首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
杨倬  田波 《微生物学通报》2018,45(12):2731-2737
【背景】研究发现microRNAs(miRNAs)可以参与调控病毒在宿主细胞内感染和复制的过程。【目的】研究miR-34b对肠道病毒71型(Enterovirus71,EV71)在宿主细胞内的复制及其可能机制。【方法】在人横纹肌肉瘤(Rhabdomyosarcoma,RD)细胞中转染miR-34b mimics和Inhibitor,通过Western blot和Real-time PCR实验检验EV71病毒的复制和表达情况。随后利用双荧光素酶报告系统验证miR-34b与潜在靶点eIF4E的相互作用,并检测miR-34b对RD细胞中eIF4E mRNA表达水平的影响。【结果】miR-34b可以促进病毒在RD细胞中的复制和表达,而miR-34b抑制剂有抑制病毒复制的作用,细胞内miR-34b可以通过作用于靶基因eIF4E调控EV71在宿主细胞中的复制过程。【结论】揭示了miR-34b在EV71病毒复制过程中的调控作用及机制,研究EV71病毒与宿主miRNAs的相互作用机制为进一步阐明EV71病毒感染与复制机理奠定了基础。  相似文献   

3.
MicroRNAs (miRNAs) are a large class of small (~22 nt) non-coding RNAs that negatively regulate gene expression most often at the level of translation, and have been shown to be key regulators in a variety of processes including development, cell cycle and immunity. The Epstein-Barr virus (EBV) is an oncogenic herpes virus endemic in humans that encodes at least twenty-two of its own miRNAs. Cellular miRNAs have well-established roles in cancer and immune pathways, and multiple cellular miRNAs directly target viral messages. Additionally, multiple viruses express suppressors of cellular RNAi-induced silencing. Here we show that EBV de novo infection of primary cultured human B-cells results in a dramatic down-regulation of cellular miRNA expression, suggesting the virus may encode or activate a suppressor of miRNA expression. We additionally show that the immuno-modulatory microRNA miR-146a, down-regulated on initial infection, is significantly up-regulated more than 100-fold upon induction of the viral lytic cycle, and appears to have inhibitory effects on the progression of the lytic cycle. Our results show that EBV has large effects on cellular miRNA expression.  相似文献   

4.
5.
微小RNA(miRNA)是一类内源性小RNA,通过结合mRNA的3′非翻译区对基因进行转录后的调节,具有广泛的生物学功能.已有研究表明,宿主miRNA能调节人类免疫缺陷病毒(HIV)的基因表达,影响HIV的复制能力、感染性,并可能与HIV的潜伏有关.与此同时,HIV来源的病毒miRNA同样在病毒的生活史以及病毒与宿主的...  相似文献   

6.
7.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression and may contribute to the development and progression of many infective diseases including human immunodeficiency virus 1 (HIV-1) infection. The Tat protein is fundamental to viral gene expression. In this study, our goal was to investigate the regulation of a specific miRNA (known as miR-217) in multinuclear activation of galactosidase indicator (MAGI) cells and explore the mechanisms by which miR-217 influenced Tat-induced HIV-1 transactivation through down-regulation of SIRT1 expression. We showed that miR-217 was up-regulated when Tat was expressed in multinuclear activation of galactosidase indicator cells. Forced expression of "miR-217 mimics" increased Tat-induced LTR transactivation. In addition, miR-217 significantly inhibited SIRT1 protein expression by acting on the 3'-UTR of the SIRT1 mRNA. In turn, the decrease in SIRT1 protein abundance provoked by miR-217 affected two important types of downstream signaling molecules that were regulated by Tat. Lower expression of SIRT1 caused by miR-217 enhanced Tat-induced phosphorylation of IKK and p65-NFkB and also exacerbated the loss of AMPK phosphorylation triggered by Tat. Our results uncover previously unknown links between Tat and a specific host cell miRNA that targets SIRT1. We also demonstrate that this regulatory mechanism impinges on p65-NFkB and AMPK signaling: two important host cell pathways that influence HIV-1 pathogenesis. Our results also suggest that strategies to augment SIRT1 protein expression by down-regulation of miR-217 may have therapeutic benefits to prevent HIV-1 replication.  相似文献   

