首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

7.
We examined whether prophylactically administered anti-respiratory syncytial virus (anti-RSV) G monoclonal antibody (MAb) would decrease the pulmonary inflammation associated with primary RSV infection and formalin-inactivated RSV (FI-RSV)-enhanced disease in mice. MAb 131-2G administration 1 day prior to primary infection reduced the pulmonary inflammatory response and the level of RSV replication. Further, intact or F(ab′)2 forms of MAb 131-2G administered 1 day prior to infection in FI-RSV-vaccinated mice reduced enhanced inflammation and disease. This study shows that an anti-RSV G protein MAb might provide prophylaxis against both primary infection and FI-RSV-associated enhanced disease. It is possible that antibodies with similar reactivities might prevent enhanced disease and improve the safety of nonlive virus vaccines.Respiratory syncytial virus (RSV) infection in infants and young children causes substantial bronchiolitis and pneumonia (11, 27, 28, 40) resulting in 40,000 to 125,000 hospitalizations in the United States each year (27). RSV is also a prominent cause of respiratory illness in older children; those of any age with compromised cardiac, pulmonary, or immune systems; and the elderly (6, 7, 11, 17, 18, 39). Despite extensive efforts toward vaccine development (3, 5, 8, 20, 30, 38), none is yet available. Currently, only preventive measures are available that focus on infection control to decrease transmission and prophylactic administration of a humanized IgG monoclonal antibody (MAb) directed against the F protein of RSV (palivizumab) that is recommended for high-risk infants and young children (4, 7, 17). To date, no treatment has been highly effective for active RSV infection (17, 21).The first candidate vaccine, a formalin-inactivated RSV (FI-RSV) vaccine developed in the 1960s, not only failed to protect against disease but led to severe RSV-associated lower respiratory tract infection in young vaccine recipients upon subsequent natural infection (8, 16). The experience with FI-RSV has limited nonlive RSV vaccine development for the RSV-naïve infant and young child. Understanding the factors contributing to disease pathogenesis and FI-RSV vaccine-enhanced disease may identify ways to prevent such a response and to help achieve a safe and effective vaccine.The RSV G, or attachment, protein has been implicated in the pathogenesis of disease after primary infection and FI-RSV-enhanced disease (2, 26, 31). The central conserved region of the G protein contains four evolutionarily conserved cysteines in a cysteine noose structure, within which lies a CX3C chemokine motif (9, 29, 34). The G protein CX3C motif is also immunoactive, as suggested by studies with the mouse model that show that G protein CX3C motif interaction with CX3CR1 alters pulmonary inflammation (41), RSV-specific T-cell responses (12), FI-RSV vaccine-enhanced disease, and expression of the neurokinin substance P (14) and also depresses respiratory rates (32). Recent studies demonstrated that therapeutic treatment with a murine anti-RSV G protein monoclonal antibody (MAb 131-2G) which blocks binding to CX3CR1 can reduce pulmonary inflammation associated with primary infection (13, 23). These findings led us to hypothesize that prophylactic administration of this anti-RSV G monoclonal antibody may also diminish pulmonary inflammation associated with RSV infection in naïve and in FI-RSV-vaccinated mice. In this study, we evaluate the impact of prophylactic administration of MAb 131-2G on the pulmonary inflammatory response to primary infection and to RSV challenge following FI-RSV immunization in mice.  相似文献   

8.
