首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

Termination of translation in eukaryotes requires two release factors, eRF1, which recognizes all three nonsense codons and facilitates release of the nascent polypeptide chain, and eRF3 stimulating translation termination in a GTP-depended manner. eRF3 from different organisms possess a highly conservative C region (eRF3C), which is responsible for the function in translation termination, and almost always contain the N-terminal extension, which is inessential and vary both in structure and length. In the yeast Saccharomyces cerevisiae the N-terminal region of eRF3 is responsible for conversion of this protein into the aggregated and functionally inactive prion form.  相似文献   

2.
3.
Eukaryotic translational termination is triggered by polypeptide release factors eRF1, eRF3, and one of the three stop codons at the ribosomal A-site. Isothermal titration calorimetry shows that (i) the separated MC, M, and C domains of human eRF1 bind to eRF3; (ii) GTP binding to eRF3 requires complex formation with either the MC or M + C domains; (iii) the M domain interacts with the N and C domains; (iv) the MC domain and Mg2+ induce GTPase activity of eRF3 in the ribosome. We suggest that GDP binding site of eRF3 acquires an ability to bind gamma-phosphate of GTP if altered by cooperative action of the M and C domains of eRF1. Thus, the stop-codon decoding is associated with the N domain of eRF1 while the GTPase activity of eRF3 is controlled by the MC domain of eRF1 demonstrating a substantial structural uncoupling of these two activities though functionally they are interrelated.  相似文献   

4.
5.
A site-directed photocross-linking approach was employed to determine components that act downstream of ADP-ribosylation factor (ARF). To this end, a photolabile phenylalanine analog was incorporated at various positions of the putative effector region of the ARF molecule. Depending on the position of incorporation, we find specific and GTP-dependent interactions of ARF with two subunits of the coatomer complex, beta-COP and gamma-COP, as well as an interaction with a cytosolic protein (approximately 185 kDa). In addition, we observe homodimer formation of ARF molecules at the Golgi membrane. These data suggest that the binding site of ARF to coatomer is at the interface of its beta- and gamma-subunits, and this is in close proximity to the second site of interaction of coatomer with the Golgi membrane, the binding site within gamma-COP for cytosolic dibasic/diphenylalanine motifs.  相似文献   

6.
Eukaryotic translation termination is governed by eRF1 and eRF3. eRF1 recognizes the stop codons and then hydrolyzes peptidyl-tRNA. eRF3, which facilitates the termination process, belongs to the GTPase superfamily. In this study, the effect of the MC domain of eRF1a (eRF1aMC) on the GTPase activity of eRF3 was analyzed using fluorescence spectra and high-performance liquid chromatography. The results indicated eRF1aMC promotes the GTPase activity of eRF3, which is similar to the role of eRF1a. Furthermore, the increased affinity of eRF3 for GTP induced by eRF1aMC was dependent on the concentration of Mg(2+). Changes in the secondary structure of eRF3C after binding GTP/GDP were detected by CD spectroscopy. The results revealed changes of conformation during formation of the eRF3C·GTP complex that were detected in the presence of eRF1a or eRF1aMC. The conformations of the eRF3C·eRF1a·GTP and eRF3C·eRF1aMC·GTP complexes were further altered upon the addition of Mg(2+). By contrast, there was no change in the conformation of GTP bound to free eRF3C or the eRF3C·eRF1aN complex. These results suggest that alterations in the conformation of GTP bound to eRF3 is dependent on eRF1a and Mg(2+), whereas the MC domain of eRF1a is responsible for the change in the conformation of GTP bound to eRF3 in Euplotes octocarinatus.  相似文献   

7.
Molecular analysis reveals a surprising sharing of short gene segments among a variety of large double-stranded DNA bacteriophages of enteric bacteria. Ancestral genomes from otherwise unrelated phages, including λ Mu, P1, P2 and T4, must have exchanged parts of their tail-fibre genes, Individual genes appear as mosaics with parts derived from a common gene pool. Therefore, horizontal gene transfer emerges as a major factor in the evolution of a specific part of phage genomes. Current concepts of homologous recombination cannot account for the formation of such chimeric genes and the recombinational mechanisms responsible are not known. However, recombination sites for DNA invertases and recombination site-like sequences are present at the boundaries of gene segments conferring the specificity for the host receptor. This, together with the properties of the DNA inversion mechanism, suggests that these site-specific recombination enzymes could be responsible for the exchange of host-range determinants.  相似文献   

