首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified two redundant GTPase activating proteins (GAPs) - RGA-3 and RGA-4 - that regulate Rho GTPase function at the plasma membrane in early Caenorhabditis elegans embryos. Knockdown of both RhoGAPs resulted in extensive membrane ruffling, furrowing and pronounced pseudo-cleavages. In addition, the non-muscle myosin NMY-2 and RHO-1 accumulated on the cortex at sites of ruffling. RGA-3 and RGA-4 are GAPs for RHO-1, but most probably not for CDC-42, because only RHO-1 was epistatic to the two GAPs, and the GAPs had no obvious influence on CDC-42 function. Furthermore, knockdown of either the RHO-1 effector, LET-502, or the exchange factor for RHO-1, ECT-2, alleviated the membrane-ruffling phenotype caused by simultaneous knockdown of both RGA-3 and RGA-4 [rga-3/4 (RNAi)]. GFP::PAR-6 and GFP::PAR-2 were localized at the anterior and posterior part of the early C. elegans embryo, respectively showing that rga-3/4 (RNAi) did not interfere with polarity establishment. Most importantly, upon simultaneous knockdown of RGA-3, RGA-4 and the third RhoGAP present in the early embryo, CYK-4, NMY-2 spread over the entire cortex and GFP::PAR-2 localization at the posterior cortex was greatly diminished. These results indicate that the functions of CYK-4 are temporally and spatially distinct from RGA-3 and RGA-4 (RGA-3/4). RGA-3/4 and CYK-4 also play different roles in controlling LET-502 activation in the germ line, because rga-3/4 (RNAi), but not cyk-4 (RNAi), aggravated the let-502(sb106) phenotype. We propose that RGA-3/4 and CYK-4 control with which effector molecules RHO-1 interacts at particular sites at the cortex in the zygote and in the germ line.  相似文献   

2.
In C. elegans one-cell embryos, polarity is conventionally defined along the anteroposterior axis by the segregation of partitioning-defective (PAR) proteins into anterior (PAR-3, PAR-6) and posterior (PAR-1, PAR-2) cortical domains. The establishment of PAR asymmetry is coupled with acto-myosin cytoskeleton rearrangements. The small GTPases RHO-1 and CDC-42 are key players in cytoskeletal remodeling and cell polarity in a number of different systems. We investigated the roles of these two GTPases and the RhoGEF ECT-2 in polarity establishment in C. elegans embryos. We show that CDC-42 is required to remove PAR-2 from the cortex at the end of meiosis and to localize PAR-6 to the cortex. By contrast, RHO-1 activity is required to facilitate the segregation of CDC-42 and PAR-6 to the anterior. Loss of RHO-1 activity causes defects in the early organization of the myosin cytoskeleton but does not inhibit segregation of myosin to the anterior. We therefore propose that RHO-1 couples the polarization of the acto-myosin cytoskeleton with the proper segregation of CDC-42, which, in turn, localizes PAR-6 to the anterior cortex.  相似文献   

3.
The symmetry-breaking event during polarization of C. elegans embryos is an asymmetric rearrangement of the acto-myosin network, which dictates cell polarity through the differential recruitment of PAR proteins. The sperm-supplied centrosomes are required to initiate this cortical reorganization. Several questions about this event remain unanswered: how is the acto-myosin network regulated during polarization and how does acto-myosin reorganization lead to asymmetric PAR protein distribution? As we discuss, recent studies show that C. elegans embryos use two GTPases, RHO-1 and CDC-42, to regulate these two steps in polarity establishment. Although RHO-1 and CDC-42 control distinct aspects of polarization, they function interdependently to regulate polarity establishment in C. elegans embryos.  相似文献   