Lactobacillus crispatus is a common member of the beneficial microbiota present in the vertebrate gastrointestinal and human genitourinary tracts. Here, we report the genome sequence of L. crispatus ST1, a chicken isolate displaying strong adherence to vaginal epithelial cells.Lactobacillus crispatus can persist in the vertebrate gastrointestinal tract and is among the most prevalent species of the Lactobacillus-dominated human vaginal microbiota (2, 9, 13, 14). It belongs to the so-called acidophilus group (3), which has attracted interest because some of its species are important factors in the production of fermented foods (12) and some can, at least transiently, colonize the human host (2, 9, 13, 14). Moreover, some specific strains, mainly L. acidophilus NCFM and L. johnsonii NCC 533, have received prominence as intestinal-health-promoting microbes (4). Although the genomes of seven members of the acidophilus complex have been sequenced to date (12), the genome sequences of L. crispatus and other predominant lactobacillar species in the urogenital flora have mostly remained obscure. Vaginal lactobacilli can have an important role in controlling the health of the host (2, 14). They can, for example, positively influence and stabilize the host''s vaginal microbiota via the production of compounds that are acidic or exert a direct inhibiting action toward pathogenic bacteria (2, 14). In addition to the antimicrobial compounds, the competitive exclusion of pathogens is another mechanism by which the host''s microbiota can be balanced (2). L. crispatus ST1 was originally isolated from the crop of a chicken, and PCR profiling of L. crispatus isolates has verified it to be an abundant colonizer of the chicken crop (6, 8). It also displays a strong protein-dependent adhesion to the epithelial cells of the human vagina and has been shown to inhibit the adhesion of avian pathogenic Escherichia coli (6, 7).The genome was sequenced (18× coverage) using a 454 pyrosequencer with GS FLX chemistry (Roche). The contig order was confirmed and gaps were filled by sequencing PCR fragments from the genomic DNA template using ABI 3730 and Big Dye chemistry (Applied Biosystems). Genomic data were processed using the Staden Package (11) and gsAssembler (Roche). Coding sequences (CDSs) were predicted using Glimmer3 (5) followed by manual curation of the start sites. The remaining intergenic regions were reanalyzed for missed CDSs by using BlastX (1). Annotation transfer was performed based on a BlastP search, followed by Blannotator analysis using default settings (http://ekhidna.biocenter.helsinki.fi/poxo/blannotator) and manual verification. Orthologous groups between the different lactobacillar proteomes were identified using OrthoMCL (10).The genome of L. crispatus ST1 consists of a single circular chromosome 2.04 Mbp in size, with an overall G+C content of 37%, without any plasmids. There are 64 tRNA genes, 4 rRNA operons, and 2 CRISPR loci. Out of the 2,024 predicted CDSs, a putative function was assigned to 77%, whereas 10% of the CDSs were annotated as conserved and 13% as novel. Based on the orthologous grouping, 302 (15%) of the CDSs encoded by ST1 have no detectable homologs in any of the Lactobacillus proteomes published to date.  相似文献   

9.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

10.
11.
12.
13.
Clade B of the New World arenaviruses contains both pathogenic and nonpathogenic members, whose surface glycoproteins (GPs) are characterized by different abilities to use the human transferrin receptor type 1 (hTfR1) protein as a receptor. Using closely related pairs of pathogenic and nonpathogenic viruses, we investigated the determinants of the GP1 subunit that confer these different characteristics. We identified a central region (residues 85 to 221) in the Guanarito virus GP1 that was sufficient to interact with hTfR1, with residues 159 to 221 being essential. The recently solved structure of part of the Machupo virus GP1 suggests an explanation for these requirements.Arenaviruses are bisegmented, single-stranded RNA viruses that use an ambisense coding strategy to express four proteins: NP (nucleoprotein), Z (matrix protein), L (polymerase), and GP (glycoprotein). The viral GP is sufficient to direct entry into host cells, and retroviral vectors pseudotyped with GP recapitulate the entry pathway of these viruses (5, 13, 24, 31). GP is a class I fusion protein comprising two subunits, GP1 and GP2, cleaved from the precursor protein GPC (4, 14, 16, 18, 21). GP1 contains the receptor binding domain (19, 28), while GP2 contains structural elements characteristic of viral membrane fusion proteins (8, 18, 20, 38). The N-terminal stable signal peptide (SSP) remains associated with the mature glycoprotein after cleavage (2, 39) and plays a role in transport, maturation, and pH-dependent fusion (17, 35, 36, 37).The New World arenaviruses are divided into clades A, B, and C based on phylogenetic relatedness (7, 9, 11). Clade B contains the human pathogenic viruses Junin (JUNV), Machupo (MACV), Guanarito (GTOV), Sabia, and Chapare, which cause severe hemorrhagic fevers in South America (1, 10, 15, 26, 34). Clade B also contains the nonpathogenic viruses Amapari (AMAV), Cupixi, and Tacaribe (TCRV), although mild disease has been reported for a laboratory worker infected with TCRV (29).Studies with both viruses and GP-pseudotyped retroviral vectors have shown that the pathogenic clade B arenaviruses use the human transferrin receptor type 1 (hTfR1) to gain entry into human cells (19, 30). In contrast, GPs from nonpathogenic viruses, although capable of using TfR1 orthologs from other species (1), cannot use hTfR1 (1, 19) and instead enter human cells through as-yet-uncharacterized hTfR1-independent pathways (19). In addition, human T-cell lines serve as useful tools to distinguish these GPs, since JUNV, GTOV, and MACV pseudotyped vectors readily transduce CEM cells, while TCRV and AMAV GP vectors do not (27; also unpublished data). These properties of the GPs do not necessarily reflect a tropism of the pathogenic viruses for human T cells, since viral tropism is influenced by many factors and T cells are not a target for JUNV replication in vivo (3, 22, 25).  相似文献   

14.