8.
The first cDNA for the translational release factor eRF1 of ciliates was cloned from Tetrahymena thermophila. The coding frame contained one UAG and nine UAA codons that are reassigned for glutamine in Tetrahymena. The deduced protein sequence is 57% identical to human eRF1. The recombinant Tetrahymena eRF1 purified from a yeast expression system was able to bind to yeast eRF3 as do other yeast or mammalian eRF1s as a prerequisite step for protein termination. The recombinant Tetrahymena eRF1, nevertheless, failed to catalyze polypeptide termination in vitro with rat or Artemia ribosomes, at least in part, due to less efficient binding to the heterologous ribosomes. Stop codon specificity and phylogenetic significance of Tetrahymena eRF1 are discussed from the conservative protein feature.  相似文献   

9.
Translation termination in eukaryotes requires a stop codon-responsive (class-I) release factor, eRF1, and a guanine nucleotide-responsive (class-II) release factor, eRF3. Schizosaccharomyces pombe eRF3 has an N-terminal polypeptide similar in size to the prion-like domain of Saccharomyces cerevisiae eRF3 in addition to the EF-1alpha-like catalytic domain. By in vivo two-hybrid assay as well as by an in vitro pull-down analysis using purified proteins of S. pombe as well as of S. cerevisiae, eRF1 bound to the C-terminal one-third domain of eRF3, named eRF3C, but not to the N-terminal two-thirds, which was inconsistent with the previous report by Paushkin et al. (1997, Mol Cell Biol 17:2798-2805). The activity of S. pombe eRF3 in eRF1 binding was affected by Ala substitutions for the C-terminal residues conserved not only in eRF3s but also in elongation factors EF-Tu and EF-1alpha. These single mutational defects in the eRF1-eRF3 interaction became evident when either truncated protein eRF3C or C-terminally altered eRF1 proteins were used for the authentic protein, providing further support for the presence of a C-terminal interaction. Given that eRF3 is an EF-Tu/EF-1alpha homolog required for translation termination, the apparent dispensability of the N-terminal domain of eRF3 for binding to eRF1 is in contrast to importance, direct or indirect, in EF-Tu/EF-1alpha for binding to aminoacyl-tRNA, although both eRF3 and EF-Tu/EF-1alpha share some common amino acids for binding to eRF1 and aminoacyl-tRNA, respectively. These differences probably reflect the independence of eRF1 binding in relation to the G-domain function of eRF3 (i.e., probably uncoupled with GTP hydrolysis), whereas aminoacyl-tRNA binding depends on that of EF-Tu/EF-1alpha(i.e., coupled with GTP hydrolysis), which sheds some light on the mechanism of eRF3 function.  相似文献   

10.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 regulates mRNA genesis. It shuttles between the nucleus and cytoplasm. Its shuttling signal is a 38-residue sequence M9. We studied the nuclear import and export of M9 by mutational analysis. Heterokaryon assay indicated that the 19-residue sequence SNFGPMKGGNFGGRSSGPY (M9 core) is necessary and sufficient for shuttling. Moreover, M9 core mutation revealed that in addition to the hitherto characterized N-terminal motif SNFGPMK, the C-terminal motif PY is crucial for nuclear import as well as for binding to transportin. Key residues of the motifs are conserved in the shuttling signals of hnRNP D and JKTBP.  相似文献   

11.
During termination of translation in eukaryotes, a GTP-binding protein, eRF3, functions within a complex with the tRNA-mimicking protein, eRF1, to decode stop codons. It remains unclear how the tRNA-mimicking protein co-operates with the GTPase and with the functional sites on the ribosome. In order to elucidate the molecular characteristics of tRNA-mimicking proteins involved in stop codon decoding, we have devised a heterologous genetic system in Saccharomyces cerevisiae. We found that eRF3 from Pneumocystis carinii (Pc-eRF3) did not complement depletion of S. cerevisiae eRF3. The strength of Pc-eRF3 binding to Sc-eRF1 depends on the GTP-binding domain, suggesting that defects of the GTPase switch in the heterologous complex causes the observed lethality. We isolated mutants of Pc-eRF3 and Sc-eRF1 that restore cell growth in the presence of Pc-eRF3 as the sole source of eRF3. Mapping of these mutations onto the latest 3D-complex structure revealed that they were located in the binding-interface region between eRF1 and eRF3, as well as in the ribosomal functional sites. Intriguingly, a novel functional site was revealed adjacent to the decoding site of eRF1, on the tip domain that mimics the tRNA anticodon loop. This novel domain likely participates in codon recognition, coupled with the GTPase function.  相似文献   