4.
During development, the establishment of cell polarity is important for cells to undergo asymmetric cell divisions that give rise to diverse cell types. In C. elegans embryos, cues from the centrosome trigger the cortical flow of an actomyosin network, leading to the formation of anterior-posterior polarity. However, its precise mechanism is poorly understood. Here, we show that small GTPases have sequential and crucial functions in this process. ECT-2, a potential guanine nucleotide-exchange factor (GEF) for RHO-1, was uniformly distributed at the cortex before polarization, but was excluded from the posterior cortex by the polarity cue from the centrosomes. This local exclusion of ECT-2 led to an asymmetric RHO-1 distribution, which generated a cortical flow of the actomyosin that translocated PAR proteins and CDC-42 (Refs 4, 5) to the anterior cortex. Polarized CDC-42 was, in turn, involved in maintaining the established anterior-cortical domains. Our results suggest that a local change in the function of ECT-2 and RHO-1 links the centrosomal polarity cue with the polarization of the cell cortex.  相似文献   

5.
PAR proteins play roles in the establishment and maintenance of polarity in many different cell types in metazoans. In C. elegans, polarity established in the one-cell embryo determines the anteroposterior axis of the developing animal and is essential to set the identities of the early blastomeres. PAR-1 and PAR-2 colocalize at the posterior cortex of the embryo. PAR-3, PAR-6 and PKC-3 (aPKC) colocalize at the anterior cortex of the embryo. A process of mutual exclusion maintains the anterior and posterior protein domains. We present results indicating that a homolog of the Hsp90 co-chaperone Cdc37 plays a role in dynamic interactions among the PAR proteins. We show that CDC-37 is required for the establishment phase of embryonic polarity; that CDC-37 reduction allows PAR-3-independent cortical accumulation of PAR-6 and PKC-3; and that CDC-37 is required for the mutual exclusion of the anterior and posterior group PAR proteins. Our results indicate that CDC-37 acts in part by maintaining PKC-3 levels and in part by influencing the activity or levels of other client proteins. Loss of the activities of these client proteins reveals that there are two sites for PAR-6 cortical association, one dependent on CDC-42 and not associated with PAR-3, and the other independent of CDC-42 and co-localizing with PAR-3. We propose that, in wild-type embryos, CDC-37-mediated inhibition of the CDC-42-dependent binding site and PAR-3-mediated release of this inhibition provide a key mechanism for the anterior accumulation of PAR-6.  相似文献   

6.
Mutation of the Caenorhabditis elegans gene unc-89 results in disorganization of muscle A-bands. unc-89 encodes a giant polypeptide (900 kDa) containing a DH domain followed by a PH domain at its N terminus, which is characteristic of guanine nucleotide exchange factor proteins for Rho GTPases. To obtain evidence that the DH-PH region has activity toward specific Rho family small GTPases, we conducted an experiment using the yeast three-hybrid system. The DH-PH region of UNC-89 has exchange activity for RHO-1 (C. elegans RhoA), but not for CED-10 (C. elegans Rac), MIG-2 (C. elegans RhoG), or CDC-42 (C. elegans Cdc42). The DH domain alone has similar activity for RHO-1. An in vitro binding assay demonstrates interaction between the DH-PH region of UNC-89 and each of the C. elegans Rho GTPases. Partial knockdown of rho-1 in C. elegans adults showed a pattern of disorganization of myosin thick filaments similar to the phenotype caused by unc-89 (su75), a mutant allele in which all of the isoforms containing the DH-PH region are missing. Taken together, we propose a model in which the DH-PH region of UNC-89 activates RHO-1 GTPase for organization of myosin filaments in C. elegans muscle cells.  相似文献   

7.
BACKGROUND: The polarization of the anterior-posterior axis (A-P) of the Caenorhabditis elegans zygote depends on the activity of the par genes and the presence of intact microfilaments. Functional links between the PAR proteins and the cytoskeleton, however, have not been fully explored. It has recently been shown that in mammalian cells, some PAR homologs form a complex with activated Cdc42, a Rho GTPase that is implicated in the control of actin organization and cellular polarity. A role for Cdc42 in the establishment of embryonic polarity in C. elegans has not been described. RESULTS: To investigate the function of Cdc42 in the control of cellular and embryonic polarity in C. elegans, we used RNA-mediated interference (RNAi) to inhibit cdc-42 activity in the early embryo. Here, we demonstrate that RNAi of cdc-42 disrupts manifestations of polarity in the early embryo, that these phenotypes depend on par-2 and par-3 gene function, and that cdc-42 is required for the localization of the PAR proteins. CONCLUSIONS: Our genetic analysis of the regulatory relationships between cdc-42 and the par genes demonstrates that Cdc42 organizes embryonic polarity by controlling the localization and activity of the PAR proteins. Combined with the recent biochemical analysis of their mammalian homologs, these results simultaneously identify both a regulator of the PAR proteins, activated Cdc42, and effectors for Cdc42, the PAR complex.  相似文献   

