首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In eukaryotes, termination of mRNA translation is triggered by the essential polypeptide chain release factors eRF1, recognizing all three stop codons, and eRF3, a member of the GTPase superfamily with a role that has remained opaque. We have studied the kinetic and thermodynamic parameters of the interactions between eRF3 and GTP, GDP and the non-hydrolysable GTP analogue GDPNP in the presence (K(D)(GDP)=1.3+/-0.2 muM, K(D)(GTP) approximately 200 muM and K(D)(GDPNP)>160 muM) as well as absence (K(D)(GDP)=1.9+/-0.3 muM, K(D)(GTP) 0.7+/-0.2 muM and K(D)(GDPNP) approximately 200 muM) of eRF1. From the present data we propose that (i) free eRF3 has a strong preference to bind GDP compared to GTP (ii) eRF3 in complex with eRF1 has much stronger affinity to GTP than free eRF3 (iii) eRF3 in complex with PABP has weak affinity to GTP (iv) eRF3 in complex with eRF1 does not have strong affinity to GDPNP, implying that GDPNP is a poor analogue of GTP for eRF3 binding.  相似文献   

2.
GTP hydrolysis catalyzed in the ribosome by a complex of two polypeptide release factors, eRF1 and eRF3, is required for fast and efficient termination of translation in eukaryotes. Here, isothermal titration calorimetry is used for the quantitative thermodynamic characterization of eRF3 interactions with guanine nucleotides, eRF1 and Mg2+. We show that (i) eRF3 binds GDP (Kd = 1.9 μM) and this interaction depends only minimally on the Mg2+ concentration; (ii) GTP binds to eRF3 (Kd = 0.5 μM) only in the presence of eRF1 and this interaction depends on the Mg2+ concentration; (iii) GTP displaces GDP from the eRF1•eRF3•GDP complex, and vice versa; (iv) eRF3 in the GDP-bound form improves its ability to bind eRF1; (v) the eRF1•eRF3 complex binds GDP as efficiently as free eRF3; (vi) the eRF1•eRF3 complex is efficiently formed in the absence of GDP/GTP but requires the presence of the C-terminus of eRF1 for complex formation. Our results show that eRF1 mediates GDP/GTP displacement on eRF3. We suggest that after formation of eRF1•eRF3•GTP•Mg2+, this quaternary complex binds to the ribosomal pretermination complex containing P-site-bound peptidyl-tRNA and the A-site-bound stop codon. The guanine nucleotide binding properties of eRF3 and of the eRF3•eRF1 complex profoundly differ from those of prokaryotic RF3.  相似文献   

3.
Termination of translation in eukaryotes is governed by two polypeptide chain release factors, eRF1 and eRF3 on the ribosome. eRF1 promotes stop-codon-dependent hydrolysis of peptidyl-tRNA, and eRF3 interacts with eRF1 and stimulates eRF1 activity in the presence of GTP. Here, we have demonstrated that eRF3 is a GTP-binding protein endowed with a negligible, if any, intrinsic GTPase activity that is profoundly stimulated by the joint action of eRF1 and the ribosome. Separately, neither eRF1 nor the ribosome display this effect. Thus, eRF3 functions as a GTPase in the quaternary complex with ribosome, eRF1, and GTP. From the in vitro uncoupling of the peptidyl-tRNA and GTP hydrolyses achieved in this work, we conclude that in ribosomes both hydrolytic reactions are mediated by the formation of the ternary eRF1-eRF3-GTP complex. eRF1 and the ribosome form a composite GTPase-activating protein (GAP) as described for other G proteins. A dual role for the revealed GTPase complex is proposed: in " GTP state," it controls the positioning of eRF1 toward stop codon and peptidyl-tRNA, whereas in "GDP state," it promotes release of eRFs from the ribosome. The initiation, elongation, and termination steps of protein synthesis seem to be similar with respect to GTPase cycles.  相似文献   

