluripotent stem cells (hiPSC) holds great promise for patient-specific cardiotoxicity drug testing, disease modeling, and cardiac regeneration. However, existing protocols for the differentiation of hiPSC to the cardiac lineage are inefficient and highly variable. We describe a highly efficient system for differentiation of human embryonic stem cells (hESC) and hiPSC to the cardiac lineage. This system eliminated the variability in cardiac differentiation capacity of a variety of human pluripotent stem cells (hPSC), including hiPSC generated from CD34+ cord blood using non-viral, non-integrating methods.

Methodology/Principal Findings

We systematically and rigorously optimized >45 experimental variables to develop a universal cardiac differentiation system that produced contracting human embryoid bodies (hEB) with an improved efficiency of 94.7±2.4% in an accelerated nine days from four hESC and seven hiPSC lines tested, including hiPSC derived from neonatal CD34+ cord blood and adult fibroblasts using non-integrating episomal plasmids. This cost-effective differentiation method employed forced aggregation hEB formation in a chemically defined medium, along with staged exposure to physiological (5%) oxygen, and optimized concentrations of mesodermal morphogens BMP4 and FGF2, polyvinyl alcohol, serum, and insulin. The contracting hEB derived using these methods were composed of high percentages (64–89%) of cardiac troponin I+ cells that displayed ultrastructural properties of functional cardiomyocytes and uniform electrophysiological profiles responsive to cardioactive drugs.

Conclusion/Significance

This efficient and cost-effective universal system for cardiac differentiation of hiPSC allows a potentially unlimited production of functional cardiomyocytes suitable for application to hPSC-based drug development, cardiac disease modeling, and the future generation of clinically-safe nonviral human cardiac cells for regenerative medicine.  相似文献   

19.
20.

Background

Depression is experienced as a persistent low mood or anhedonia accompanied by behavioural and cognitive disturbances which impair day to day functioning. However, the diagnosis is largely based on self-reported symptoms, and there are no neurobiological markers to guide the choice of treatment. In the present study, we examined the prognostic and diagnostic potential of the structural neural correlates of depression.

Methodology and Principal Findings

Subjects were 37 patients with major depressive disorder (mean age 43.2 years), medication-free, in an acute depressive episode, and 37 healthy individuals. Following the MRI scan, 30 patients underwent treatment with the antidepressant medication fluoxetine or cognitive behavioural therapy (CBT). Of the patients who subsequently achieved clinical remission with antidepressant medication, the whole brain structural neuroanatomy predicted 88.9% of the clinical response, prior to the initiation of treatment (88.9% patients in clinical remission (sensitivity) and 88.9% patients with residual symptoms (specificity), p = 0.01). Accuracy of the structural neuroanatomy as a diagnostic marker though was 67.6% (64.9% patients (sensitivity) and 70.3% healthy individuals (specificity), p = 0.027).

Conclusions and Significance

The structural neuroanatomy of depression shows high predictive potential for clinical response to antidepressant medication, while its diagnostic potential is more limited. The present findings provide initial steps towards the development of neurobiological prognostic markers for depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号