12.
Single-span transmembrane (TM) helices have structural and functional roles well beyond serving as mere anchors to tether water-soluble domains in the vicinity of the membrane. They frequently direct the assembly of protein complexes and mediate signal transduction in ways analogous to small modular domains in water-soluble proteins. This review highlights different sequence and structural motifs that direct TM assembly and discusses their roles in diverse biological processes. We believe that TM interactions are potential therapeutic targets, as evidenced by natural proteins that modulate other TM interactions and recent developments in the design of TM-targeting peptides.  相似文献   

13.
eRF3 is a GTPase associated with eRF1 in a complex that mediates translation termination in eukaryotes. In mammals, two genes encode two distinct forms of eRF3, eRF3a and eRF3b, which differ in their N-terminal domains. Both bind eRF1 and stimulate its release activity in vitro. However, whether both proteins can function as termination factors in vivo has not been determined. In this study, we used short interfering RNAs to examine the effect of eRF3a and eRF3b depletion on translation termination efficiency in human cells. By measuring the readthrough at a premature nonsense codon in a reporter mRNA, we found that eRF3a silencing induced an important increase in readthrough whereas eRF3b silencing had no significant effect. We also found that eRF3a depletion reduced the intracellular level of eRF1 protein by affecting its stability. In addition, we showed that eRF3b overexpression alleviated the effect of eRF3a silencing on readthrough and on eRF1 cellular levels. These results suggest that eRF3a is the major factor acting in translation termination in mammals and clearly demonstrate that eRF3b can substitute for eRF3a in this function. Finally, our data indicate that the expression level of eRF3a controls the formation of the termination complex by modulating eRF1 protein stability.  相似文献   

14.
In eukaryotic ribosome, the N domain of polypeptide release factor eRF1 is involved in decoding stop signals in mRNAs. However, structure of the decoding site remains obscure. Here, we specifically altered the stop codon recognition pattern of human eRF1 by point mutagenesis of the invariant Glu55 and Tyr125 residues in the N domain. The 3D structure of generated eRF1 mutants was not destabilized as demonstrated by calorimetric measurements and calculated free energy perturbations. In mutants, the UAG response was most profoundly and selectively affected. Surprisingly, Glu55Arg mutant completely retained its release activity. Substitution of the aromatic ring in position 125 reduced response toward all stop codons. This result demonstrates the critical importance of Tyr125 for maintenance of the intact structure of the eRF1 decoding site. The results also suggest that Tyr125 is implicated in recognition of the 3d stop codon position and probably forms an H-bond with Glu55. The data point to a pivotal role played by the YxCxxxF motif (positions 125–131) in purine discrimination of the stop codons. We speculate that eRF1 decoding site is formed by a 3D network of amino acids side chains.  相似文献   

15.
GTP hydrolysis catalyzed in the ribosome by a complex of two polypeptide release factors, eRF1 and eRF3, is required for fast and efficient termination of translation in eukaryotes. Here, isothermal titration calorimetry is used for the quantitative thermodynamic characterization of eRF3 interactions with guanine nucleotides, eRF1 and Mg2+. We show that (i) eRF3 binds GDP (Kd = 1.9 μM) and this interaction depends only minimally on the Mg2+ concentration; (ii) GTP binds to eRF3 (Kd = 0.5 μM) only in the presence of eRF1 and this interaction depends on the Mg2+ concentration; (iii) GTP displaces GDP from the eRF1•eRF3•GDP complex, and vice versa; (iv) eRF3 in the GDP-bound form improves its ability to bind eRF1; (v) the eRF1•eRF3 complex binds GDP as efficiently as free eRF3; (vi) the eRF1•eRF3 complex is efficiently formed in the absence of GDP/GTP but requires the presence of the C-terminus of eRF1 for complex formation. Our results show that eRF1 mediates GDP/GTP displacement on eRF3. We suggest that after formation of eRF1•eRF3•GTP•Mg2+, this quaternary complex binds to the ribosomal pretermination complex containing P-site-bound peptidyl-tRNA and the A-site-bound stop codon. The guanine nucleotide binding properties of eRF3 and of the eRF3•eRF1 complex profoundly differ from those of prokaryotic RF3.  相似文献   

16.
Jones S  Sgouros J 《Genome biology》2001,2(3):research0009.1-research000912

Background  

Cohesin is a macromolecular complex that links sister chromatids together at the metaphase plate during mitosis. The links are formed during DNA replication and destroyed during the metaphase-to-anaphase transition. In budding yeast, the 14S cohesin complex comprises at least two classes of SMC (structural maintenance of chromosomes) proteins - Smc1 and Smc3 - and two SCC (sister-chromatid cohesion) proteins - Scc1 and Scc3. The exact function of these proteins is unknown.  相似文献   