4.
Termination of translation in higher organisms is a GTP-dependent process. However, in the structure of the single polypeptide chain release factor known so far (eRF1) there are no GTP binding motifs. Moreover, in prokaryotes, a GTP binding protein, RF3, stimulates translation termination. From these observations we proposed that a second eRF should exist, conferring GTP dependence for translation termination. Here, we have shown that the newly sequenced GTP binding Sup35-like protein from Xenopus laevis, termed eRF3, exhibits in vitro three important functional properties: (i) although being inactive as an eRF on its own, it greatly stimulates eRF1 activity in the presence of GTP and low concentrations of stop codons, resembling the properties of prokaryotic RF3; (ii) it binds and probably hydrolyses GTP; and (iii) it binds to eRF1. The structure of the C-domain of the X.laevis eRF3 protein is highly conserved with other Sup35-like proteins, as was also shown earlier for the eRF1 protein family. From these and our previous data, we propose that yeast Sup45 and Sup35 proteins belonging to eRF1 and eRF3 protein families respectively are also yeast termination factors. The absence of structural resemblance of eRF1 and eRF3 to prokaryotic RF1/2 and RF3 respectively, may point to the different evolutionary origin of the translation termination machinery in eukaryotes and prokaryotes. It is proposed that a quaternary complex composed of eRF1, eRF3, GTP and a stop codon of the mRNA is involved in termination of polypeptide synthesis in ribosomes.  相似文献   

5.
Eukaryotic translation termination is governed by eRF1 and eRF3. eRF1 recognizes the stop codons and then hydrolyzes peptidyl-tRNA. eRF3, which facilitates the termination process, belongs to the GTPase superfamily. In this study, the effect of the MC domain of eRF1a (eRF1aMC) on the GTPase activity of eRF3 was analyzed using fluorescence spectra and high-performance liquid chromatography. The results indicated eRF1aMC promotes the GTPase activity of eRF3, which is similar to the role of eRF1a. Furthermore, the increased affinity of eRF3 for GTP induced by eRF1aMC was dependent on the concentration of Mg(2+). Changes in the secondary structure of eRF3C after binding GTP/GDP were detected by CD spectroscopy. The results revealed changes of conformation during formation of the eRF3C·GTP complex that were detected in the presence of eRF1a or eRF1aMC. The conformations of the eRF3C·eRF1a·GTP and eRF3C·eRF1aMC·GTP complexes were further altered upon the addition of Mg(2+). By contrast, there was no change in the conformation of GTP bound to free eRF3C or the eRF3C·eRF1aN complex. These results suggest that alterations in the conformation of GTP bound to eRF3 is dependent on eRF1a and Mg(2+), whereas the MC domain of eRF1a is responsible for the change in the conformation of GTP bound to eRF3 in Euplotes octocarinatus.  相似文献   

6.
Eukaryotic translational termination is triggered by polypeptide release factors eRF1, eRF3, and one of the three stop codons at the ribosomal A-site. Isothermal titration calorimetry shows that (i) the separated MC, M, and C domains of human eRF1 bind to eRF3; (ii) GTP binding to eRF3 requires complex formation with either the MC or M + C domains; (iii) the M domain interacts with the N and C domains; (iv) the MC domain and Mg2+ induce GTPase activity of eRF3 in the ribosome. We suggest that GDP binding site of eRF3 acquires an ability to bind gamma-phosphate of GTP if altered by cooperative action of the M and C domains of eRF1. Thus, the stop-codon decoding is associated with the N domain of eRF1 while the GTPase activity of eRF3 is controlled by the MC domain of eRF1 demonstrating a substantial structural uncoupling of these two activities though functionally they are interrelated.  相似文献   

7.
Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. Whereas eRF1 recognizes all three termination codons and induces hydrolysis of peptidyl tRNA, eRF3's function remains obscure. Here, we reconstituted all steps of eukaryotic translation in vitro using purified ribosomal subunits; initiation, elongation, and termination factors; and aminoacyl tRNAs. This allowed us to investigate termination using pretermination complexes assembled on mRNA encoding a tetrapeptide and to propose a model for translation termination that accounts for the cooperative action of eRF1 and eRF3 in ensuring fast release of nascent polypeptide. In this model, binding of eRF1, eRF3, and GTP to pretermination complexes first induces a structural rearrangement that is manifested as a 2 nucleotide forward shift of the toeprint attributed to pretermination complexes that leads to GTP hydrolysis followed by rapid hydrolysis of peptidyl tRNA. Cooperativity between eRF1 and eRF3 required the eRF3 binding C-terminal domain of eRF1.  相似文献   