8.
Invadopodia are specialized membrane protrusions composed of F-actin, actin regulators, signaling proteins, and a dynamically trafficked invadopodial membrane that drive cell invasion through basement membrane (BM) barriers in development and cancer. Due to the challenges of studying invasion in vivo, mechanisms controlling invadopodia formation in their native environments remain poorly understood. We performed a sensitized genome-wide RNAi screen and identified 13 potential regulators of invadopodia during anchor cell (AC) invasion into the vulval epithelium in C. elegans. Confirming the specificity of this screen, we identified the Rho GTPase cdc-42, which mediates invadopodia formation in many cancer cell lines. Using live-cell imaging, we show that CDC-42 localizes to the AC-BM interface and is activated by an unidentified vulval signal(s) that induces invasion. CDC-42 is required for the invasive membrane localization of WSP-1 (N-WASP), a CDC-42 effector that promotes polymerization of F-actin. Loss of CDC-42 or WSP-1 resulted in fewer invadopodia and delayed BM breaching. We also characterized a novel invadopodia regulator, gdi-1 (Rab GDP dissociation inhibitor), which mediates membrane trafficking. We show that GDI-1 functions in the AC to promote invadopodia formation. In the absence of GDI-1, the specialized invadopodial membrane was no longer trafficked normally to the invasive membrane, and instead was distributed to plasma membrane throughout the cell. Surprisingly, the pro-invasive signal(s) from the vulval cells also controls GDI-1 activity and invadopodial membrane trafficking. These studies represent the first in vivo screen for genes regulating invadopodia and demonstrate that invadopodia formation requires the integration of distinct cellular processes that are coordinated by an extracellular cue.  相似文献   

9.
Rho proteins are down-regulated in vivo by specific GTPase activating proteins (RhoGAP). We have functionally studied three Saccharomyces cerevisiae putative RhoGAP. By first identifying Rho partners with a systematic two-hybrid approach and then using an in vitro assay, we have demonstrated that the Bag7 protein stimulated the GTPase activity of the Rho1 protein, Lrg1p acted on the Cdc42 and Rho2 GTPases and we showed that Rgd2p has a GAP activity on both Cdc42p and Rho5p. In addition, we brought the first evidence for the existence of a sixth functional Rho in yeast, the Cdc42/Rac-like GTPase Rho5.  相似文献   

10.
Polarization of the C. elegans zygote along the anterior-posterior axis depends on cortically enriched (PAR) and cytoplasmic (MEX-5/6) proteins, which function together to localize determinants (e.g. PIE-1) in response to a polarizing cue associated with the sperm asters. Using time-lapse microscopy and GFP fusions, we have analyzed the localization dynamics of PAR-2, PAR-6, MEX-5, MEX-6 and PIE-1 in wild-type and mutant embryos. These studies reveal that polarization involves two genetically and temporally distinct phases. During the first phase (establishment), the sperm asters at one end of the embryo exclude the PAR-3/PAR-6/PKC3 complex from the nearby cortex, allowing the ring finger protein PAR-2 to accumulate in an expanding 'posterior' domain. Onset of the establishment phase involves the non-muscle myosin NMY-2 and the 14-3-3 protein PAR-5. The kinase PAR-1 and the CCCH finger proteins MEX-5 and MEX-6 also function during the establishment phase in a feedback loop to regulate growth of the posterior domain. The second phase begins after pronuclear meeting, when the sperm asters begin to invade the anterior. During this phase (maintenance), PAR-2 maintains anterior-posterior polarity by excluding the PAR-3/PAR-6/PKC3 complex from the posterior. These findings provide a model for how PAR and MEX proteins convert a transient asymmetry into a stably polarized axis.  相似文献   

