首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
人类非洲锥虫病是一种被忽视的热带寄生虫病,威胁着撒哈拉以南非洲人民的生命健康。目前临床使用的治疗药物有四种,这些药物副作用多,用药困难并产生了一定的耐药性,因此有必要开发安全有效且利于服用的药物。目前有三类候选药物相继进入临床实验阶段,在不久的将来可能会进入临床应用。另外,还有许多正在研究的治疗药物,包括天然产物、磷酸二酯酶抑制剂、蛋白酶抑制剂、拓扑异构酶抑制剂、亮氨酰t RNA合成酶抑制剂、微管蛋白抑制剂以及一些靶点尚不明确却有很好的锥虫抑制活性的化合物。其中,壳二孢呋喃酮选择性较好,喹啉-3-羧酸类衍生物毒性低,5-硝基-2-呋喃酰胺类化合物对硝呋莫司耐受的锥虫仍有活性。这些研究无疑都为新型抗锥虫药物的出现提供了可能,相信在不久的将来越来越多的药物会在临床使用。  相似文献   

2.
3.

Background

Active screening by mobile teams is considered the best method for detecting human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense but the current funding context in many post-conflict countries limits this approach. As an alternative, non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases who need testing based on their symptoms. We explored the predictive value of syndromic referral algorithms to identify symptomatic cases of HAT among a treatment-seeking population in Nimule, South Sudan.

Methodology/Principal Findings

Symptom data from 462 patients (27 cases) presenting for a HAT test via passive screening over a 7 month period were collected to construct and evaluate over 14,000 four item syndromic algorithms considered simple enough to be used by peripheral HCWs. For comparison, algorithms developed in other settings were also tested on our data, and a panel of expert HAT clinicians were asked to make referral decisions based on the symptom dataset. The best performing algorithms consisted of three core symptoms (sleep problems, neurological problems and weight loss), with or without a history of oedema, cervical adenopathy or proximity to livestock. They had a sensitivity of 88.9–92.6%, a negative predictive value of up to 98.8% and a positive predictive value in this context of 8.4–8.7%. In terms of sensitivity, these out-performed more complex algorithms identified in other studies, as well as the expert panel. The best-performing algorithm is predicted to identify about 9/10 treatment-seeking HAT cases, though only 1/10 patients referred would test positive.

Conclusions/Significance

In the absence of regular active screening, improving referrals of HAT patients through other means is essential. Systematic use of syndromic algorithms by peripheral HCWs has the potential to increase case detection and would increase their participation in HAT programmes. The algorithms proposed here, though promising, should be validated elsewhere.  相似文献   

4.
BackgroundDiagnosis of human African trypanosomiasis (HAT) remains a challenge both for active screening, which is critical in control of the disease, and in the point-of-care scenario where early and accurate diagnosis is essential. Recently, the first field deployment of a lateral flow rapid diagnostic test (RDT) for HAT, “SD BIOLINE HAT” has taken place. In this study, we evaluated the performance of “SD BIOLINE HAT” and two new prototype RDTs.Conclusions/SignificanceBoth “SD BIOLINE HAT” and the prototype devices performed comparably well to one another and also to the published performance range of the card agglutination test for trypanosomiasis in sensitivity and specificity. The performance of individual antigens enabled us to predict that an all-recombinant antigen RDT can be developed with an accuracy equivalent to “ SD BIOLINE HAT.” Such an RDT would have advantages in simplified manufacture, lower unit cost and assured reproducibility.  相似文献   

