首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate three-dimensional (3D) super-resolution microscopy in whole fixed cells using photoactivated localization microscopy (PALM). The use of the bright, genetically expressed fluorescent marker photoactivatable monomeric (m)Cherry (PA-mCherry1) in combination with near diffraction-limited confinement of photoactivation using two-photon illumination and 3D localization methods allowed us to investigate a variety of cellular structures at <50 nm lateral and <100 nm axial resolution. Compared to existing methods, we have substantially reduced excitation and bleaching of unlocalized markers, which allows us to use 3D PALM imaging with high localization density in thick structures. Our 3D localization algorithms, which are based on cross-correlation, do not rely on idealized noise models or specific optical configurations. This allows instrument design to be flexible. By generating appropriate fusion constructs and expressing them in Cos7 cells, we could image invaginations of the nuclear membrane, vimentin fibrils, the mitochondrial network and the endoplasmic reticulum at depths of greater than 8 μm.  相似文献   

2.
3.
The recent advent in single-molecule imaging and manipulation methods has made a significant impact on the understanding of molecular mechanisms underlying many essential cellular processes. Single-molecule techniques such as electron microscopy and DNA fiber assays have been employed to study the duplication of genome in eukaryotes. Here, we describe a single-molecule assay that allows replication of DNA attached to the functionalized surface of a microfluidic flow cell in a soluble Xenopus leavis egg extract replication system and subsequent visualization of replication products via fluorescence microscopy. We also explain a method for detection of replication proteins, through fluorescently labeled antibodies, on partially replicated DNA immobilized at both ends to the surface.  相似文献   

4.
Mertz J 《Nature methods》2011,8(10):811-819
A key requirement for performing three-dimensional (3D) imaging using optical microscopes is that they be capable of optical sectioning by distinguishing in-focus signal from out-of-focus background. Common techniques for fluorescence optical sectioning are confocal laser scanning microscopy and two-photon microscopy. But there is increasing interest in alternative optical sectioning techniques, particularly for applications involving high speeds, large fields of view or long-term imaging. In this Review, I examine two such techniques, based on planar illumination or structured illumination. The goal is to describe the advantages and disadvantages of these techniques.  相似文献   

5.
Dendritic spines are protrusions emerging from the dendrite of a neuron and represent the primary postsynaptic targets of excitatory inputs in the brain. Technological advances have identified these structures as key elements in neuron connectivity and synaptic plasticity. The quantitative analysis of spine morphology using light microscopy remains an essential problem due to technical limitations associated with light''s intrinsic refraction limit. Dendritic spines can be readily identified by confocal laser-scanning fluorescence microscopy. However, measuring subtle changes in the shape and size of spines is difficult because spine dimensions other than length are usually smaller than conventional optical resolution fixed by light microscopy''s theoretical resolution limit of 200 nm.Several recently developed super resolution techniques have been used to image cellular structures smaller than the 200 nm, including dendritic spines. These techniques are based on classical far-field operations and therefore allow the use of existing sample preparation methods and to image beyond the surface of a specimen. Described here is a working protocol to apply super resolution structured illumination microscopy (SIM) to the imaging of dendritic spines in primary hippocampal neuron cultures. Possible applications of SIM overlap with those of confocal microscopy. However, the two techniques present different applicability. SIM offers higher effective lateral resolution, while confocal microscopy, due to the usage of a physical pinhole, achieves resolution improvement at the expense of removal of out of focus light. In this protocol, primary neurons are cultured on glass coverslips using a standard protocol, transfected with DNA plasmids encoding fluorescent proteins and imaged using SIM. The whole protocol described herein takes approximately 2 weeks, because dendritic spines are imaged after 16-17 days in vitro, when dendritic development is optimal. After completion of the protocol, dendritic spines can be reconstructed in 3D from series of SIM image stacks using specialized software.  相似文献   

6.
In this research project, a colloidal solution of silver nanocubes was synthesized and using these nanocubes as building blocks, 2D and 3D ordered structures on solid supports were fabricated to study their optical properties and refractive index sensitivities. The silver nanocubes were synthesized by the polyol reduction process while their 2D and 3D ordered structures were fabricated by Langmuir-Blodgett trough (LB). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to investigate the size and shape of the nanostructures as well as the morphologies of 2D and 3D structures. UV-visible absorption spectroscopy was employed to explore their optical properties. Finally, 2D and 3D assemblies of silver nanocubes were employed to investigate their refractive index sensitivity (RIS). The SEM image showed silver nanocubes with nominal edge length of 80 nm. Extinction spectra of 2D and 3D ordered structures are different than those in a colloidal state. Intensity of the plasmon resonance modes is higher for the 3D assembly than that of the 2D assembly. A new band in the low energy region of the spectrum appears for the 3D assembly because of interparticle coupling of the plasmon resonance modes. 3D assembly showed a higher RIS (158.9/ RIU) than of the 2D assembly (150.3/RIU). However, nanocubes are less ordered in 2D substrate than its counterpart 3D. Such 2D and 3D assemblies of silver nanocubes (AgNCs) could be potential candidates for making refractive index-based sensors as well as promising surface-enhanced Raman scattering (SERS) active substrates.  相似文献   