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.The human cytomegalovirus (HCMV) UL37 immediate early (IE) locus expresses multiple products, including the predominant UL37 exon 1 protein, pUL37x1, also known as viral mitochondrion-localized inhibitor of apoptosis (vMIA), during lytic infection (16, 22, 24, 39, 44). The UL37 glycoprotein (gpUL37) shares UL37x1 sequences and is internally cleaved, generating pUL37NH2 and gpUL37COOH (2, 22, 25, 26). pUL37x1 is essential for the growth of HCMV in humans (17) and for the growth of primary HCMV strains (20) and strain AD169 (14, 35, 39, 49) but not strain TownevarATCC in permissive human fibroblasts (HFFs) (27).pUL37x1 induces calcium (Ca2+) efflux from the endoplasmic reticulum (ER) (39), regulates viral early gene expression (5, 10), disrupts F-actin (34, 39), recruits and inactivates Bax at the mitochondrial outer membrane (MOM) (4, 31-33), and inhibits mitochondrial serine protease at late times of infection (28).Intriguingly, HCMV UL37 proteins localize dually in the ER and in the mitochondria (2, 9, 16, 17, 24-26). In contrast to other characterized, similarly localized proteins (3, 6, 11, 23, 30, 38), dual-trafficking UL37 proteins are noncompetitive and sequential, as an uncleaved gpUL37 mutant protein is ER translocated, N-glycosylated, and then imported into the mitochondria (24, 26).Ninety-nine percent of ∼1,000 mitochondrial proteins are synthesized in the cytosol and directly imported into the mitochondria (13). However, the mitochondrial import of ER-synthesized proteins is poorly understood. One potential pathway is the use of the mitochondrion-associated membrane (MAM) as a transfer waypoint. The MAM is a specialized ER subdomain enriched in lipid-synthetic enzymes, lipid-associated proteins, such as sigma-1 receptor, and chaperones (18, 45). The MAM, the site of contact between the ER and the mitochondria, permits the translocation of membrane-bound lipids, including ceramide, between the two organelles (40). The MAM also provides enriched Ca2+ microdomains for mitochondrial signaling (15, 36, 37, 43, 48). One macromolecular MAM complex involved in efficient ER-to-mitochondrion Ca2+ transfer is comprised of ER-bound inositol 1,4,5-triphosphate receptor 3 (IP3R3), cytosolic Grp75, and a MOM-localized voltage-dependent anion channel (VDAC) (42). Another MAM-stabilizing protein complex utilizes mitofusin 2 (Mfn2) to tether ER and mitochondrial organelles together (12).HCMV UL37 proteins traffic into the MAM of transiently transfected HFFs and HeLa cells, directed by their NH2-terminal leaders (8, 47). To determine whether the MAM is targeted by UL37 proteins during infection, we fractionated HCMV-infected cells and examined pUL37x1 trafficking in microsomes, mitochondria, and the MAM throughout all temporal phases of infection. Because MAM domains physically bridge two organelles, multiple markers were employed to verify the purity and identity of the fractions (7, 8, 19, 46, 47).(These studies were performed in part by Chad Williamson in partial fulfillment of his doctoral studies in the Biochemistry and Molecular Genetics Program at George Washington Institute of Biomedical Sciences.)HFFs and life-extended (LE)-HFFs were grown and not infected or infected with HCMV (strain AD169) at a multiplicity of 3 PFU/cell as previously described (8, 26, 47). Heavy (6,300 × g) and light (100,000 × g) MAM fractions, mitochondria, and microsomes were isolated at various times of infection and quantified as described previously (7, 8, 47). Ten- or 20-μg amounts of total lysate or of subcellular fractions were resolved by SDS-PAGE in 4 to 12% Bis-Tris NuPage gels (Invitrogen) and examined by Western analyses (7, 8, 26). Twenty-microgram amounts of the fractions were not treated or treated with proteinase K (3 μg) for 20 min on ice, resolved by SDS-PAGE, and probed by Western analysis. The blots were probed with rabbit anti-UL37x1 antiserum (DC35), goat anti-dolichyl phosphate mannose synthase 1 (DPM1), goat anti-COX2 (both from Santa Cruz Biotechnology), mouse anti-Grp75 (StressGen Biotechnologies), and the corresponding horseradish peroxidase-conjugated secondary antibodies (8, 47). Reactive proteins were detected by enhanced chemiluminescence (ECL) reagents (Pierce), and images were digitized as described previously (26, 47).  相似文献   

15.