8.
Translation termination in eukaryotes is governed by two proteins belonging to class 1 (eRF1) and class 2 (eRF3) polypeptide release factors. eRF3 catalyzes hydrolysis of GTP to yield GDP and Pi in the ribosome in the absence of mRNA, tRNA, aminoacyl-tRNA, and peptidyl-tRNA and requires eRF1 for this activity. It is known that eRF1 and eRF3 interact with each other via their C-terminal regions both in vitro and in vivo. eRF1 consists of three domains—N, M, and C. In this study we examined the influence of the individual domains of the human eRF1 on induction of the human eRF3 GTPase activity in the ribosome in vitro. It was shown that none of the N, M, C, and NM domains induces the eRF3 GTPase activity in the presence of ribosomes. The MC domain does induce the eRF3 GTPase activity, but four times less efficiently than full-length eRF1. Therefore, we assumed that the MC domain (and very likely the M domain) binds to the ribosome in the presence of eRF3. Based on these data and taking into account the data available in the literature, a conclusion was drawn that the N domain of eRF1 is not essential for eRF1-dependent induction of the eRF3 GTPase activity. A working hypothesis is formulated that the eRF3 GTPase activity in the ribosome during translation termination is associated with the intermolecular interactions of GTP/GDP, the GTPase center of the large (60S) subunit, the MC domain of eRF1, and the C-terminal region and GTP-binding motifs of eRF3 but without participation of the N-terminal region of eRF1.  相似文献   

9.
GTP is essential for eukaryotic translation termination, where the release factor 3 (eRF3) complexed with eRF1 is involved as the guanine nucleotide-binding protein. In addition, eRF3 regulates the termination-coupled events, eRF3 interacts with poly(A)-binding protein (Pab1) and the surveillance factor Upf1 to mediate normal and nonsense-mediated mRNA decay. However, the roles of GTP binding to eRF3 in these processes remain largely unknown. Here, we showed in yeast that GTP is essentially required for the association of eRF3 with eRF1, but not with Pab1 and Upf1. A mutation in the GTP-binding motifs of eRF3 impairs the eRF1-binding ability without altering the Pab1- or Upf1-binding activity. Interestingly, the mutation causes not only a defect in translation termination but also delay of normal and nonsense-mediated mRNA decay, suggesting that GTP/eRF3-dependent termination exerts its influence on the subsequent mRNA degradation. The termination reaction itself is not sufficient, but eRF3 is essential for triggering mRNA decay. Thus, eRF3 is a key mediator that transduces termination signal to mRNA decay.  相似文献   

10.
Translation termination in eukaryotes is governed by two proteins, belonging to the class-1 (eRF1) and class-2 (eRF3) polypeptide release factors. eRF3 catalyzes hydrolysis of GTP to GDP and inorganic phosphate in the ribosome in the absence of mRNA, tRNA, aminoacyl-tRNA and peptidyl-tRNA but needs the presence of eRF1. It's known that eRF1 and eRF3 interact with each other in vitro and in vivo via their C-terminal regions. eRF1 consists of three domains - N, M, and C. In this study we examined the influence of individual domains of the human eRF1 on induction of the human eRF3 GTPase activity in the ribosome in vitro. It was shown that none of the N-, M-, C- and NM-domains induces eRF3 GTPase activity in presence of the ribosomes. MC-domain does induce GTPase activity of eRF3 but four times less efficient than full-length eRF1, therefore, MC-domain (and very likely M-domain) binds to the ribosome in the presence of eRF3. Based on these data and taking into account the data available in literature, a conclusion was drawn that the N domain of eRF1 is not essential for eRF1-dependent induction of the eRF3 GTPase activity. A working hypothesis is formulated, postulating that GTPase activity eRF3 during the translation termination is associated with the intermolecular interactions of GTP/GDP, GTPase center of the large ribosomal subunit (60S), MC-domain of eRF1, C-terminal region and GTP-binding domains of eRF3, but without participation of the N-terminal region of eRF3.  相似文献   

