首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Nucleotide Excision Repair in the Third Kingdom   总被引:4,自引:0,他引:4       下载免费PDF全文
Nucleotide excision repair, a general repair mechanism for removing DNA damage, is initiated by dual incisions bracketing the lesion. In procaryotes, the dual incisions result in excision of the damage in 12- to 13-nucleotide-long oligomers, and in eucaryotes they result in excision of the damage in the form of 24- to 32-nucleotide-long oligomers. We wished to find out if Archaea perform excision repair. Using cell extracts from Methanobacterium thermoautotrophicum, we found that this organism removes UV-induced (6-4) photoproducts in the form of 10- to 11-mers by incising the sixth to seventh phosphodiester bond 5′ to the damage and the fourth phosphodiester bond 3′ to the damage.  相似文献   

3.
OxyR regulates the expression of the majority of H(2)O(2) responses in Gram-negative organisms. In a previous study we reported the OxyR-dependent derepression of catalase expression in the human pathogen Neisseria gonorrhoeae. In the present study we used microarray expression profiling of N. gonorrhoeae wild-type strain 1291 and an oxyR mutant strain to define the OxyR regulon. In addition to katA (encoding catalase), only one other locus displayed a greater than two-fold difference in expression in the wild type : oxyR comparison. This locus encodes an operon of two genes, a putative peroxiredoxin/glutaredoxin (Prx) and a putative glutathione oxidoreductase (Gor). Mutant strains were constructed in which each of these genes was inactivated. A previous biochemical study in Neisseria meningitidis had confirmed function of the glutaredoxin/peroxiredoxin. Assay of the wild-type 1291 cell free extract confirmed Gor activity, which was lost in the gor mutant strain. Phenotypic analysis of the prx mutant strain in H(2)O(2) killing assays revealed increased resistance, presumably due to upregulation of alternative defence mechanisms. The oxyR, prx and gor mutant strains were deficient in biofilm formation, and the oxyR and prx strains had decreased survival in cervical epithelial cells, indicating a key role for the OxyR regulon in these processes.  相似文献   

4.
Hydra, one of the earliest metazoans with tissue grade organization and nervous system, is an animal with a remarkable regeneration capacity and shows no signs of organismal aging. We have for the first time identified genes of the nucleotide excision repair (NER) pathway from hydra. Here we report cloning and characterization of hydra homolog of xeroderma pigmentosum group F (XPF) gene that encodes a structure-specific 5′ endonuclease which is a crucial component of NER. In silico analysis shows that hydra XPF amino acid sequence is very similar to its counterparts from other animals, especially vertebrates, and shows all features essential for its function. By in situ hybridization, we show that hydra XPF is expressed prominently in the multipotent stem cell niche in the central region of the body column. Ectoderm of the diploblastic hydra was shown to express higher levels of XPF as compared to the endoderm by semi-quantitative RT-PCR. Semi-quantitative RT-PCR analysis also demonstrated that interstitial cells, a multipotent and rapidly cycling stem cell lineage of hydra, express higher levels of XPF mRNA than other cell types. Our data show that XPF and by extension, the NER pathway is highly conserved during evolution. The prominent expression of an NER gene in interstitial cells may have implications for the lack of senescence in hydra.  相似文献   

5.
中波紫外线(UVB)会对皮肤造成各种损伤,这些都根源于UVB对皮肤细胞DNA的光损伤。光损伤产物主要有环丁烷嘧啶二聚体(CPD)和64光产物(6-4PP)两类,还包括少量的氧化损伤。CPD和6-4PP的修复是由核苷酸切除修复(NER)执行的。NER可分为全基因组核苷酸切除修复(GGR)和转录耦联核苷酸切除修复(TCR)两个亚途径。识别因子XPC通过一种不直接识别损伤本身的机制在GGR识别过程中发挥作用;在TCR识别过程中强调了关键因子CSB单体及二聚体两种形式的转换。在染色质水平上,DDB介导的泛素化作用是NER识别过程中重要的调控要素。另外,完成使命的识别因子的最终走向也是NER途径中的一个重要环节。通过分析上述生化过程,较清楚地总结了GGR及TCR对UVB导致的光损伤的识别机制。  相似文献   