11.
12.
Atypical RhoV GTPase (Chp/Wrch-2) is a member of the human Rho GTPase family, which belongs to the superfamily of Ras-related small GTPases. The biological functions of RhoV, regulation of its activity, and mechanisms of its action remain largely unexplored. Rho GTPases regulate a wide range of cellular processes by interacting with protein targets called effectors. Several putative RhoV effectors have been identified, including protein kinases of the Pak (p21-activated kinase) family: Pak1, Pak2, Pak4, and Pak6. RhoV GTPase activates Pak1 protein kinase and simultaneously induces its ubiquitin-dependent degradation. Pak1 regulates E-cadherin localization at adherens junctions downstream of RhoV during gastrulation in fish. The effector domain of RhoV mediates its binding to the CRIB (Cdc42/Rac1 interactive binding) motif in the N-terminal p21-binding domain (PBD) of Pak6 protein kinase. The role of the RhoV effector domain in mediating interaction with Pak1 has not been studied. This study has identified mutations in the effector domain of RhoV GTPase (Y60K, T63A, L65A, and D66A) that impair its interaction with Pak1 in the GST-PAK-PBD pull-down assay and coimmunoprecipitation. Our results suggest that the effector domain of RhoV mediates its binding to Pak1, complementing the current view of the molecular basics of RhoV binding to effectors of the Pak family. These data lay the basis for further studies on the role of Pak1 in RhoV-activated signaling pathways and cellular processes.  相似文献   

13.
Rho family GTPases are GDP/GTP-regulated molecular switches that regulate signaling pathways controlling diverse cellular processes. Wrch-1 was identified as a Wnt-1 regulated Cdc42 homolog, upregulated by Wnt1 signaling in Wnt1-transformed mouse mammary cells, and was able to promote formation of filopodia and activate the PAK serine/threonine kinase. Wrch-1 shares significant sequence and functional similarity with the Cdc42 small GTPase. However, Wrch-1 possesses a unique N-terminal 46 amino acid sequence extension that contains putative Src homology 3 (SH3) domain-interacting motifs. We determined the contribution of the N terminus to Wrch-1 regulation and activity. We observed that Wrch-1 possesses properties that distinguish it from Cdc42 and other Rho family GTPases. Unlike Cdc42, Wrch-1 possesses an extremely rapid, intrinsic guanine nucleotide exchange activity. Although the N terminus did not influence GTPase or GDP/GTP cycling activity in vitro, N-terminal truncation of Wrch-1 enhanced its ability to interact with and activate PAK and to cause growth transformation. The N terminus associated with the Grb2 SH3 domain-containing adaptor protein, and this association increased the levels of active Wrch-1 in cells. We propose that Grb2 overcomes N-terminal negative regulation to promote Wrch-1 effector interaction. Thus, Wrch-1 exhibits an atypical model of regulation not seen in other Rho family GTPases.  相似文献   

14.
Neutrophils contain a soluble guanine-nucleotidebinding protein, made up of two components with molecular masses of 23 and 26 kDa, that mediates stimulation of phospholipase C-beta2 (PLCbeta2). We have identified the two components of the stimulatory heterodimer by amino acid sequencing as a Rho GTPase and the Rho guanine nucleotide dissociation inhibitor LyGDI. Using recombinant Rho GTPases and LyGDI, we demonstrate that PLCbeta2 is stimulated by guanosine 5'-O-(3-thiotriphosphate) (GTP[S])-activated Cdc42HsxLyGDI, but not by RhoAxLyGDI. Stimulation of PLCbeta2, which was also observed for GTP[S]-activated recombinant Rac1, was independent of LyGDI, but required C-terminal processing of Cdc42Hs/Rac1. Cdc42Hs/Rac1 also stimulated PLCbeta2 in a system made up of purified recombinant proteins, suggesting that this function is mediated by direct protein-protein interaction. The Cdc42Hs mutants F37A and Y40C failed to stimulate PLCbeta2, indicating that the Cdc42Hs effector site is involved in this interaction. The results identify PLCbeta2 as a novel effector of the Rho GTPases Cdc42Hs and Rac1, and as the first mammalian effector directly regulated by both heterotrimeric and low-molecular-mass GTP-binding proteins.  相似文献   

