首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Picrophilus torridus has been shown to degrade glucose via a nonphosphorylative Entner-Doudoroff (ED) pathway. Here we report the characterization of a key enzyme of this pathway, glycerate kinase (2-phosphoglycerate forming). The enzyme was purified 5,100-fold to homogeneity. The 95 kDa homodimeric protein catalyzed the ATP-dependent phosphorylation of glycerate specifically to 2-phosphoglycerate. The enzyme showed highest activity at 60 degrees C and pH 7.3, with ATP as phosphoryl donor and Mg(2+) as divalent cation. By MALDI-TOF analysis, ORF Pto1442 was identified in the genome of P. torridus as the encoding gene, designated gck. Homologs with high sequence identity were identified in the genomes of the archaea Thermoplasma and Sulfolobus spp. and Thermoproteus tenax, for which the operation of nonphosphorylative ED pathways, involving 2-phosphoglycerate forming glycerate kinases, has been proposed.  相似文献   

3.
A new mutation in Escherichia coli, giving inability to grow on gluconic, glucuronic, or galacturonic acids, has been identified as complete deficiency of 2-keto-3-deoxygluconate 6-phosphate (KDGP) aldolase activity. The genetic map position of the locus, eda, is about 35 min. The inability to grow on the uronic acids was expected, because the aldolase is on the sole known pathway of their metabolism. However, inability to grow on gluconate was less expected, because the hexose monophosphate shunt might be used, as happens in mutants blocked in the previous step, edd, of the Entner-Doudoroff pathway. The likely explanation of gluconate negativity is inhibition by accumulated KDGP, because gluconate is inhibitory to growth on other substances, and one type of gluconate revertant is eda(-), edd(-). KDGP is probably the inducer of KDGP aldolase.  相似文献   

4.
Reher M  Schönheit P 《FEBS letters》2006,580(5):1198-1204
Cells of Picrophilus torridus, grown on glucose, contained all enzyme activities of a non-phosphorylative Entner-Doudoroff pathway, including glucose dehydrogenase, gluconate dehydratase, 2-keto-3-deoxygluconate aldolase, glyceraldehyde dehydrogenase (GADH), glycerate kinase (2-phosphoglycerate forming), enolase and pyruvate kinase. GADH was purified to homogeneity. The 115-kDa homodimeric protein catalyzed the oxidation of glyceraldehyde with NADP+ at highest catalytic efficiency. NAD+ was not used. By MALDI-TOF analysis, open reading frame (ORF) Pto0332 was identified in the genome of P. torridus as the encoding gene, designated gadh, and the recombinant GADH was characterized. In Thermoplasma acidophilum ORF Ta0809 represents a gadh homolog with highest sequence identity; the gene was expressed and the recombinant protein was characterized as functional GADH with properties very similar to the P. torridus enzyme. Sequence comparison and phylogenetic analysis define both GADHs as members of novel enzyme family within the aldehyde dehydrogenase superfamily.  相似文献   

5.
Mevalonate diphosphate decarboxylase (MVD) is an ATP-dependent enzyme that catalyzes the phosphorylation/decarboxylation of (R)-mevalonate-5-diphosphate to isopentenyl pyrophosphate in the mevalonate (MVA) pathway. MVD is a key enzyme in engineered metabolic pathways for bioproduction of isobutene, since it catalyzes the conversion of 3-hydroxyisovalerate (3-HIV) to isobutene, an important platform chemical. The putative homologue from Picrophilus torridus has been identified as a highly efficient variant in a number of patents, but its detailed characterization has not been reported. In this study, we have successfully purified and characterized the putative MVD from P. torridus. We discovered that it is not a decarboxylase per se but an ATP-dependent enzyme, mevalonate-3-kinase (M3K), which catalyzes the phosphorylation of MVA to mevalonate-3-phosphate. The enzyme''s potential in isobutene formation is due to the conversion of 3-HIV to an unstable 3-phosphate intermediate that undergoes consequent spontaneous decarboxylation to form isobutene. Isobutene production rates were as high as 507 pmol min−1 g cells−1 using Escherichia coli cells expressing the enzyme and 2,880 pmol min−1 mg protein−1 with the purified histidine-tagged enzyme, significantly higher than reported previously. M3K is a key enzyme of the novel MVA pathway discovered very recently in Thermoplasma acidophilum. We suggest that P. torridus metabolizes MVA by the same pathway.  相似文献   