11.
Eukaryotic translation termination is triggered by peptide release factors eRF1 and eRF3. eRF1 recognizes the stop codon and promotes nascent peptide chain release, while eRF3 facilitates this peptide release in a GTP-dependent manner. In addition to its role in termination, eRF3 is involved in normal and nonsense-mediated mRNA decay. Despite extensive investigation, the complete understanding of eRF3 function have been hampered by the lack of specific anti-eRF3 monoclonal antibodies (Mabs). The purpose of the study was production of recombinant eRF3a/GSPT1, development of anti-eRF3a/GSPT1 Mabs and their utilization for eRF3a/GSPT1 sub-cellular localization. Plasmid encoding C-terminal part of human GSPT1/eRF3a was constructed. Purified protein, which was predominantly present in the inclusion bodies, was used for the development of Mabs. Characterization of the regions recognized by Mabs using GSPT1/eRF3a mutants and its visualization in the 3D space suggested that Mabs recognize different epitopes. Consistent with its function in translational termination, immunostaining of the cells with developed Mabs revealed that the endogenous GSPT1/eRF3a localized in endoplasmic reticulum. Taking into account the important role of eRF3 for the fundamental research one can suggests that developed Mabs have great prospective to be used as a research reagent in a wide range of applications.  相似文献   

12.
Translation termination in eukaryotes is governed by two interacting release factors, eRF1 and eRF3. The crystal structure of the eEF1alpha-like region of eRF3 from S. pombe determined in three states (free protein, GDP-, and GTP-bound forms) reveals an overall structure that is similar to EF-Tu, although with quite different domain arrangements. In contrast to EF-Tu, GDP/GTP binding to eRF3c does not induce dramatic conformational changes, and Mg(2+) is not required for GDP binding to eRF3c. Mg(2+) at higher concentration accelerates GDP release, suggesting a novel mechanism for nucleotide exchange on eRF3 from that of other GTPases. Mapping sequence conservation onto the molecular surface, combined with mutagenesis analysis, identified the eRF1 binding region, and revealed an essential function for the C terminus of eRF3. The N-terminal extension, rich in acidic amino acids, blocks the proposed eRF1 binding site, potentially regulating eRF1 binding to eRF3 in a competitive manner.  相似文献   

13.
Organisms that use the standard genetic code recognize UAA, UAG, and UGA as stop codons, whereas variant code species frequently alter this pattern of stop codon recognition. We previously demonstrated that a hybrid eRF1 carrying the Euplotes octocarinatus domain 1 fused to Saccharomyces cerevisiae domains 2 and 3 (Eo/Sc eRF1) recognized UAA and UAG, but not UGA, as stop codons. In the current study, we identified mutations in Eo/Sc eRF1 that restore UGA recognition and define distinct roles for the TASNIKS and YxCxxxF motifs in eRF1 function. Mutations in or near the YxCxxxF motif support the cavity model for stop codon recognition by eRF1. Mutations in the TASNIKS motif eliminated the eRF3 requirement for peptide release at UAA and UAG codons, but not UGA codons. These results suggest that the TASNIKS motif and eRF3 function together to trigger eRF1 conformational changes that couple stop codon recognition and peptide release during eukaryotic translation termination.  相似文献   

14.
eIF3j is one of the eukaryotic translation factors originally reported as the labile subunit of the eukaryotic translation initiation factor eIF3. The yeast homolog of this protein, Hcr1, has been implicated in stringent AUG recognition as well as in controlling translation termination and stop codon readthrough. Using a reconstituted mammalian in vitro translation system, we showed that the human protein eIF3j is also important for translation termination. We showed that eIF3j stimulates peptidyl-tRNA hydrolysis induced by a complex of eukaryotic release factors, eRF1-eRF3. Moreover, in combination with the initiation factor eIF3, which also stimulates peptide release, eIF3j activity in translation termination increases. We found that eIF3j interacts with the pre-termination ribosomal complex, and eRF3 destabilises this interaction. In the solution, these proteins bind to each other and to other participants of translation termination, eRF1 and PABP, in the presence of GTP. Using a toe-printing assay, we determined the stage at which eIF3j functions – binding of release factors to the A-site of the ribosome before GTP hydrolysis. Based on these data, we assumed that human eIF3j is involved in the regulation of translation termination by loading release factors into the ribosome.  相似文献   