One essential downstream signaling pathway of receptor tyrosine kinases (RTKs), such as vascular endothelial growth factor receptor (VEGFR) and the Tie2 receptor, is the phosphoinositide-3 kinase (PI3K)-phosphoinositide-dependent protein kinase 1 (PDK1)-Akt/protein kinase B (PKB) cascade that plays a critical role in development and tumorigenesis. However, the role of PDK1 in cardiovascular development remains unknown. Here, we deleted PDK1 specifically in endothelial cells in mice. These mice displayed hemorrhage and hydropericardium and died at approximately embryonic day 11.5 (E11.5). Histological analysis revealed defective vascular remodeling and development and disrupted integrity between the endothelium and trabeculae/myocardium in the heart. The atrioventricular canal (AVC) cushion and valves failed to form, indicating a defect in epithelial-mesenchymal transition (EMT), together with increased endothelial apoptosis. Consistently, ex vivo AVC explant culture showed impeded mesenchymal outgrowth. Snail protein was reduced and was absent from the nucleus in AVC cells. Delivery of the Snail S6A mutant to the AVC explant effectively rescued EMT defects. Furthermore, adenoviral Akt delivery rescued EMT defects in AVC explant culture, and deletion of PTEN delayed embryonic lethality of PDK1 endothelial deletion mice by 1 day and rendered normal development of the AVC cushion in the PDK1-deficient heart. Taken together, these results have revealed an essential role of PDK1 in cardiovascular development through activation of Akt and Snail.Polypeptide growth factors, such as insulin, insulin-like growth factor 1 (IGF-I), vascular endothelial growth factor (VEGF), and angiopoietin 1 (Ang1), exert biological functions through binding to their transmembrane receptors that belong to a large family of receptor tyrosine kinases (RTKs) (4). Consequently, the receptor molecules form homo- or heterodimers, and the intracellular tyrosines at the carboxyl termini of the receptors become phosphorylated (37). Numerous distinct adaptor/regulatory proteins, through their Src homologous 2 (SH2) domains, bind to the phosphotyrosines and transduce the signal to downstream pathways, among which are two essential and well-characterized signaling cascades—the mitogen-activated protein kinase (MAPK) and phosphoinositide-3 kinase (PI3K)-phosphoinositide-dependent protein kinase 1 (PDK1)-Akt signaling pathways (4, 13, 37).The regulatory subunit of PI3K, p85, possesses the SH2 domain and can, therefore, bind to phosphotyrosines on the RTKs and subsequently render activation of the catalytic subunit of PI3K, p110 (7, 8). Active p110 phosphorylates phosphoinositide biphosphate (PIP2), turning it into PIP3 that recruits PDK1 and Akt to the cellular membrane, where Akt is phosphorylated at threonine 308 (T308 for Akt1) by PDK (5, 23, 30). The serine 473 (S473) of Akt (Akt1) is phosphorylated by mTOR complex 2 (mTORC2) and other kinases (17, 36). Phosphorylation of Akt at these two amino acids brings it to full activation. In PDK1-deficient embryonic stem (ES) cells, T308 phosphorylation was abolished and most of the Akt activity was lost, although the S473 phosphorylation was intact (40).Akt plays an important role in multiple biological processes, such as cell survival, growth, glucose metabolism, and angiogenesis (2, 12, 14-16, 22, 23, 39, 41-43). In mammals, there are three Akt isoforms, termed Akt 1, -2, and -3. Previously, we generated Akt1- and Akt3-deficient mice and studied their roles in mouse development (2, 15, 39, 42, 43). We found that the Akt1 and -3 double knockout (KO) (DKO) mice were embryonically lethal at around embryonic day 12 (E12) and manifested developmental defects in multiple tissues, including the cardiovascular system (14, 15, 43). These studies suggest that the Akt signaling pathway is involved in cardiovascular development.Other than Akt isoforms, PDK1 also activates another group of AGC family kinases, such as p70 ribosomal S6 kinase (S6K) (32), serum, and glucocorticoid-induced protein kinase (SGK) (26), p90 ribosomal S6 kinase (RSK) (21), and atypical isoforms of protein kinase C (PKC) (31). Comprehensive and intensive mouse genetic studies performed mainly by Alessi and coworkers have confirmed the regulation of these AGC kinases by PDK1 (3, 9, 10, 27-29, 40).PDK1 knockout mice were severely growth retarded and died at around E9.0, indicating an essential role of PDK1 in development (27). However, its function and downstream targets in cardiovascular development are still elusive. To study this, we deleted PDK1 specifically in endothelial cells through Cre recombinase-mediated excision (25). The results have revealed an essential role of PDK1 in vascular remodeling and integrity and in cardiac development through activation of Akt and its downstream target of Snail.  相似文献   

16.