5.
Human African Trypanosomiasis (HAT) has been responsible for several deadly epidemics throughout the 20th century, but a renewed commitment to disease control has significantly reduced new cases and motivated a target for the elimination of Trypanosoma brucei gambiense-HAT by 2030. However, the recent identification of latent human infections, and the detection of trypanosomes in extravascular tissues hidden from current diagnostic tools, such as the skin, has added new complexity to identifying infected individuals. New and improved diagnostic tests to detect Trypanosoma brucei infection by interrogating the skin are therefore needed. Recent advances have improved the cost, sensitivity and portability of Raman spectroscopy technology for non-invasive medical diagnostics, making it an attractive tool for gambiense-HAT detection. The aim of this work was to assess and develop a new non-invasive diagnostic method for T. brucei through Raman spectroscopy of the skin. Infections were performed in an established murine disease model using the animal-infective Trypanosoma brucei brucei subspecies. The skin of infected and matched control mice was scrutinized ex vivo using a confocal Raman microscope with 532 nm excitation and in situ at 785 nm excitation with a portable field-compatible instrument. Spectral evaluation and Principal Component Analysis confirmed discrimination of T. brucei-infected from uninfected tissue, and a characterisation of biochemical changes in lipids and proteins in parasite-infected skin indicated by prominent Raman peak intensities was performed. This study is the first to demonstrate the application of Raman spectroscopy for the detection of T. brucei by targeting the skin of the host. The technique has significant potential to discriminate between infected and non-infected tissue and could represent a unique, non-invasive diagnostic tool in the goal for elimination of gambiense-HAT as well as for Animal African Trypanosomiasis (AAT).  相似文献   

6.
Loop-mediated isothermal amplification (LAMP) is a rapid and sensitive tool used for the diagnosis of a variety of infectious diseases. One of the advantages of this method over the polymerase chain reaction is that DNA amplification occurs at a constant temperature, usually between 60–65°C; therefore, expensive devices are unnecessary for this step. However, LAMP still requires complicated sample preparation steps and a well-equipped laboratory to produce reliable and reproducible results, which limits its use in resource-poor laboratories in most developing countries. In this study, we made several substantial modifications to the technique to carry out on-site diagnosis of Human African Trypanosomiasis (HAT) in remote areas using LAMP. The first essential improvement was that LAMP reagents were dried and stabilized in a single tube by incorporating trehalose as a cryoprotectant to prolong shelf life at ambient temperature. The second technical improvement was achieved by simplifying the sample preparation step so that DNA or RNA could be amplified directly from detergent-lysed blood samples. With these modifications, diagnosis of HAT in local clinics or villages in endemic areas becomes a reality, which could greatly impact on the application of diagnosis not only for HAT but also for other tropical diseases.  相似文献   

7.

Background

Human African trypanosomiasis (HAT), also known as sleeping sickness, is a parasitic tropical disease. It progresses from the first, haemolymphatic stage to a neurological second stage due to invasion of parasites into the central nervous system (CNS). As treatment depends on the stage of disease, there is a critical need for tools that efficiently discriminate the two stages of HAT. We hypothesized that markers of brain damage discovered by proteomic strategies and inflammation-related proteins could individually or in combination indicate the CNS invasion by the parasite.

Methods

Cerebrospinal fluid (CSF) originated from parasitologically confirmed Trypanosoma brucei gambiense patients. Patients were staged on the basis of CSF white blood cell (WBC) count and presence of parasites in CSF. One hundred samples were analysed: 21 from stage 1 (no trypanosomes in CSF and ≤5 WBC/µL) and 79 from stage 2 (trypanosomes in CSF and/or >5 WBC/µL) patients. The concentration of H-FABP, GSTP-1 and S100β in CSF was measured by ELISA. The levels of thirteen inflammation-related proteins (IL-1ra, IL-1β, IL-6, IL-9, IL-10, G-CSF, VEGF, IFN-γ, TNF-α, CCL2, CCL4, CXCL8 and CXCL10) were determined by bead suspension arrays.

Results

CXCL10 most accurately distinguished stage 1 and stage 2 patients, with a sensitivity of 84% and specificity of 100%. Rule Induction Like (RIL) analysis defined a panel characterized by CXCL10, CXCL8 and H-FABP that improved the detection of stage 2 patients to 97% sensitivity and 100% specificity.