15.
eRF3 is a GTPase associated with eRF1 in a complex that mediates translation termination in eukaryotes. In mammals, two genes encode two distinct forms of eRF3, eRF3a and eRF3b, which differ in their N-terminal domains. Both bind eRF1 and stimulate its release activity in vitro. However, whether both proteins can function as termination factors in vivo has not been determined. In this study, we used short interfering RNAs to examine the effect of eRF3a and eRF3b depletion on translation termination efficiency in human cells. By measuring the readthrough at a premature nonsense codon in a reporter mRNA, we found that eRF3a silencing induced an important increase in readthrough whereas eRF3b silencing had no significant effect. We also found that eRF3a depletion reduced the intracellular level of eRF1 protein by affecting its stability. In addition, we showed that eRF3b overexpression alleviated the effect of eRF3a silencing on readthrough and on eRF1 cellular levels. These results suggest that eRF3a is the major factor acting in translation termination in mammals and clearly demonstrate that eRF3b can substitute for eRF3a in this function. Finally, our data indicate that the expression level of eRF3a controls the formation of the termination complex by modulating eRF1 protein stability.  相似文献   

16.
Eukaryotic translation termination is mediated by two release factors: eRF1 recognizes stop codons and triggers peptidyl-tRNA hydrolysis, whereas eRF3 accelerates this process in a GTP-dependent manner. Here we report kinetic analysis of guanine nucleotide binding to eRF3 performed by fluorescence stopped-flow technique using GTP/GDP derivatives carrying the fluorescent methylanthraniloyl (mant-) group, as well as thermodynamic analysis of eRF3 binding to unlabeled guanine nucleotides. Whereas the kinetics of eRF3 binding to mant-GDP is consistent with a one-step binding model, the double-exponential transients of eRF3 binding to mant-GTP indicate a two-step binding mechanism, in which the initial eRF3.mant-GTP complex undergoes subsequent conformational change. The affinity of eRF3 for GTP (K(d), approximately 70 microM) is about 70-fold lower than for GDP (K(d), approximately 1 microM) and both nucleotides dissociate rapidly from eRF3 (k(-1)(mant-GDP) approximately 2.4 s(-1); k(-2)(mant-GTP) approximately 3.3 s(-1)). Whereas not influencing eRF3 binding to GDP, association of eRF3 with eRF1 at physiological Mg(2+) concentrations specifically changes the kinetics of eRF3/mant-GTP interaction and stabilizes eRF3.GTP binding by two orders of magnitude (K(d) approximately 0.7 microM) due to lowering of the dissociation rate constant approximately 24-fold (k(-1)(mant-GTP) approximately 0.14s(-1) approximately 0.14 s(-1)). Thus, eRF1 acts as a GTP dissociation inhibitor (TDI) for eRF3, promoting efficient ribosomal recruitment of its GTP-bound form. 80 S ribosomes did not influence guanine nucleotide binding/exchange on the eRF1 x eRF3 complex. Guanine nucleotide binding and exchange on eRF3, which therefore depends on stimulation by eRF1, is entirely different from that on prokaryotic RF3 and unusual among GTPases.  相似文献   