17.
The intestinal microbiota of broiler chickens and the microbiota in the litter have been well studied, but the interactions between these two microbiotas remain to be determined. Therefore, we examined their reciprocal effects by analyzing the intestinal microbiotas of broilers reared on fresh pine shavings versus reused litter, as well as the litter microbiota over a 6-week cycle. Composite ileal mucosal and cecal luminal samples from birds (n = 10) reared with both litter conditions (fresh versus reused) were collected at 7, 14, 21, and 42 days of age. Litter samples were also collected at days 7, 14, 21, and 42. The microbiotas were profiled and compared within sample types based on litter condition using PCR and denaturing gradient gel electrophoresis (PCR-DGGE). The microbiotas were further analyzed using 16S rRNA gene clone libraries constructed from microbiota DNA extracted from both chick intestinal and litter samples collected at day 7. Results showed significant reciprocal effects between the microbiotas present in the litter and those in the intestines of broilers. Fresh litter had more environmental bacteria, while reused litter contained more bacteria of intestinal origin. Lactobacillus spp. dominated the ileal mucosal microbiota of fresh-litter chicks, while a group of bacteria yet to be classified within Clostridiales dominated in the ileal mucosal microbiota in the reused-litter chicks. The Litter condition (fresh versus reused) seemed to have a more profound impact on the ileal microbiota than on the cecal microbiota. The data suggest that the influence of fresh litter on ileal microbiota decreased as broilers grew, compared with temporal changes observed under reused-litter rearing conditions.The intestines of broiler chickens harbor a complex microbiota that plays an important role in the growth and health of the bird. Nurmi and Rantala (27) provided the first reported evidence that a healthy gut microbiota could protect broiler chicks against a challenge by enteric pathogens. That study led to the concept of “competitive exclusion.” Since then, the colonization of the intestines by beneficial bacteria has been shown to promote epithelial cell turnover (34), increase mucous production (26), upregulate expression of genes involved in several important intestinal functions (14), and help with reinforcement of the mucosal barrier, modulation of the immune system, and metabolism of nutrients by the host (46). Although studies conducted using either cultivation-based or molecular biology analyses have documented that the intestinal microbiota of mature broiler chickens is relatively stable (10, 24, 45), this microbiota is still dynamic and can be manipulated to a large extent (8, 31, 37).Commercial broiler flocks in the United States are primarily floor raised in enclosed, environmentally controlled facilities. Within these commercial broiler houses, poultry litter can be reused for a year or longer if managed well and maintained in a relatively dry state (6). At an estimated accumulation rate of 1.45 metric tons per 1,000 broilers, the U.S. poultry industry, which produces >8.5 billion broilers per year (39), produces >12.3 million metric tons of poultry litter annually (4). Management and disposal of such a large quantity of poultry litter are two of the greatest challenges faced by U.S. broiler producers (6). Reuse of poultry litter can help alleviate this challenge, but there is concern that the reused-litter environment, both biotic and abiotic, may negatively affect the intestinal microbiota of the bird, potentially resulting in poor health and reduced production efficiency.Poultry litter is primarily a mixture of bedding materials and bird excreta. In addition to variation in the physiochemical properties, reused poultry litter harbors microbes of typically intestinal origin that are not commonly present in fresh litter (23, 35). During a broiler growth cycle, a constant influx of nutrients and intestinal microbes results in a complex litter microbiota. With continued reuse, the litter environment becomes more complex, which may have a profound impact on flock growth performance and health. Recognizing the importance of the litter environment, especially in commercial broiler houses with high stocking densities, several research groups have investigated how the physiochemical properties of broiler litter affect the growth and health of the birds (15) and the microbiota in the litter, using either cultivation-based or molecular biology techniques (22, 23, 33). Early studies focused on the effect of litter on enteric pathogens, including Salmonella (35, 12, 28) and cellulitis-causing Escherichia coli (38). From analyzing 16S rRNA gene clone libraries, Lu et al. (23) showed that in broiler litter at various stages of reuse, low-G+C Gram-positive bacteria predominated. Recent studies have focused on the interplay between the unique physiochemical conditions within the litter and the endogenous microbiota (22, 29), as well as the occurrence and persistence of antibiotic resistance in poultry litter (13, 17), providing some insight into the litter microbiota and the intestinal microbiota in broiler chickens. However, the relationship between litter and intestinal microbiotas has not been investigated. Since chickens consume some litter materials, we hypothesized that the intestinal and litter microbiotas may affect each other with respect to their composition and diversity. Using PCR with denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rRNA gene clone library analysis, we tested this hypothesis by examining the effect of the litter microbiota on the ontogeny of the intestinal microbiota in broilers over a 6-week growth cycle.  相似文献   

18.