6.
The archaeon Sulfolobus solfataricus grows optimally at 80 degrees C and pH 2.5 to 3.5 on carbon sources such as yeast extracts, tryptone, and various sugars. Cells rapidly accumulate glucose. This transport activity involves a membrane-bound glucose-binding protein that interacts with its substrate with very high affinity (Kd of 0. 43 microM) and retains high glucose affinity at very low pH values (as low as pH 0.6). The binding protein was extracted with detergent and purified to homogeneity as a 65-kDa glycoprotein. The gene coding for the binding protein was identified in the S. solfataricus P2 genome by means of the amino-terminal amino acid sequence of the purified protein. Sequence analysis suggests that the protein is anchored to the membrane via an amino-terminal transmembrane segment. Neighboring genes encode two membrane proteins and an ATP-binding subunit that are transcribed in the reverse direction, whereas a homologous gene cluster in Pyrococcus horikoshii OT3 was found to be organized in an operon. These data indicate that S. solfataricus utilizes a binding-protein-dependent ATP-binding cassette transporter for the uptake of glucose.  相似文献   

7.
Oxidative damage plays a critical role in many diseases of the central nervous system. This study was conducted to determine the molecular mechanisms involved in the putative anti-oxidative effects of curcumin against experimental stroke. Oxygen and glucose deprivation/reoxygenation (OGD/R) was used to mimic ischemic insult in primary cultured cortical neurons. A rapid increase in the intracellular expression of NAD(P)H: quinone oxidoreductase1 (NQO1) induced by OGD was counteracted by curcumin post-treatment, which paralleled attenuated cell injury. The reduction of phosphorylation Akt induced by OGD was restored by curcumin. Consequently, NQO1 expression and the binding activity of nuclear factor-erythroid 2-related factor 2 (Nrf2) to antioxidant response element (ARE) were increased. LY294002 blocked the increase in phospho-Akt evoked by curcumin and abolished the associated protective effect. Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion for 60 minutes. Curcumin administration significantly reduced infarct size. Curcumin also markedly reduced oxidative stress levels in middle cerebral artery occlusion (MCAO) rats; hence, these effects were all suppressed by LY294002. Taken together, these findings provide evidence that curcumin protects neurons against ischemic injury, and this neuroprotective effect involves the Akt/Nrf2 pathway. In addition, Nrf2 is involved in the neuroprotective effects of curcumin against oxidative damage.  相似文献   

8.
HYS-32 is a novel derivative of combretastatin-A4 (CA-4) previously shown to induce microtubule coiling in rat primary astrocytes. In this study, we further investigated the signaling mechanism and EB1, a microtubule-associated end binding protein, involved in HYS-32-induced microtubule catastrophes. Confocal microscopy with double immunofluorescence staining revealed that EB1 accumulates at the growing microtubule plus ends, where they exhibit a bright comet-like staining pattern in control astrocytes. HYS-32 induced microtubule catastrophes in both a dose- and time-dependent manner and dramatically increased the distances between microtubule tips and the cell border. Treatment of HYS-32 (5 μM) eliminated EB1 localization at the microtubule plus ends and resulted in an extensive redistribution of EB1 to the microtubule lattice without affecting the β-tubulin or EB1 protein expression. Time-lapse experiments with immunoprecipitation further displayed that the association between EB-1 and β-tubulin was significantly decreased following a short-term treatment (2 h), but gradually increased in a prolonged treatment (6-24 h) with HYS-32. Further, HYS-32 treatment induced GSK3β phosphorylation at Y216 and S9, where the ratio of GSK3β-pY216 to GSK3β-pS9 was first elevated followed by a decrease over time. Co-treatment of astrocytes with HYS-32 and GSK3β inhibitor SB415286 attenuated the HYS-32-induced microtubule catastrophes and partially prevented EB1 dissociation from the plus end of microtubules. Furthermore, co-treatment with PI3K inhibitor LY294002 inhibited HYS-32-induced GSK3β-pS9 and partially restored EB1 distribution from the microtubule lattice to plus ends. Together these findings suggest that HYS-32 induces microtubule catastrophes by preventing EB1 from targeting to microtubule plus ends through the GSK3β signaling pathway.  相似文献   