Conclusion

This study highlights the value of CXCL10 as a single biomarker for staging T. b. gambiense-infected HAT patients. Further combination of CXCL10 with H-FABP and CXCL8 results in a panel that efficiently rules in stage 2 HAT patients. As these molecules could potentially be markers of other CNS infections and disorders, these results should be validated in a larger multi-centric cohort including other inflammatory diseases such as cerebral malaria and active tuberculosis.  相似文献   

8.
9.
10.
Modification of the structure of trypanosomal AdoMetDC inhibitor 1 (MDL73811) resulted in the identification of a new inhibitor 7a, which features a methyl substituent at the 8-position. Compound 7a exhibits improved potencies against both the trypanosomal AdoMetDC enzyme and parasites, and better blood brain barrier penetration than 1.  相似文献   

11.

Background

African trypanosomes constrain livestock and human health in Sub-Saharan Africa, and aggravate poverty and hunger of these otherwise largely livestock-keeping communities. To solve this, there is need to develop and use effective and cheap tsetse control methods. To this end, we aimed at determining the smallest proportion of a cattle herd that needs to be sprayed on the legs, bellies and ears (RAP) for effective Human and Animal African Trypanosomiasis (HAT/AAT) control.

Methodology/Principal finding

Cattle in 20 villages were ear-tagged and injected with two doses of diminazene diaceturate (DA) forty days apart, and randomly allocated to one of five treatment regimens namely; no treatment, 25%, 50%, 75% monthly RAP and every 3 month Albendazole drench. Cattle trypanosome re-infection rate was determined by molecular techniques. ArcMap V10.3 was used to map apparent tsetse density (FTD) from trap catches. The effect of graded RAP on incidence risk ratios and trypanosome prevalence was determined using Poisson and logistic random effect models in R and STATA V12.1 respectively. Incidence was estimated at 9.8/100 years in RAP regimens, significantly lower compared to 25.7/100 years in the non-RAP regimens (incidence rate ratio: 0.37; 95% CI: 0.22–0.65; P<0.001). Likewise, trypanosome prevalence after one year of follow up was significantly lower in RAP animals than in non-RAP animals (4% vs 15%, OR: 0.20, 95% CI: 0.08–0.44; P<0.001). Contrary to our expectation, level of protection did not increase with increasing proportion of animals treated.

Conclusions/significance

Reduction in RAP coverage did not significantly affect efficacy of treatment. This is envisaged to improve RAP adaptability to low income livestock keepers but needs further evaluation in different tsetse challenge, HAT/AAT transmission rates and management systems before adopting it for routine tsetse control programs.  相似文献   

12.

Background

Molecular methods have great potential for sensitive parasite detection in the diagnosis of human African trypanosomiasis (HAT), but the requirements in terms of laboratory infrastructure limit their use to reference centres. A recently developed assay detects the Trypanozoon repetitive insertion mobile element (RIME) DNA under isothermal amplification conditions and has been transformed into a ready-to-use kit format, the Loopamp Trypanosoma brucei. In this study, we have evaluated the diagnostic performance of the Loopamp Trypanosoma brucei assay (hereafter called LAMP) in confirmed T.b. gambiense HAT patients, HAT suspects and healthy endemic controls from the Democratic Republic of the Congo (DRC).

Methodology/Principal findings

142 T.b. gambiense HAT patients, 111 healthy endemic controls and 97 HAT suspects with unconfirmed status were included in this retrospective evaluation. Reference standard tests were parasite detection in blood, lymph or cerebrospinal fluid. Archived DNA from blood of all study participants was analysed in duplicate with LAMP. Sensitivity of LAMP in parasitologically confirmed cases was 87.3% (95% CI 80.9–91.8%) in the first run and 93.0% (95% CI 87.5–96.1%) in the second run. Specificity in healthy controls was 92.8% (95% CI 86.4–96.3%) in the first run and 96.4% (95% CI 91.1–98.6%) in the second run. Reproducibility was excellent with a kappa value of 0.81.