17.
Eukaryotic release factor 3 (eRF3) is implicated in translation termination and also interacts with the poly(A)-binding protein (PABP, Pab1 in yeast), a major player in mRNA metabolism. Despite conservation of this interaction, its precise function remains elusive. First, we showed experimentally that yeast eRF3 does not contain any obvious consensus PAM2 (PABP-interacting motif 2). Thus, in yeast this association is different from the well described interaction between the metazoan factors. To gain insight into the exact function of this interaction, we then analyzed the phenotypes resulting from deleting the respective binding domains. Deletion of the Pab1 interaction domain on eRF3 did not affect general mRNA stability or nonsense-mediated mRNA decay (NMD) pathway and induced a decrease in translational readthrough. Furthermore, combined deletions of the respective interacting domains on eRF3 and on Pab1 were viable, did not affect Pab1 function in mRNA stability and harbored an antisuppression phenotype. Our results show that in Saccharomyces cerevisiae the role of the Pab1 C-terminal domain in mRNA stability is independent of eRF3 and the association of these two factors negatively regulates translation termination.  相似文献   

18.
Translation termination in eukaryotes is mediated by two release factors, eRF1 and eRF3. eRF1 recognizes each of the three stop codons (UAG, UAA, and UGA) and facilitates release of the nascent polypeptide chain. eRF3 is a GTPase that stimulates the translation termination process by a poorly characterized mechanism. In this study, we examined the functional importance of GTP hydrolysis by eRF3 in Saccharomyces cerevisiae. We found that mutations that reduced the rate of GTP hydrolysis also reduced the efficiency of translation termination at some termination signals but not others. As much as a 17-fold decrease in the termination efficiency was observed at some tetranucleotide termination signals (characterized by the stop codon and the first following nucleotide), while no effect was observed at other termination signals. To determine whether this stop signal-dependent decrease in the efficiency of translation termination was due to a defect in either eRF1 or eRF3 recycling, we reduced the level of eRF1 or eRF3 in cells by expressing them individually from the CUP1 promoter. We found that the limitation of either factor resulted in a general decrease in the efficiency of translation termination rather than a decrease at a subset of termination signals as observed with the eRF3 GTPase mutants. We also found that overproduction of eRF1 was unable to increase the efficiency of translation termination at any termination signals. Together, these results suggest that the GTPase activity of eRF3 is required to couple the recognition of translation termination signals by eRF1 to efficient polypeptide chain release.  相似文献   

19.
Translation termination in eukaryotes requires a codon-specific (class-I) release factor, eRF1, and a GTP/GDP-dependent (class-II) release factor, eRF3. The model of "molecular mimicry between release factors and tRNA" predicts that eRF1 mimics tRNA to read the stop codon and that eRF3 mimics elongation factor EF-Tu to bring eRF1 to the A site of the ribosome for termination of protein synthesis. In this study, we set up three systems, in vitro affinity binding, a yeast two-hybrid system, and in vitro competition assay, to determine the eRF3-binding site of eRF1 using the fission yeast Schizosaccharomyces pombe proteins and creating systematic deletions in eRF1. The in vitro affinity binding experiments demonstrated that the predicted tRNA-mimicry truncation of eRF1 (Sup45) forms a stable complex with eRF3 (Sup35). All three test systems revealed that the most critical binding site is located at the C-terminal region of eRF1, which is conserved among eukaryotic eRF1s and rich in acidic amino acids. To our surprise, however, the C-terminal deletion eRF1 seems to be sufficient for cell viability in spite of the severe defect in eRF3 binding when expressed in a temperature-sensitive sup45 mutant of the budding yeast, Saccharomyces cerevisiae. These results cannot be accounted for by the simple "eRF3-EF-Tu mimicry" model, but may provide new insight into the eRF3 function for translation termination in eukaryotes.  相似文献   

20.
Zavialov AV  Buckingham RH  Ehrenberg M 《Cell》2001,107(1):115-124
The mechanism by which peptide release factor RF3 recycles RF1 and RF2 has been clarified and incorporated in a complete scheme for translation termination. Free RF3 is in vivo stably bound to GDP, and ribosomes in complex with RF1 or RF2 act as guanine nucleotide exchange factors (GEF). Hydrolysis of peptidyl-tRNA by RF1 or RF2 allows GTP binding to RF3 on the ribosome. This induces an RF3 conformation with high affinity for ribosomes and leads to rapid dissociation of RF1 or RF2. Dissociation of RF3 from the ribosome requires GTP hydrolysis. Our data suggest that RF3 and its eukaryotic counterpart, eRF3, have mechanistic principles in common.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号