6.
There are two mechanisms for genetic exchange in Neisseria gonorrhoeae. Plasmid deoxyribonucleic acid can be transferred by conjugation, which is dependent on the presence of a 24.5-megadalton plasmid in the donor cell. We have shown that chromosomal deoxyribonucleic acid can be exchanged between all colonial variants by transformation, but not by conjugation. In the nonpiliated variants, however, this exchange was dependent on the presence of the 24.5-megadalton plasmid in the recipient cell.  相似文献   

7.
Molecular Biology - The base and nucleotide excision DNA repair (BER and NER) systems are aimed at removing specific types of damaged DNA, i.e., oxidized, alkylated, or deaminated bases in the case...  相似文献   

8.
Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance   总被引:80,自引:30,他引:50  
Sparling, Philip F. (Communicable Disease Center, Atlanta, Ga.). Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J. Bacteriol. 92:1364-1371. 1966.-Eight strains of Neisseria gonorrhoeae were transformed to streptomycin resistance by deoxyribonucleic acid (DNA) extracted from a streptomycin-resistant strain of N. gonorrhoeae. In all strains, competence was greatest in the naturally occurring, virulent clonal types 1 and 2, which gave transformation frequencies up to 1%. Clonal types 3 and 4, which arise on laboratory transfer and are avirulent, gave maximal transformation frequencies of 0.00005%. Competence was maximal in lag and early log phases of growth, but was maintained throughout the growth cycle. A complex broth was required for the physiological expression of competence. The kinetics of DNA uptake, dose-response curve of DNA versus transformants, time required for phenotypic expression, and other features were similar to those in other bacterial transformation systems.  相似文献   

9.
10.
We have investigated the steady state and equilibrium kinetic properties of carbonic anhydrase from Neisseria gonorrhoeae (NGCA). Qualitatively, the enzyme shows the same kinetic behaviour as the well studied human carbonic anhydrase II (HCA II). This is reflected in the similar pH dependencies of the kinetic parameters for CO(2) hydration and the similar behaviour of the kinetics of (18)O exchange between CO(2) and water at chemical equilibrium. The pH profile of the turnover number, k(cat), can be described as a titration curve with an exceptionally high maximal value of 1.7 x 10(6) s(-1) at alkaline pH and a pK(a) of 7.2. At pH 9, k(cat) is buffer dependent in a saturable manner, suggesting a ping-pong mechanism with buffer as the second substrate. The ratio k(cat)/K(m) is dependent on two ionizations with pK(a) values of 6.4 and 8.2. However, an (18)O-exchange assay identified only one ionizable group in the pH profile of k(cat)/K(m) with an apparent pK(a) of 6.5. The results of a kinetic analysis of a His66-->Ala variant of the bacterial enzyme suggest that His66 in NGCA has the same function as a proton shuttle as His64 in HCA II. The kinetic defect in the mutant can partially be overcome by certain buffers, such as imidazole and 1,2-dimethylimidazole. The bacterial enzyme shows similar K(i) values for the inhibitors NCO(-), SCN(-) and N(3)(-) as HCA II, while CN(-) and the sulfonamide ethoxzolamide are considerably weaker inhibitors of the bacterial enzyme than of HCA II. The absorption spectra of the adducts of Co(II)-substituted NGCA with acetazolamide, NCO(-), SCN(-), CN(-) and N(3)(-) resemble the corresponding spectra obtained with human Co(II)-isozymes I and II. Measurements of guanidine hydrochloride (GdnHCl)-induced denaturation reveal a sensitivity of the CO(2) hydration activity to the reducing agent tris(2-carboxyethyl)phosphine (TCEP). However, the A(292)/A(260) ratio was not affected by the presence of TCEP, and a structural transition at 2.8--2.9 M GdnHCl was observed.  相似文献   