8.
In mammals, viral infections are detected by innate immune receptors, including Toll-like receptor and retinoic acid inducible gene I (RIG-I)-like receptor (RLR), which activate the type I interferon (IFN) system. IFN essentially activates genes encoding antiviral proteins that inhibit various steps of viral replication as well as facilitate the subsequent activation of acquired immune responses. In this study, we investigated the expression of non-coding RNA upon viral infection or RLR activation. Using a microarray, we identified several microRNAs (miRNA) specifically induced to express by RLR signaling. As suggested by Bioinformatics (miRBase Target Data base), one of the RLR-inducible miRNAs, miR-23b, actually knocked down the expression of very low density lipoprotein receptor (VLDLR) and LDLR-related protein 5 (LRP5). Transfection of miR-23b specifically inhibited infection of rhinovirus 1B (RV1B), which utilizes the low density lipoprotein receptor (LDLR) family for viral entry. Conversely, introduction of anti-miRNA-23b enhanced the viral yield. Knockdown experiments using small interfering RNA (siRNA) revealed that VLDLR, but not LRP5, is critical for an efficient infection by RV1B. Furthermore, experiments with the transfection of infectious viral RNA revealed that miR-23b did not affect post-entry viral replication. Our results strongly suggest that RIG-I signaling results in the inhibitions of infections of RV1B through the miR-23b-mediated down-regulation of its receptor VLDLR.  相似文献   

9.
10.
11.
12.
13.
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases of swine, which is caused by PRRS virus (PRRSV). CD151, one of PRRSV entry mediators, determines the cell susceptibility for PRRSV. Emerging evidence indicates that the host microRNAs (miRNAs) play key roles in modulating virus infection and viral pathogenesis. In the present study, targeting porcine CD151 miRNAs were identified, and their function during PRRSV infection in MARC-145 cells was further verified. We found that miR-506 could directly target porcine CD151 3′-UTR mRNA by luciferase reporter assay. Overexpression of miR-506 significantly decreased CD151 expression at both mRNA and protein levels. Furthermore, overexpression of miR-506 reduced cellular PRRSV replication and virus release in MARC-145 cells. Our results suggested that miR-506 could inhibit PRRSV replication by directly targeting PRRSV receptor of CD151 in MARC-145 cells. However, the molecular mechanisms of miR-506 and its function in vivo need further investigation.  相似文献   

14.
15.
KSHV is a DNA tumor virus that causes Kaposi’s sarcoma. Upon KSHV infection, only a limited number of latent genes are expressed. We know that KSHV infection regulates host gene expression, and hypothesized that latent genes also modulate the expression of host miRNAs. Aberrant miRNA expression contributes to the development of many types of cancer. Array-based miRNA profiling revealed that all six miRNAs of the oncogenic miR-17-92 cluster are up-regulated in KSHV infected endothelial cells. Among candidate KSHV latent genes, we found that vFLIP and vCyclin were shown to activate the miR-17-92 promoter, using luciferase assay and western blot analysis. The miR-17-92 cluster was previously shown to target TGF-β signaling. We demonstrate that vFLIP and vCyclin induce the expression of the miR-17-92 cluster to strongly inhibit the TGF-β signaling pathway by down-regulating SMAD2. Moreover, TGF-β activity and SMAD2 expression were fully restored when antagomirs (inhibitors) of miR-17-92 cluster were transfected into cells expressing either vFLIP or vCyclin. In addition, we utilized viral genetics to produce vFLIP or vCyclin knock-out viruses, and studied the effects in infected TIVE cells. Infection with wildtype KSHV abolished expression of SMAD2 protein in these endothelial cells. While single-knockout mutants still showed a marked reduction in SMAD2 expression, TIVE cells infected by a double-knockout mutant virus were fully restored for SMAD2 expression, compared to non-infected TIVE cells. Expression of either vFLIP or vCycIin was sufficient to downregulate SMAD2. In summary, our data demonstrate that vFLIP and vCyclin induce the oncogenic miR-17-92 cluster in endothelial cells and thereby interfere with the TGF-β signaling pathway. Manipulation of the TGF-β pathway via host miRNAs represents a novel mechanism that may be important for KSHV tumorigenesis and angiogenesis, a hallmark of KS.  相似文献   