Conclusions/Significance

In this laboratory-based study, the Loopamp Trypanosoma brucei Detection Kit showed good diagnostic accuracy and excellent reproducibility. Further studies are needed to assess the feasibility of its routine use for diagnosis of HAT under field conditions.  相似文献   

13.
Human African trypanosomiasis, or sleeping sickness, is a parasitic disease endemic in sub-Saharan Africa, transmitted to humans through the bite of a tsetse fly. The first or hemolymphatic stage of the disease is associated with presence of parasites in the bloodstream, lymphatic system, and body tissues. If patients are left untreated, parasites cross the blood-brain barrier and invade the cerebrospinal fluid and the brain parenchyma, giving rise to the second or meningoencephalitic stage. Stage determination is a crucial step in guiding the choice of treatment, as drugs used for S2 are potentially dangerous. Current staging methods, based on counting white blood cells and demonstrating trypanosomes in cerebrospinal fluid, lack specificity and/or sensitivity. In the present study, we used several proteomic strategies to discover new markers with potential for staging human African trypanosomiasis. Cerebrospinal fluid (CSF) samples were collected from patients infected with Trypanosoma brucei gambiense in the Democratic Republic of Congo. The stage was determined following the guidelines of the national control program. The proteome of the samples was analyzed by two-dimensional gel electrophoresis (n = 9), and by sixplex tandem mass tag (TMT) isobaric labeling (n = 6) quantitative mass spectrometry. Overall, 73 proteins were overexpressed in patients presenting the second stage of the disease. Two of these, osteopontin and β-2-microglobulin, were confirmed to be potential markers for staging human African trypanosomiasis (HAT) by Western blot and ELISA. The two proteins significantly discriminated between S1 and S2 patients with high sensitivity (68% and 78%, respectively) for 100% specificity, and a combination of both improved the sensitivity to 91%. The levels of osteopontin and β-2-microglobulin in CSF of S2 patients (μg/ml range), as well as the fold increased concentration in S2 compared with S1 (3.8 and 5.5 respectively) make the two markers good candidates for the development of a test for staging HAT patients.Human African trypanosomiasis (HAT), or sleeping sickness, is caused by an extracellular protozoan parasite of the genus Trypanosoma, which is transmitted through the bite of a tsetse fly (genus Glossina). Two morphologically identical subspecies of the parasite, are responsible for the two geographically and clinically different forms of HAT: a chronic form, widespread in West and Central Africa, caused by T. b. gambiense, and an acute form, endemic in eastern Africa, caused by T. b. rhodesiense (1). In both forms of the disease, parasites are initially localized in the blood stream, lymph, and peripheral tissues; this is the first or hemolymphatic stage (S1). During this stage, patients present generic clinical features that are common to other infectious diseases such as human immunodeficiency virus (HIV), malaria, and tuberculosis (TB), which can coexist with HAT, thus making its early diagnosis difficult (2). If treatment is not carried out, the disease progresses to the second or meningoencephalitic stage (S2) after trypanosomes cross the blood-brain barrier (BBB) and invade the central nervous system (CNS). This phase is characterized by a broad range of neurological signs that are indicative of CNS involvement (1). Diagnosis of HAT is based on parasitological demonstration of parasites in blood or lymph-node aspirate (3). All positive or suspect patients have to undergo a lumbar puncture and cerebrospinal fluid (CSF)1 examination, to determine whether they have second stage disease (4). According to the World Health Organization (WHO) guidelines, the meningoencephalitic stage is defined by the presence of parasites in CSF and/or a white blood cell (WBC) count of more than 5 cells per μl (5). Other parameters, such as intrathecal IgM production could also provide additional information to determine whether the CNS is involved (6, 7).Treatment of HAT patients varies depending on the infecting parasite and the stage of disease (5, 8). S2 drugs in current use, including melarsoprol, eflornithine, and a combination of nifurtimox and eflornithine have several limitations, such as a high rate of toxicity (melarsoprol causes death to 5% of treated patients) (9), complex logistics, and mode of administration (6, 10). Consequently, staging is a vital step in the diagnosis and treatment of HAT. However, the poor specificity or sensitivity of WBC counting and of parasitological techniques for demonstration of parasites in CSF, highlight the need for discovery of better tools for staging the disease.Several attempts have been made during the last decade to identify potential biomarkers able to discriminate between the two stages of sleeping sickness. Most of the efforts focused on cytokines and chemokines, because the patient''s immune system plays a crucial role in the brain pathology (1114).Proteomic approaches are increasingly being applied in biomedical research and clinical medicine to investigate body fluids as a source of biomarkers (15), including the diagnosis of neurological disorders such as Alzheimer''s disease (16), Parkinson''s disease (17), and multiple sclerosis (18, 19). The protein composition of CSF is strictly regulated and can reflect the physiological or pathological state of the CNS (15). Thus in the present study, we addressed the challenge of staging HAT by analyzing CSF from T. b. gambiense patients using two complementary proteomic strategies: a classical approach based on two-dimensional gel electrophoresis (2-DE), and quantitative mass spectrometry (MS) using isobaric tandem mass tag (TMT) technology (sixplex TMT® MS/MS) (20).  相似文献   