11.
Molecular Biology - The mismatch repair system (MMR) ensures the stability of genetic information during DNA replication in almost all organisms. Mismatch repair is initiated after recognition of a...  相似文献   

12.
Living organisms are constantly threatened by environmental DNA-damaging agents, including UV and ionizing radiation (IR). Repair of various forms of DNA damage caused by IR is normally thought to follow lesion-specific repair pathways with distinct enzymatic machinery. DNA double strand break is one of the most serious kinds of damage induced by IR, which is repaired through double strand break (DSB) repair mechanisms, including homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent studies have presented increasing evidence that various DNA repair pathways are not separated, but well interlinked. It has been suggested that non-DSB repair mechanisms, such as Nucleotide Excision Repair (NER), Mismatch Repair (MMR) and cell cycle regulation, are highly involved in DSB repairs. These findings revealed previously unrecognized roles of various non-DSB repair genes and indicated that a successful DSB repair requires both DSB repair mechanisms and non-DSB repair systems. One of our recent studies found that suppressed expression of non-DSB repair genes, such as XPA, RPA and MLH1, influenced the yield of IR induced micronuclei formation and/or chromosome aberrations, suggesting that these genes are highly involved in DSB repair and DSB-related cell cycle arrest, which reveals new roles for these gene products in the DNA repair network. In this review, we summarize current progress on the function of non-DSB repair-related proteins, especially those that participate in NER and MMR pathways, and their influence on DSB repair. In addition, we present our developing view that the DSB repair mechanisms are more complex and are regulated by not only the well known HR/NHEJ pathways, but also a systematically coordinated cellular network.Key Words: Ionizing radiation (IR), DNA damage, DSB repair, NER, MMR and cell cycle.  相似文献   

13.
The nuclear lamins play important roles in the structural organization and function of the metazoan cell nucleus. Recent studies on B-type lamins identified a requirement for lamin B1 (LB1) in the regulation of cell proliferation in normal diploid cells. In order to further investigate the function of LB1 in proliferation, we disrupted its normal expression in U-2 OS human osteosarcoma and other tumor cell lines. Silencing LB1 expression induced G1 cell cycle arrest without significant apoptosis. The arrested cells are unable to mount a timely and effective response to DNA damage induced by UV irradiation. Several proteins involved in the detection and repair of UV damage by the nucleotide excision repair (NER) pathway are down-regulated in LB1 silenced cells including DDB1, CSB and PCNA. We propose that LB1 regulates the DNA damage response to UV irradiation by modulating the expression of specific genes and activating persistent DNA damage signaling. Our findings are relevant to understanding the relationship between the loss of LB1 expression, DNA damage signaling, and replicative senescence.  相似文献   

14.
Cancer incidence increases with age and is driven by accumulation of mutations in the DNA. In many so-called premature aging disorders, cancer appears earlier and at elevated rates. These diseases are predominantly caused by genome instability and present with symptoms, including cancer, resembling “segments” of aging and are thus often referred to as “segmental progerias”. Two related segmental progerias, Cockayne syndrome (CS) and trichothiodystrophy (TTD), don’t fit this pattern. Although caused by defects in genome maintenance via the nucleotide excision DNA repair (NER) pathway and displaying severe progeroid symptoms, CS and TTD patients appear to lack any cancer predisposition. More strikingly, genetic defects in the same NER pathway, and in some cases even within the same gene, XPD, can also give rise to disorders with greatly elevated cancer rates but without progeria (xeroderma pigmentosum). In this review, we will discuss the connection between genome maintenance, aging and cancer in light of a new mouse model of XPD disease.  相似文献   