9.
Pseudomonas aeruginosa W51D is able to grow by using branched-chain dodecylbenzene sulfonates (B-DBS) or the terpenic alcohol citronellol as a sole source of carbon. A mutant derived from this strain (W51M1) is unable to degrade citronellol but still grows on B-DBS, showing that the citronellol degradation route is not the main pathway involved in the degradation of the surfactant alkyl moiety. The structures of the main B-DBS isomers and of some intermediates were identified by gas chromatography-mass spectrometric analysis, and a possible catabolic route is proposed.  相似文献   

10.
11.
A novel thermoacidophilic iron-reducing Archaeon, strain NA−1, was isolated from a hot fumarole in Manza, Japan. Strain NA-1 could grow autotrophically using H2 or S0 as an electron donor and Fe3+ as an electron acceptor, and also could grow heterotrophically using some organic compounds. Fe3+ and O2 served as electron acceptors for growth. However, S0, NO3 , NO2 , SO4 2−, Mn4+, fumarate, and Fe2O3 did not serve as electron acceptors. The ranges of growth temperature and pH were 60–90°C (optimum: 80°C) and pH 1.0–5.0 (optimum: pH 1.2–1.5), respectively. Cells were nearly regular cocci with an envelope comprised of the cytoplasmic membrane and a single outer S-layer. The crenarchaeal-specific quinone (cardariellaquinone) was detected, and the genomic DNA G + C content was 29.9 mol%. From 16S rDNA analysis, it was determined that strain NA-1 is closely related to Acidianus ambivalens (93.1%) and Acidianus infernus (93.0%). However, differences revealed by phylogenetic and phenotypic analyses clearly show that strain NA-1 represents a new species, Acidianus manzaensis, sp. nov., making it the first identified thermoacidophilic iron-reducing microorganism (strain NA-1T = NBRC 100595 = ATCC BAA 1057). Strain NA-1 has been deposited in the culture collections of the National Institute of Technology and Evolution (NBRC 100595) and American Type Culture Collection (ATCC BAA 1057). The 16S rDNA sequence has been deposited at GenBank under accession number AB182498.  相似文献   

12.
The varitint-waddler phenotype in mice is caused by gain-of-function mutations in mucolipin-3 (MCOLN3), a member of the mucolipin family of ion channels. These mice are characterized by defects in pigmentation, hearing loss and vestibular defects, suggesting that MCOLN3 might play a role in melanosome trafficking and hair cell maturation. Recent evidence has shown that MCOLN3 is a Ca2+–permeable channel and its activity is regulated by pH. Here we show that MCOLN3 primarily localizes to early and late endosomes in human epithelial cells. This distribution at the less acidic portions of the endocytic pathway is consistent with the reported inactivation of the channel by low pH. Furthermore, overexpression of MCOLN3 causes dramatic alterations in the endosomal pathway, including enlargement of Hrs-positive endosomes, delayed degradation of epidermal growth factor (EGF) and EGF receptor (EGFR) and defective autophagosome maturation, whereas depletion of endogenous MCOLN3 enhances EGFR degradation. Finally, we found that endosomal pH is higher in cells overexpressing MCOLN3 and propose a model in which Ca2+ release from endosomes mediated by MCOLN3 might be important for efficient endosomal acidification. Therefore, MCOLN3 is a novel Ca2+ channel that plays a crucial role in the regulation of cargo trafficking along the endosomal pathway.  相似文献   

13.
Five clostridial species were found to ferment gluconate via 2-keto-3-deoxygluconate which subsequently is phosphorylated to yield 2-keto-3-deoxy-6-phosphogluconate (KDPG). This compound is then cleaved by KDPG aldolase.  相似文献   