15.
The C. elegans PAR proteins PAR-3, PAR-6, and PKC-3 are asymmetrically localized and have essential roles in cell polarity. We show that the one-cell C. elegans embryo contains a dynamic and contractile actomyosin network that appears to be destabilized near the point of sperm entry. This asymmetry initiates a flow of cortical nonmuscle myosin (NMY-2) and F-actin toward the opposite, future anterior, pole. PAR-3, PAR-6, and PKC-3, as well as non-PAR proteins that associate with the cytoskeleton, appear to be transported to the anterior by this cortical flow. In turn, PAR-3, PAR-6, and PKC-3 modulate cortical actomyosin dynamics and promote cortical flow. PAR-2, which localizes to the posterior cortex, inhibits NMY-2 from accumulating at the posterior cortex during flow, thus maintaining asymmetry by preventing inappropriate, posterior-directed flows. Similar actomyosin flows accompany the establishment of PAR asymmetries that form after the one-cell stage, suggesting that actomyosin-mediated cortical flows have a general role in PAR asymmetry.  相似文献   

16.
Proteins in the Rho family are small monomeric GTPases primarily involved in polarization, control of cell division, and reorganization of cytoskeletal elements. Phylogenetic analysis of predicted fungal Rho proteins suggests that a new Rho-type GTPase family, whose founding member is Rho4 from the archiascomycete Schizosaccharomyces pombe, is involved in septation. S. pombe rho4Delta mutants have multiple, abnormal septa. In contrast to S. pombe rho4Delta mutants, we show that strains containing rho-4 loss-of-function mutations in the filamentous fungus Neurospora crassa lead to a loss of septation. Epitope-tagged RHO-4 localized to septa and to the plasma membrane. In other fungi, the steps required for septation include formin, septin, and actin localization followed by cell wall synthesis and the completion of septation. rho-4 mutants were unable to form actin rings, showing that RHO-4 is required for actin ring formation. Characterization of strains containing activated alleles of rho-4 showed that RHO-4-GTP is likely to initiate new septum formation in N. crassa.  相似文献   

17.
Wang L  Zhu K  Zheng Y 《Biochemistry》2004,43(46):14584-14593
Activation of many Rho family GTPase pathways involves the signaling module consisting of the Dbl-like guanine nucleotide exchange factors (GEFs), the Rho GTPases, and the Rho GTPase specific effectors. The current biochemical model postulates that the GEF-stimulated GDP/GTP exchange of Rho GTPases leads to the active Rho-GTP species, and subsequently the active Rho GTPases interact with and activate the effectors. Here we report an unexpected finding that the Dbl oncoprotein, Cdc42 GTPase, and PAK1 can form a complex through their minimum functional motifs, i.e., the Dbl-homolgy (DH) and Pleckstrin-homology domains of Dbl, Cdc42, and the PBD domain of PAK1. The Dbl-Cdc42-PAK1 complex is sensitive to the nucleotide-binding state of Cdc42 since either dominant negative or constitutively active Cdc42 readily disrupts the ternary binding interaction. The complex formation depends on the interactions between the DH domain of Dbl and Cdc42 and between Cdc42 and the PBD domain of PAK1 and can be reconstituted in vitro by using the purified components. Furthermore, the Dbl-Cdc42-PAK1 ternary complex is active in generating signaling output through the activated PAK1 kinase in the complex. The GEF-Rho-effector ternary intermediate is also found in other Dbl-like GEF, Rho GTPase, and effector interactions. Finally, PAK1, through the PDB domain, is able to accelerate the GEF-induced GTP loading onto Cdc42. These results suggest that signal transduction through Cdc42 and possibly other Rho family GTPases could involve tightly coupled guanine nucleotide exchange and effector activation mechanisms and that Rho GTPase effector may have a feedback regulatory role in the Rho GTPase activation.  相似文献   