Core fucosylation (CF) patterns of some glycoproteins are more sensitive and specific than evaluation of their total respective protein levels for diagnosis of many diseases, such as cancers. Global profiling and quantitative characterization of CF glycoproteins may reveal potent biomarkers for clinical applications. However, current techniques are unable to reveal CF glycoproteins precisely on a large scale. Here we developed a robust strategy that integrates molecular weight cutoff, neutral loss-dependent MS3, database-independent candidate spectrum filtering, and optimization to effectively identify CF glycoproteins. The rationale for spectrum treatment was innovatively based on computation of the mass distribution in spectra of CF glycopeptides. The efficacy of this strategy was demonstrated by implementation for plasma from healthy subjects and subjects with hepatocellular carcinoma. Over 100 CF glycoproteins and CF sites were identified, and over 10,000 mass spectra of CF glycopeptide were found. The scale of identification results indicates great progress for finding biomarkers with a particular and attractive prospect, and the candidate spectra will be a useful resource for the improvement of database searching methods for glycopeptides.Glycoproteins are implicated in a wide range of biological processes such as fertilization, development, the immune response, cell signaling, and apoptosis. Altered glycosylation patterns can affect the conformations of glycoproteins and their functions and interactions with other molecules (1,2). Abnormal glycosylation has been demonstrated in many pathological processes. Targeted glycosylation research is considered increasingly important as a way to find novel therapeutic approaches (2,3), and core fucosylation (CF)1 glycoproteomics has attracted particularly great attention (4,5). Previous reports show that CF glycoproteins are involved in many important physiological processes, such as transforming growth factor-β1 (6) and epidermal growth factor signaling pathways (7). They also play key roles in many pathological processes, such as hepatocellular carcinoma (HCC) (8,9), pancreatic cancer (10,11), lung cancer (6,12), ovarian cancer (13), and prostate cancer (14). Moreover the CF patterns of several glycoproteins have been reported to serve as more sensitive and specific biomarkers than their total respective protein levels (8,9, 15,16). The combination of a biomarker panel of CF glycoproteins is expected to serve as a more reliable diagnostic standard (13).Glycoproteomics research has been conducted for several years and has led to the generation of many effective evaluation methods. Most of these methods use lectin or the chemical reagent hydrazide to enrich glycopeptides. The oligosaccharide chains are then completely released by treatment of the glycopeptides with peptide-N-glycosidase F. Finally the deglycosylated peptides and the deglycosylation sites are identified by tandem mass spectrometric analysis (17,18). Although impressive results have been attained, this commonly used strategy is not an ideal choice for CF glycoproteins research. First, the enrichment specificity of lectin is not satisfactory (19) as hydrazide chemical reactions irreversibly destroy glycan structures, particularly fucose tags. Second, the deglycosylation site is determined by the 0.9840-Da mass shift caused by the asparagine to aspartic acid transfer; its confidence can be compromised by deamination of the Asn. Besides that, the CF site can no longer be distinguished from other glycosylation sites in the same glycoprotein. Thus, the ideal way to precisely identify CF glycoproteins on a large scale is to provide direct evidence for the existence of CF modification. Traditional approaches, such as lectin blots, are not sufficiently powerful to meet this requirement. Instead recent advancements in high end MS-based techniques have ignited the hope to reach this challenging goal (20,21).Our group has developed an innovative and systematic strategy for the precise and large scale identification of CF glycoproteins. Several steps were taken leading up to the development of our strategy. 1) We established a novel enrichment step for CF glycopeptides, combining the use of lectin for CF glycoprotein enrichment with ultrafiltration for further enrichment of glycopeptide. Glycopeptide enrichment by ultrafiltration based on molecular weight cutoff technology has the added merit of integrating enrichment, desalting, and concentration into a one-step operation. 2) We established a neutral loss-dependent MS3 scan method that specifically captures partially deglycosylated CF glycopeptides (with fucosyl-N-acetylglucosamines residue retained). In MS3, the intensity distribution of the fragment peaks is much more homogeneous, and there are fewer theoretical fragment ions and interfering peaks than in MS2. 