14.
Methylotrophs grow on reduced single-carbon compounds like methylamine as the sole source of carbon and energy. In Methylobacterium extorquens AM1, the best-studied aerobic methylotroph, a periplasmic methylamine dehydrogenase that catalyzes the primary oxidation of methylamine to formaldehyde has been examined in great detail. However, recent metagenomic data from natural ecosystems are revealing the abundance and importance of lesser-known routes, such as the N-methylglutamate pathway, for methylamine oxidation. In this study, we used M. extorquens PA1, a strain that is closely related to M. extorquens AM1 but is lacking methylamine dehydrogenase, to dissect the genetics and physiology of the ecologically relevant N-methylglutamate pathway for methylamine oxidation. Phenotypic analyses of mutants with null mutations in genes encoding enzymes of the N-methylglutamate pathway suggested that γ-glutamylmethylamide synthetase is essential for growth on methylamine as a carbon source but not as a nitrogen source. Furthermore, analysis of M. extorquens PA1 mutants with defects in methylotrophy-specific dissimilatory and assimilatory modules suggested that methylamine use via the N-methylglutamate pathway requires the tetrahydromethanopterin (H4MPT)-dependent formaldehyde oxidation pathway but not a complete tetrahydrofolate (H4F)-dependent formate assimilation pathway. Additionally, we present genetic evidence that formaldehyde-activating enzyme (FAE) homologs might be involved in methylotrophy. Null mutants of FAE and homologs revealed that FAE and FAE2 influence the growth rate and FAE3 influences the yield during the growth of M. extorquens PA1 on methylamine.  相似文献   

15.
The hyperthermophilic Archaea Sulfolobus solfataricus grows optimally above 80 degrees C and metabolizes glucose by a non-phosphorylative variant of the Entner-Doudoroff pathway. In this pathway glucose dehydrogenase and gluconate dehydratase catalyze the oxidation of glucose to gluconate and the subsequent dehydration of gluconate to D-2-keto-3-deoxygluconate (KDG). KDG aldolase (KDGA) then catalyzes the cleavage of KDG to D-glyceraldehyde and pyruvate. It has recently been shown that all the enzymes of this pathway exhibit a catalytic promiscuity that also enables them to be used for the metabolism of galactose. This phenomenon, known as metabolic pathway promiscuity, depends crucially on the ability of KDGA to cleave KDG and D-2-keto-3-deoxygalactonate (KDGal), in both cases producing pyruvate and D-glyceraldehyde. In turn, the aldolase exhibits a remarkable lack of stereoselectivity in the condensation reaction of pyruvate and D-glyceraldehyde, forming a mixture of KDG and KDGal. We now report the structure of KDGA, determined by multiwavelength anomalous diffraction phasing, and confirm that it is a member of the tetrameric N-acetylneuraminate lyase superfamily of Schiff base-forming aldolases. Furthermore, by soaking crystals of the aldolase at more than 80 degrees C below its temperature activity optimum, we have been able to trap Schiff base complexes of the natural substrates pyruvate, KDG, KDGal, and pyruvate plus D-glyceraldehyde, which have allowed rationalization of the structural basis of promiscuous substrate recognition and catalysis. It is proposed that the active site of the enzyme is rigid to keep its thermostability but incorporates extra functionality to be promiscuous.  相似文献   