18.
BACKGROUND: Generation of asymmetry in the one-cell embryo of C. elegans establishes the anterior--posterior axis (A-P), and is necessary for the proper identity of early blastomeres. Conserved PAR proteins are asymmetrically distributed and are required for the generation of this early asymmetry. The small G protein Cdc42 is a key regulator of polarity in other systems, and recently it has been shown to interact with the mammalian homolog of PAR-6. The function of Cdc42 in C. elegans had not yet been investigated, however. RESULTS: Here, we show that C. elegans cdc-42 plays an essential role in the polarity of the one-cell embryo and the proper localization of PAR proteins. Inhibition of cdc-42 using RNA interference results in embryos with a phenotype that is nearly identical to par-3, par-6, and pkc-3 mutants, and asymmetric localization of these and other PAR proteins is lost. We further show that C. elegans CDC-42 physically interacts with PAR-6 in a yeast two-hybrid system, consistent with data on the interaction of human homologs. CONCLUSIONS: Our results show that CDC-42 acts in concert with the PAR proteins to control the polarity of the C. elegans embryo, and provide evidence that the interaction of CDC-42 and the PAR-3/PAR-6/PKC-3 complex has been evolutionarily conserved as a functional unit.  相似文献   

19.
P21 activated kinase (PAK), PAK interacting exchange factor (PIX), and G protein coupled receptor kinase interactor (GIT) compose a highly conserved signaling module controlling cell migrations, immune system signaling, and the formation of the mammalian nervous system. Traditionally, this signaling module is thought to facilitate the function of RAC and CDC-42 GTPases by allowing for the recruitment of a GTPase effector (PAK), a GTPase activator (PIX), and a scaffolding protein (GIT) as a regulated signaling unit to specific subcellular locations. Instead, we report here that this signaling module functions independently of RAC/CDC-42 GTPases in vivo to control the cell shape and migration of the distal tip cells (DTCs) during morphogenesis of the Caenorhabditis elegans gonad. In addition, this RAC/CDC-42–independent PAK pathway functions in parallel to a classical GTPase/PAK pathway to control the guidance aspect of DTC migration. Among the C. elegans PAKs, only PAK-1 functions in the GIT/PIX/PAK pathway independently of RAC/CDC42 GTPases, while both PAK-1 and MAX-2 are redundantly utilized in the GTPase/PAK pathway. Both RAC/CDC42–dependent and –independent PAK pathways function with the integrin receptors, suggesting that signaling through integrins can control the morphology, movement, and guidance of DTC through discrete pathways. Collectively, our results define a new signaling capacity for the GIT/PIX/PAK module that is likely to be conserved in vertebrates and demonstrate that PAK family members, which are redundantly utilized as GTPase effectors, can act non-redundantly in pathways independent of these GTPases.  相似文献   

20.
Lte1, a protein important for exit from mitosis, localizes to the bud cortex as soon as the bud forms and remains there until cells exit from mitosis. Ras, the Rho GTPase Cdc42 and its effector the protein kinase Cla4 are required for Lte1’s association with the bud cortex. Here we investigate how Ras, and the Cdc42 effector Cla4 regulate the localization of Lte1. We find that Ras2 and Lte1 associate in stages of the cell cycle when Lte1 is phosphorylated and associated with the bud cortex and that this association requires CLA4. Additionally, RAS1 and RAS2 are required for CLA4-dependent Lte1 phosphorylation. Our findings suggest that Cla4-dependent phosphorylation promotes the initial association of Lte1 with Ras at the bud cortex and that Ras is required to stabilize phosphorylated forms of Lte1 at the bud cortex. Our results also raise the interesting possibility that the localization of Lte1 affects the protein’s ability to promote mitotic exit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号