15.
The excision of pyrimidine dimers from the deoxyribonucleic acid (DNA) of Neurospora crassa was examined. Postirradiation incubation in the presence of several chemicals known to inhibit various repair systems indicated that caffeine reduced the rate of excision twofold, but did not inhibit excision completely as did proflavine and quinacrine. Examination of the time course of excision showed that repair occurs at a relatively rapid rate: approximately 60 dimers excised per min after 500 ergs/mm(2). Further evidence for rapid excision was obtained by sedimentation analysis of DNA; the maximal number of breaks introduced during repair was three, suggesting that breaks are repaired almost as fast as they are made and that only a few dimers are repaired at a time. Repair synthesis was measured by prelabeling the DNA with (15)N and D(2)O, and then subjecting the DNA to equilibrium density gradient centrifugation after postirradiation incubation with (32)P. Accumulation of single-strand breaks with increasing dose of ultraviolet radiation suggested that the limiting step was subsequent to the incision and excision steps of repair. Equilibrium CsCl centrifugation demonstrated that the limiting step in excision was repair synthesis.  相似文献   

16.
Summary The NgoPII restriction endonuclease, which recognizes the sequence 5-GGCC-3, differs from its isoschizomer HaeIII in being sensitive to methylation at the external cytosine residue. The entire nucleotide sequence of a cloned 3.3 kb segment of Neisseria gonorrhoeae strain P9 chromosomal DNA which harbours the NgoPII restriction-modification system has been determined. This data, coupled with sub-cloning experiments, indicates that the restriction endonuclease (R.NgoII) and modification (M.NgoII) genes are transcribed from separate promoters but are arranged in tandem, with the R.NgoPII gene being located on the 5 side of the M.NgoPII gene. Unlike all previously reported restriction systems the 3 end of the endonuclease open reading frame overlaps the 5 end of the methylase open reading frame by 8 codons. This overlap may have implications for the regulation of the NgoPII restriction-modification system.  相似文献   

17.
18.
Deoxyribonucleic acid (DNA) and chemically defined media were used in transformation tests of 51 strains of Neisseria gonorrhoeae which exhibited various biosynthetic defects when isolated from patients. These auxotrophic gonococci had one or more nutritional requirements involving proline, methionine, arginine, hypoxanthine, uracil, and thiamine pyrophosphate (THPP). DNA from a clinical isolate which did not require these compounds for growth on defined medium transformed each of the auxotrophic markers of all 51 recipient populations. Ten isolates had defects involving the synthesis of THPP; four strains (designated Thp(-)) had a growth requirement that was satisfied only by THPP, whereas the requirement of six strains (designated Thi(-)) was satisfied by either thiamine or THPP. DNA from Thp(-) donors elicited transformation of Thp(-) as well as Thi(-) recipients. Reciprocally, DNA from a Thi(-) donor transformed both Thi(-) and Thp(-) recipients. Furthermore, DNA from other auxotrophic gonococci had transforming activity for some phenotypically similar auxotrophic recipients. The findings indicate the existence of various nonidentical genetic defects which block reactions in the biosynthesis of proline, methionine, arginine, hypoxanthine, and THPP. Routine cultures from patients with gonorrhea were the source of these auxotrophic strains of N. gonorrhoeae; the various nutritional requirements were identified by a recently described system of gonococcal auxotyping. The transformation test results verify the hereditary basis of the auxotypes, establish that many different mutations exist in potentially virulent gonococci, and illustrate the value of these auxotrophic mutants for studies of the genetic structure and evolution of natural populations of gonococci.  相似文献   

19.
20.
Genetic basis of pyocin resistance in Neisseria gonorrhoeae.   总被引:1,自引:3,他引:1       下载免费PDF全文
The genetic basis for pyocin resistance in Neisseria gonorrhoeae 1291d, 1291e, and FA5100 was determined by Southern blot and DNA sequence analyses. The genes defective in these strains are present as single copies in the gonococcal chromosome. The mutant regions of 1291d, 1291e, and FA5100 were amplified by the PCR. Sequence analysis of the mutant regions demonstrated that strain 1291d contains a 12-bp deletion that results in the loss of four amino acids in phosphoglucomutase, while strain 1291e contains a point mutation that results in the change of an uncharged glycine residue to a charged glutamic acid residue in the same protein. FA5100 contains a nonsense mutation in the gene encoding heptosyltransferase II. The gene previously described as lsi-1 was shown to complement an rfaF mutation in Salmonella typhimurium and has been renamed rfaF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号