16.
MicroRNAs (miRNAs) are a class of small RNA molecules that function to control gene expression and restrict viral replication in host cells. The production of miRNAs is believed to be dependent upon the DICER enzyme. Available evidence suggests that in T lymphocytes, HIV-1 can both suppress and co-opt the host''s miRNA pathway for its own benefit. In this study, we examined the state of miRNA production in monocytes and macrophages as well as the consequences of viral infection upon the production of miRNA. Monocytes in general express low amounts of miRNA-related proteins, and DICER in particular could not be detected until after monocytes were differentiated into macrophages. In the case where HIV-1 was present prior to differentiation, the expression of DICER was suppressed. MicroRNA chip results for RNA isolated from transfected and treated cells indicated that a drop in miRNA production coincided with DICER protein suppression in macrophages. We found that the expression of DICER in monocytes is restricted by miR-106a, but HIV-1 suppressed DICER expression via the viral gene Vpr. Additionally, analysis of miRNA expression in monocytes and macrophages revealed evidence that some miRNAs can be processed by both DICER and PIWIL4. Results presented here have implications for both the pathology of viral infections in macrophages and the biogenesis of miRNAs. First, HIV-1 suppresses the expression and function of DICER in macrophages via a previously unknown mechanism. Second, the presence of miRNAs in monocytes lacking DICER indicates that some miRNAs can be generated by proteins other than DICER.  相似文献   

17.
4-Hydroxynonenal (HNE) is one of several lipid oxidation products that may have an impact on human pathophysiology. It is an important second messenger involved in the regulation of various cellular processes and exhibits antiproliferative and differentiative properties in various tumor cell lines. The mechanisms by which HNE affects cell growth and differentiation are only partially clarified. Because microRNAs (miRNAs) have the ability to regulate several cellular processes, we hypothesized that HNE, in addition to other mechanisms, could affect miRNA expression. Here, we present the results of a genome-wide miRNA expression profiling of HNE-treated HL-60 leukemic cells. Among 470 human miRNAs, 10 were found to be differentially expressed between control and HNE-treated cells (at p < 0.05). Six miRNAs were down-regulated (miR-181a*, miR-199b, miR-202, miR-378, miR-454-3p, miR-575) and 4 were up-regulated (miR-125a, miR-339, miR-663, miR-660). Three of these regulated miRNAs (miR-202, miR-339, miR-378) were further assayed and validated by quantitative real-time RT-PCR. Moreover, consistent with the down-regulation of miR-378, HNE also induced the expression of the SUFU protein, a tumor suppressor recently identified as a target of miR-378. The finding that HNE could regulate the expression of miRNAs and their targets opens new perspectives on the understanding of HNE-controlled pathways. A functional analysis of 191 putative gene targets of miRNAs modulated by HNE is discussed.  相似文献   

18.
19.

Background

Bovine ephemeral fever virus (BEFV), the causative agent of bovine ephemeral fever, is an economically important pathogen of cattle and water buffalo. MicroRNAs (miRNAs) are endogenous 21-23?nt small non-coding RNA molecules that binding to a multiple of target mRNAs and functioning in the regulation of viral replication including the miRNA-mediated antiviral defense. However, the reciprocal interaction between bovine ephemeral fever virus replication and host miRNAs still remain poorly understood. The aim of our study herein was to investigate the exact function of miR-3470b and its molecular mechanisms during BEFV infection.

Results

In this study, we found a set of microRNAs induced by BEFV infection using small RNA deep sequencing, and further identified BEFV infection could significantly up-regulate the miR-3470b expression in Baby Hamster Syrian Kidney cells (BHK-21) after 24?h and 48?h post-infection (pi) compared to normal BHK-21 cells without BEFV infection. Additionally, the target association between miR-3470b and mitochondrial antiviral signaling protein (MAVS) was predicted by target gene prediction tools and further validated using a dual-luciferase reporter assay, and the expression of MAVS mRNA and protein levels was negatively associated with miR-3470b levels. Furthermore, the miR-3470b mimic transfection significantly contributed to increase the BEFV N mRNA, G protein level and viral titer, respectively, whereas the miR-3470b inhibitor had the opposite effect on BEFV replication. Moreover, the overexpression of MAVS or silencing of miR-3470b by its inhibitors suppressed BEFV replication, and knockdown of MAVS by small interfering RNA also promoted the replication of BEFV.

Conclusions

Our findings is the first to reveal that miR-3470b as a novel host factor regulates BEFV replication via directly targeting the MAVS gene in BHK-21 cells and may provide a potential strategy for developing effective antiviral therapy.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号