14.
We are attempting to develop cost-effective control methods for the important vector of sleeping sickness, Glossina fuscipes spp. Responses of the tsetse flies Glossina fuscipes fuscipes (in Kenya) and G. f. quanzensis (in Democratic Republic of Congo) to natural host odours are reported. Arrangements of electric nets were used to assess the effect of cattle-, human- and pig-odour on (1) the numbers of tsetse attracted to the odour source and (2) the proportion of flies that landed on a black target (1×1 m). In addition responses to monitor lizard (Varanus niloticus) were assessed in Kenya. The effects of all four odours on the proportion of tsetse that entered a biconical trap were also determined. Sources of natural host odour were produced by placing live hosts in a tent or metal hut (volumes≈16 m3) from which the air was exhausted at ∼2000 L/min. Odours from cattle, pigs and humans had no significant effect on attraction of G. f. fuscipes but lizard odour doubled the catch (P<0.05). Similarly, mammalian odours had no significant effect on landing or trap entry whereas lizard odour increased these responses significantly: landing responses increased significantly by 22% for males and 10% for females; the increase in trap efficiency was relatively slight (5–10%) and not always significant. For G. f. quanzensis, only pig odour had a consistent effect, doubling the catch of females attracted to the source and increasing the landing response for females by ∼15%. Dispensing CO2 at doses equivalent to natural hosts suggested that the response of G. f. fuscipes to lizard odour was not due to CO2. For G. f. quanzensis, pig odour and CO2 attracted similar numbers of tsetse, but CO2 had no material effect on the landing response. The results suggest that identifying kairomones present in lizard odour for G. f. fuscipes and pig odour for G. f. quanzensis may improve the performance of targets for controlling these species.  相似文献   

15.

Background

The diagnosis of Human African Trypanosomiasis relies mainly on the Card Agglutination Test for Trypanosomiasis (CATT). While this test is successful, it is acknowledged that there may be room for improvement. Our aim was to develop a prototype lateral flow test based on the detection of antibodies to trypanosome antigens.

Methodology/Principal Findings

We took a non-biased approach to identify potential immunodiagnostic parasite protein antigens. The IgG fractions from the sera from Trypanosoma brucei gambiense infected and control patients were isolated using protein-G affinity chromatography and then immobilized on Sepharose beads. The IgG-beads were incubated with detergent lysates of trypanosomes and those proteins that bound were identified by mass spectrometry-based proteomic methods. This approach provided a list of twenty-four trypanosome proteins that selectively bound to the infection IgG fraction and that might, therefore, be considered as immunodiagnostic antigens. We selected four antigens from this list (ISG64, ISG65, ISG75 and GRESAG4) and performed protein expression trials in E. coli with twelve constructs. Seven soluble recombinant protein products (three for ISG64, two for ISG65 and one each for ISG75 and GRESAG4) were obtained and assessed for their immunodiagnostic potential by ELISA using individual and/or pooled patient sera. The ISG65 and ISG64 construct ELISAs performed well with respect to detecting T. b. gambiense infections, though less well for detecting T. b. rhodesiense infections, and the best performing ISG65 construct was used to develop a prototype lateral flow diagnostic device.