3) We established a novel database-independent candidate spectrum-filtering method for selecting partially deglycosylated CF glycopeptides and a spectrum optimization method. By introducing several strict and appropriate criteria into a scoring system, high quality candidate spectra can be selected before searching the database, which not only increases the database search efficiency but also improves the identification credibility. Furthermore by statistically analyzing candidate spectra, some important glycan-related fragmentation patterns were revealed. Based on these observations, many kinds of interfering peaks due to glycan fragmentation that are always very intensive and would decrease the accuracy of peptide scoring can be localized and removed from the spectra. This treatment can effectively increase the number of identifications through database searching or de novo analysis.The efficacy of this strategy was testified by implementing it on both healthy and HCC plasma. Respectively, 105 and 106 CF sites were identified from 72 and 79 glycoproteins, including 19 annotated potential glycosylation sites and 25 novel ones. This study holds promise for the large scale determination of core fucosylated biomarker panels from clinical samples, either body fluids or tissue biopsies.  相似文献   

19.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

20.
HIV-1 possesses an exquisite ability to infect cells independently from their cycling status by undergoing an active phase of nuclear import through the nuclear pore. This property has been ascribed to the presence of karyophilic elements present in viral nucleoprotein complexes, such as the matrix protein (MA); Vpr; the integrase (IN); and a cis-acting structure present in the newly synthesized DNA, the DNA flap. However, their role in nuclear import remains controversial at best. In the present study, we carried out a comprehensive analysis of the role of these elements in nuclear import in a comparison between several primary cell types, including stimulated lymphocytes, macrophages, and dendritic cells. We show that despite the fact that none of these elements is absolutely required for nuclear import, disruption of the central polypurine tract-central termination sequence (cPPT-CTS) clearly affects the kinetics of viral DNA entry into the nucleus. This effect is independent of the cell cycle status of the target cells and is observed in cycling as well as in nondividing primary cells, suggesting that nuclear import of viral DNA may occur similarly under both conditions. Nonetheless, this study indicates that other components are utilized along with the cPPT-CTS for an efficient entry of viral DNA into the nucleus.Lentiviruses display an exquisite ability to infect dividing and nondividing cells alike that is unequalled among Retroviridae. This property is thought to be due to the particular behavior or composition of the viral nucleoprotein complexes (NPCs) that are liberated into the cytoplasm of target cells upon virus-to-cell membrane fusion and that allow lentiviruses to traverse an intact nuclear membrane (17, 28, 29, 39, 52, 55, 67, 79). In the case of the human immunodeficiency type I virus (HIV-1), several studies over the years identified viral components of such structures with intrinsic karyophilic properties and thus perfect candidates for mediation of the passage of viral DNA (vDNA) through the nuclear pore: the matrix protein (MA); Vpr; the integrase (IN); and a three-stranded DNA flap, a structure present in neo-synthesized viral DNA, specified by the central polypurine tract-central termination sequence (cPPT-CTS). It is clear that these elements may mediate nuclear import directly or via the recruitment of the host''s proteins, and indeed, several cellular proteins have been found to influence HIV-1 infection during nuclear import, like the karyopherin α2 Rch1 (38); importin 7 (3, 30, 93); the transportin SR-2 (13, 20); or the nucleoporins Nup98 (27), Nup358/RANBP2, and Nup153 (13, 56).More recently, the capsid protein (CA), the main structural component of viral nucleoprotein complexes at least upon their cytoplasmic entry, has also been suggested to be involved in nuclear import or in postnuclear entry steps (14, 25, 74, 90, 92). Whether this is due to a role for CA in the shaping of viral nucleoprotein complexes or to a direct interaction between CA and proteins involved in nuclear import remains at present unknown.Despite a large number of reports, no single viral or cellular element has been described as absolutely necessary or sufficient to mediate lentiviral nuclear import, and important controversies as to the experimental evidences linking these elements to this step exist. For example, MA was among the first viral protein of HIV-1 described to be involved in nuclear import, and 2 transferable nuclear localization signals (NLSs) have been described to occur at its N and C termini (40). However, despite the fact that early studies indicated that the mutation of these NLSs perturbed HIV-1 nuclear import and infection specifically in nondividing cells, such as macrophages (86), these findings failed to be confirmed in more-recent studies (23, 33, 34, 57, 65, 75).Similarly, Vpr