17.
Kinjo AR  Nakamura H 《PloS one》2012,7(2):e31437
Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures.  相似文献   

18.
Kervestin S  Li C  Buckingham R  Jacobson A 《Biochimie》2012,94(7):1560-1571
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that accelerates the degradation of mRNAs containing premature translation termination codons. This quality control pathway depends on the NMD-specific factors, Upf1p, Upf2p/Nmd2p, and Upf3p, as well as the two release factors, eRF1 and eRF3 (respectively designated Sup45p and Sup35p in yeast). NMD activation is also enabled by the absence of the poly(A)-binding protein, Pab1p, downstream of a termination event. Since Sup35p interacts with both Upf1p and Pab1p we considered the possibility that differential binding of the latter factors to Sup35p may be a critical determinant of NMD sensitivity for an mRNA. Here we describe three approaches to assess this hypothesis. First, we tethered fragments or mutant forms of Sup35p downstream of a premature termination codon in a mini-pgk1 nonsense-containing mRNA and showed that the inhibition of NMD by tethered Sup35p does not depend on the domain necessary for the recruitment of Pab1p. Second, we examined the Sup35p interaction properties of Upf1p and Pab1p in vitro and showed that these two proteins bind differentially to Sup35p. Finally, we examined competitive binding between the three proteins and observed that Upf1p inhibits Pab1p binding to Sup35p whereas the interaction between Upf1p and Sup35p is relatively unaffected by Pab1p. These data indicate that the binding of Upf1p and Pab1p to Sup35p may be more complex than anticipated and that NMD activation could involve more than just simple competition between these factors. We conclude that activation of NMD at a premature termination codon is not solely based on the absence of Pab1p and suggest that a specific recruitment step must commit Upf1p to the process and Upf1p-associated mRNAs to NMD.  相似文献   

19.
Translation termination in eukaryotes requires a codon-specific (class-I) release factor, eRF1, and a GTP/GDP-dependent (class-II) release factor, eRF3. The model of "molecular mimicry between release factors and tRNA" predicts that eRF1 mimics tRNA to read the stop codon and that eRF3 mimics elongation factor EF-Tu to bring eRF1 to the A site of the ribosome for termination of protein synthesis. In this study, we set up three systems, in vitro affinity binding, a yeast two-hybrid system, and in vitro competition assay, to determine the eRF3-binding site of eRF1 using the fission yeast Schizosaccharomyces pombe proteins and creating systematic deletions in eRF1. The in vitro affinity binding experiments demonstrated that the predicted tRNA-mimicry truncation of eRF1 (Sup45) forms a stable complex with eRF3 (Sup35). All three test systems revealed that the most critical binding site is located at the C-terminal region of eRF1, which is conserved among eukaryotic eRF1s and rich in acidic amino acids. To our surprise, however, the C-terminal deletion eRF1 seems to be sufficient for cell viability in spite of the severe defect in eRF3 binding when expressed in a temperature-sensitive sup45 mutant of the budding yeast, Saccharomyces cerevisiae. These results cannot be accounted for by the simple "eRF3-EF-Tu mimicry" model, but may provide new insight into the eRF3 function for translation termination in eukaryotes.  相似文献   

20.
Studying similarities in protein molecules has become a fundamental activity in much of biology and biomedical research, for which methods such as multiple sequence alignments are widely used. Most methods available for such comparisons cater to studying proteins which have clearly recognizable evolutionary relationships but not to proteins that recognize the same or similar ligands but do not share similarities in their sequence or structural folds. In many cases, proteins in the latter class share structural similarities only in their binding sites. While several algorithms are available for comparing binding sites, there are none for deriving structural motifs of the binding sites, independent of the whole proteins. We report the development of SiteMotif, a new algorithm that compares binding sites from multiple proteins and derives sequence-order independent structural site motifs. We have tested the algorithm at multiple levels of complexity and demonstrate its performance in different scenarios. We have benchmarked against 3 current methods available for binding site comparison and demonstrate superior performance of our algorithm. We show that SiteMotif identifies new structural motifs of spatially conserved residues in proteins, even when there is no sequence or fold-level similarity. We expect SiteMotif to be useful for deriving key mechanistic insights into the mode of ligand interaction, predict the ligand type that a protein can bind and improve the sensitivity of functional annotation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号