Conclusions/Significance

Using a panel of eighty randomized T. b. gambiense infection and control sera, the prototype showed reasonable sensitivity (88%) and specificity (93%) using visual readout in detecting T. b. gambiense infections. These results provide encouragement to further develop and optimize the lateral flow device for clinical use.  相似文献   

16.

Background

In Human African Trypanosomiasis, neurological symptoms dominate and cardiac involvement has been suggested. Because of increasing resistance to the available drugs for HAT, new compounds are desperately needed. Evaluation of cardiotoxicity is one parameter of drug safety, but without knowledge of the baseline heart involvement in HAT, cardiologic findings and drug-induced alterations will be difficult to interpret. The aims of the study were to assess the frequency and characteristics of electrocardiographic findings in the first stage of HAT, to compare these findings to those of second stage patients and healthy controls and to assess any potential effects of different therapeutic antiparasitic compounds with respect to ECG changes after treatment.

Methods

Four hundred and six patients with first stage HAT were recruited in the Democratic Republic of Congo, Angola and Sudan between 2002 and 2007 in a series of clinical trials comparing the efficacy and safety of the experimental treatment DB289 to the standard first stage treatment, pentamidine. These ECGs were compared to the ECGs of healthy volunteers (n = 61) and to those of second stage HAT patients (n = 56).

Results

In first and second stage HAT, a prolonged QTc interval, repolarization changes and low voltage were significantly more frequent than in healthy controls. Treatment in first stage was associated with repolarization changes in both the DB289 and the pentamidine group to a similar extent. The QTc interval did not change during treatment.

Conclusions

Cardiac involvement in HAT, as demonstrated by ECG alterations, appears early in the evolution of the disease. The prolongation of the QTC interval comprises a risk of fatal arrhythmias if new drugs with an additional potential of QTC prolongation will be used. During treatment ECG abnormalities such as repolarization changes consistent with peri-myocarditis occur frequently and appear to be associated with the disease stage, but not with a specific drug.  相似文献   

17.

Background

Active screening by mobile teams is considered the most effective method for detecting gambiense-type human African trypanosomiasis (HAT) but constrained funding in many post-conflict countries limits this approach. Non-specialist health care workers (HCWs) in peripheral health facilities could be trained to identify potential cases for testing based on symptoms. We tested a training intervention for HCWs in peripheral facilities in Nimule, South Sudan to increase knowledge of HAT symptomatology and the rate of syndromic referrals to a central screening and treatment centre.

Methodology/Principal Findings

We trained 108 HCWs from 61/74 of the public, private and military peripheral health facilities in the county during six one-day workshops and assessed behaviour change using quantitative and qualitative methods. In four months prior to training, only 2/562 people passively screened for HAT were referred from a peripheral HCW (0 cases detected) compared to 13/352 (2 cases detected) in the four months after, a 6.5-fold increase in the referral rate observed by the hospital. Modest increases in absolute referrals received, however, concealed higher levels of referral activity in the periphery. HCWs in 71.4% of facilities followed-up had made referrals, incorporating new and pre-existing ideas about HAT case detection into referral practice. HCW knowledge scores of HAT symptoms improved across all demographic sub-groups. Of 71 HAT referrals made, two-thirds were from new referrers. Only 11 patients completed the referral, largely because of difficulties patients in remote areas faced accessing transportation.