has been implicated by several studies of the nuclear import of HIV-1 DNA (1, 10, 21, 43, 45, 47, 64, 69, 72, 73, 85). Vpr does not possess classical NLSs, yet it displays a transferable nucleophilic activity when fused to heterologous proteins (49-51, 53, 77, 81) and has been shown to line onto the nuclear envelope (32, 36, 47, 51, 58), where it can truly facilitate the passage of the viral genome into the nucleus. However, the role of Vpr in this step remains controversial, as in some instances Vpr is not even required for viral replication in nondividing cells (1, 59).Conflicting results concerning the role of IN during HIV-1 nuclear import also exist. Indeed, several transferable NLSs have been described to occur in the catalytic core and the C-terminal DNA binding domains of IN, but for some of these, initial reports of nuclear entry defects (2, 9, 22, 46, 71) were later shown to result from defects at steps other than nuclear import (60, 62, 70, 83). These reports do not exclude a role for the remaining NLSs in IN during nuclear import, and they do not exclude the possibility that IN may mediate this step by associating with components of the cellular nuclear import machinery, such as importin alpha and beta (41), importin 7 (3, 30, 93, 98), and, more recently, transportin-SR2 (20).The central DNA flap, a structure present in lentiviruses and in at least 1 yeast retroelement (44), but not in other orthoretroviruses, has also been involved in the nuclear import of viral DNA (4, 6, 7, 31, 78, 84, 95, 96), and more recently, it has been proposed to provide a signal for viral nucleoprotein complexes uncoating in the proximity of the nuclear pore, with the consequence of providing a signal for import (8). However, various studies showed an absence or weakness of nuclear entry defects in viruses devoid of the DNA flap (24, 26, 44, 61).Overall, the importance of viral factors in HIV-1 nuclear import is still unclear. The discrepancies concerning the role of MA, IN, Vpr, and cPPT-CTS in HIV-1 nuclear import could in part be explained by their possible redundancy. To date, only one comprehensive study analyzed the role of these four viral potentially karyophilic elements together (91). This study showed that an HIV-1 chimera where these elements were either deleted or replaced by their murine leukemia virus (MLV) counterparts was, in spite of an important infectivity defect, still able to infect cycling and cell cycle-arrested cell lines to similar efficiencies. If this result indicated that the examined viral elements of HIV-1 were dispensable for the cell cycle independence of HIV, as infections proceeded equally in cycling and arrested cells, they did not prove that they were not required in nuclear import, because chimeras displayed a severe infectivity defect that precluded their comparison with the wild type (WT).Nuclear import and cell cycle independence may not be as simply linked as previously thought. On the one hand, there has been no formal demonstration that the passage through the nuclear pore, and thus nuclear import, is restricted to nondividing cells, and for what we know, this passage may be an obligatory step in HIV infection in all cells, irrespective of their cycling status. In support of this possibility, certain mutations in viral elements of HIV affect nuclear import in dividing as well as in nondividing cells (4, 6, 7, 31, 84, 95). On the other hand, cell cycle-independent infection may be a complex phenomenon that is made possible not only by the ability of viral DNA to traverse the nuclear membrane but also by its ability to cope with pre- and postnuclear entry events, as suggested by the phenotypes of certain CA mutants (74, 92).Given that the cellular environment plays an important role during the early steps of viral infection, we chose to analyze the role of the four karyophilic viral elements of HIV-1 during infection either alone or combined in a wide comparison between cells highly susceptible to infection and more-restrictive primary cell targets of HIV-1 in vivo, such as primary blood lymphocytes (PBLs), monocyte-derived macrophages (MDM), and dendritic cells (DCs).In this study, we show that an HIV-1-derived virus in which the 2 NLSs of MA are mutated and the IN, Vpr, and cPPT-CTS elements are removed displays no detectable nuclear import defect in HeLa cells independently of their cycling status. However, this mutant virus is partially impaired for nuclear entry in primary cells and more specifically in DCs and PBLs. We found that this partial defect is specified by the cPPT-CTS, while the 3 remaining elements seem to play no role in nuclear import. Thus, our study indicates that the central DNA flap specifies the most important role among the viral elements involved thus far in nuclear import. However, it also clearly indicates that the role played by the central DNA flap is not absolute and that its importance varies depending on the cell type, independently from the dividing status of the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号