16.
目的:探讨磷脂酰肌醇-3-激酶/丝苏氨酸蛋白激酶(phosphatidylinositol 3 kinase/serine-threonine kinase,PI3K/AKT)信号通路与乳腺癌多药耐药和侵袭转移的相关性。方法:以乳腺癌细胞系MCF-7为母本,持续低浓度加药诱导建立阿霉素(Adriamycin,ADR)耐药系MCF-7/ADR’。细胞免疫荧光检测两细胞系中磷酸化AKT(phosphorylated AKT,P-AKT)、P-糖蛋白(P-Glycoprotein,P-gp)、基质金属蛋白酶2(matrix metalloproteinase-2,MMP-2)的表达。PI3K抑制剂LY294002作用两系前后,Western Blot检测P-AKT、MMP-2、P-gp的表达改变及qRT-PCR检测MMP-2、MDR1的表达改变。结果:P-AKT、P-gp(MDR1)、MMP-2在MCF-7中为低表达或不表达,MCF-7/ADR’中为高表达。LY294002作用两系后,P-AKT、P-gp(MDR1)、MMP-2在MCF-7/ADR’中的表达明显减低(P<0.05),MCF-7无明显改变。结论:抑制PI3K/AKT信号通路可有效降低MCF-7/ADR’耐药和侵袭转移能力,PI3K/AKT通路是调控乳腺癌多药耐药和侵袭转移的重要信号通路之一。  相似文献   

17.
18.
19.
Fuel oxygenates such as methyl and ethyl tert-butyl ether (MTBE and ETBE, respectively) are degraded only by a limited number of bacterial strains. The aerobic pathway is generally thought to run via tert-butyl alcohol (TBA) and 2-hydroxyisobutyrate (2-HIBA), whereas further steps are unclear. We have now demonstrated for the newly isolated β-proteobacterial strains L108 and L10, as well as for the closely related strain CIP I-2052, that 2-HIBA was degraded by a cobalamin-dependent enzymatic step. In these strains, growth on substrates containing the tert-butyl moiety, such as MTBE, TBA, and 2-HIBA, was strictly dependent on cobalt, which could be replaced by cobalamin. Tandem mass spectrometry identified a 2-HIBA-induced protein with high similarity to a peptide whose gene sequence was found in the finished genome of the MTBE-degrading strain Methylibium petroleiphilum PM1. Alignment analysis identified it as the small subunit of isobutyryl-coenzyme A (CoA) mutase (ICM; EC 5.4.99.13), which is a cobalamin-containing carbon skeleton-rearranging enzyme, originally described only in Streptomyces spp. Sequencing of the genes of both ICM subunits from strain L108 revealed nearly 100% identity with the corresponding peptide sequences from M. petroleiphilum PM1, suggesting a horizontal gene transfer event to have occurred between these strains. Enzyme activity was demonstrated in crude extracts of induced cells of strains L108 and L10, transforming 2-HIBA into 3-hydroxybutyrate in the presence of CoA and ATP. The physiological and evolutionary aspects of this novel pathway involved in MTBE and ETBE metabolism are discussed.  相似文献   

20.
2-Keto-3-deoxy-gluconate (KDG), an intermediate of the hexuronate pathway in Escherichia coli K-12, is utilized as the sole carbon source only in strains derepressed for the specific KDG-uptake system. KDG is metabolized to pyruvate and glyceraldehyde-3-phosphate via the inducible enzymes KDG-kinase and 2-keto-3-deoxy-6-phosphate-gluconate (KDPG) aldolase. However, another inducible pathway, where the KDG is the branch point, has been demonstrated. Genetic studies of the KDG degradative pathway reported in this paper led to the location of KDG kinase-negative and pleiotropic constitutive mutations. The kdgK locus, presumably the structural gene of the kinase, occurs at min 69 and is co-transducible with xyl. The mutants, simultaneously constitutive for the uptake, kinase, and aldolase, define a kdgR locus at min 36 between the co-transducible markers kdgA and oldD. As to the nature of the control exerted by the kdgR product, we have shown the following. (i) Thermosensitive mutants of the kdgR locus are inducible at low temperature but derepressed at 42 C for the three operons—kdgT (transport system), kdgK, and kdgA (KDPG aldolase). (ii) The kdgR+ allele is dominant to the kdgR constitutive allele. (iii) A deletion in kdgA extending into the regulatory gene, kdgR, leads to a constitutive expression of the nondeleted operons—kdgT and kdgK. These properties demonstrate that the kdg regulon is negatively controlled by the kdgR product. It is presumed that differences in operator and in promotor structures could explain the strong decoordination, respectively, in the induction and catabolic repression, of these three enzymes activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号