Conclusions/Significance

The training increased knowledge and this led to more widespread appropriate HAT referrals from a low base. Many referrals were not completed, however. Increasing access to screening and/or diagnostic tests in the periphery will be needed for greater impact on case-detection in this context. These data suggest it may be possible for peripheral HCWs to target the use of rapid diagnostic tests for HAT.  相似文献   

18.
19.

Background

The diagnosis of human African trypanosomiasis (HAT) caused by Trypanosoma brucei gambiense relies mainly on the Card Agglutination Test for Trypanosomiasis (CATT). There is no immunodiagnostic for HAT caused by T. b. rhodesiense. Our principle aim was to develop a prototype lateral flow test that might be an improvement on CATT.

Methodology/Principle Findings

Pools of infection and control sera were screened against four different soluble form variant surface glycoproteins (sVSGs) by ELISA and one, sVSG117, showed particularly strong immunoreactivity to pooled infection sera. Using individual sera, sVSG117 was shown to be able to discriminate between T. b. gambiense infection and control sera by both ELISA and lateral flow test. The sVSG117 antigen was subsequently used with a previously described recombinant diagnostic antigen, rISG65, to create a dual-antigen lateral flow test prototype. The latter was used blind in a virtual field trial of 431 randomized infection and control sera from the WHO HAT Specimen Biobank.

Conclusion/Significance

In the virtual field trial, using two positive antigen bands as the criterion for infection, the sVSG117 and rISG65 dual-antigen lateral flow test prototype showed a sensitivity of 97.3% (95% CI: 93.3 to 99.2) and a specificity of 83.3% (95% CI: 76.4 to 88.9) for the detection of T. b. gambiense infections. The device was not as good for detecting T. b. rhodesiense infections using two positive antigen bands as the criterion for infection, with a sensitivity of 58.9% (95% CI: 44.9 to 71.9) and specificity of 97.3% (95% CI: 90.7 to 99.7). However, using one or both positive antigen band(s) as the criterion for T. b. rhodesiense infection improved the sensitivity to 83.9% (95% CI: 71.7 to 92.4) with a specificity of 85.3% (95% CI: 75.3 to 92.4). These results encourage further development of the dual-antigen device for clinical use.  相似文献   

20.

Introduction

There are few drugs with proven efficacy in cutaneous leishmaniasis (CL), and pentavalent antimonial derivatives are still the main first-line therapeutic agents worldwide, despite their recognized high toxicities. Randomized controlled clinical trials assessing the efficacy and safety of new therapeutic modalities are of high priority, and the definition of the design of such trials raises debate about the use of placebo as a comparator. To support the use of placebo as a comparator, two main points need to be addressed: 1- the cure rate without any therapeutic intervention and 2- the damage caused by CL and its impact on patients.

Objective

The aim of this study was to systematically assess the spontaneous cure rate for American CL and to broaden the discussion about placebo use in CL trials.

Methods

The PRISMA guidelines for systematic reviews and the Cochrane manual were followed. The sources used were the PubMed and LILACS databases. Studies were included if they reported cure rates using placebo or no treatment in American CL.

Results

Thirteen studies of a total of 352 patients were ultimately included in this review. The summarized global cure rates for all Leishmania species according to the intention-to-treat analyses performed at approximately three (“initial cure”) and nine (“definitive cure”) months after “no treatment” or placebo use were 26% (CI95%: 16 to 40%) and 26% (CI95%:16 to 38%), respectively. Notably, a significantly lower cure rate was observed for L. braziliensis infection (6.4%, CI95%:0.2 to 20%) than for L. mexicana infection (44%, CI95%:19 to 72%), p = 0.002. Of note, relapse occurred in 20% of patients with initial healing (CI95%:9.2 to 38.9%).

Conclusion

These results clearly demonstrate a low spontaneous cure rate following no-treatment or placebo use, confirming that this strategy for the control group in CL studies expose patients to greater morbidity, especially for CL caused by L. braziliensis. Therefore, from this point, the crucial questionto consider regarding placebo use isthe seriousness of the suffering caused by this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号