7.
To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.  相似文献   

8.
Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci   总被引:24,自引:2,他引:22  
Berezney R  Dubey DD  Huberman JA 《Chromosoma》2000,108(8):471-484
According to the current paradigm, replication foci are discrete sites in the interphase nucleus where assemblies of DNA replication enzymes simultaneously elongate the replication forks of 10–100 adjacent replicons (each ∼100 kbp). Here we review new results and provide alternative interpretations for old results to show that the current paradigm is in need of further development. In particular, many replicons are larger than previously thought – so large that their complete replication takes much longer (several hours) than the measured average time to complete replication at individual foci (45–60 min). In addition to this large heterogeneity in replicon size, it is now apparent that there is also a corresponding heterogeneity in the size and intensity of individual replication foci. An important property of all replication foci is that they are stable structures that persist, with constant dimensions, during all cell cycle stages including mitosis, and therefore likely represent a fundamental unit of chromatin organization. With this in mind, we present a modified model of replication foci in which many of the foci are composed of clusters of small replicons as previously proposed, but the size and number of replicons per focus is extremely heterogeneous, and a significant proportion of foci are composed of single large replicons. We further speculate that very large replicons may extend over two or more individual foci and that this organization may be important in regulating the replication of such large replicons as the cell proceeds through S-phase. Received: 16 August 1999 / Accepted: 17 August 1999  相似文献   

9.
Biological samples are three dimensional and, therefore, optical sectioning is mandatory for microscopic images to precisely show the localization or function of structures within biological samples. Today, researchers can choose from a variety of methods to obtain optical sections. This article focuses on structured illumination microscopy, which is a group of techniques utilizing a combination of optics and mathematics to obtain optical sections: A structure is imaged onto the sample by optical means and the additional information thereby encoded in the image is used to calculate an optical section from several acquired images. Different methods of structured illumination microscopy (mainly grid projection and aperture correlation) are discussed from a practical point of view, concentrating on advantages, limitations and future prospects of these techniques and their use in cell biology. Structured illumination can also be used to obtain super-resolution information if structures of higher frequency are projected onto the sample. This promising approach to super-resolution microscopy is also briefly discussed from a user's perspective.  相似文献   

10.
This review provides a practical introduction to superresolution microscopy from the perspective of microbiological research. Because of the small sizes of bacterial cells, superresolution methods are particularly powerful and suitable for revealing details of cellular structures that are not resolvable under conventional fluorescence light microscopy. Here we describe the methodological concepts behind three major categories of superresolution light microscopy: photoactivated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) and stimulated emission‐depletion (STED) microscopy. We then present recent applications of each of these techniques to microbial systems, which have revealed novel conformations of cellular structures and described new properties of in vivo protein function and interactions. Finally, we discuss the unique issues related to implementing each of these superresolution techniques with bacterial specimens and suggest avenues for future development. The goal of this review is to provide the necessary technical background for interested microbiologists to choose the appropriate superresolution method for their biological systems, and to introduce the practical considerations required for designing and analysing superresolution imaging experiments.  相似文献   

11.
Spatially modulated illumination fluorescence microscopy can in theory measure the sizes of objects with a diameter ranging between 10 and 200 nm and has allowed accurate size measurement of subresolution fluorescent beads ( approximately 40-100 nm). Biological structures in this size range have so far been measured by electron microscopy. Here, we have labeled sites containing the active, hyperphosphorylated form of RNA polymerase II in the nucleus of HeLa cells by using the antibody H5. The spatially modulated illumination-microscope was compared with confocal laser scanning and electron microscopes and found to be suitable for measuring the size of cellular nanostructures in a biological setting. The hyperphosphorylated form of polymerase II was found in structures with a diameter of approximately 70 nm, well below the 200-nm resolution limit of standard fluorescence microscopes.  相似文献   

12.
HIV-1 Viral protein R (Vpr) induces a cell cycle arrest at the G2/M phase by activating the ATR DNA damage/stress checkpoint. Recently, we and several other groups showed that Vpr performs this activity by recruiting the DDB1-CUL4A (VPRBP) E3 ubiquitin ligase. While recruitment of this E3 ubiquitin ligase complex has been shown to be required for G2 arrest, the subcellular compartment where this complex forms and functionally acts is unknown. Herein, using immunofluorescence and confocal microscopy, we show that Vpr forms nuclear foci in several cell types including HeLa cells and primary CD4+ T-lymphocytes. These nuclear foci contain VPRBP and partially overlap with DNA repair foci components such as γ-H2AX, 53BP1 and RPA32. While treatment with the non-specific ATR inhibitor caffeine or depletion of VPRBP by siRNA did not inhibit formation of Vpr nuclear foci, mutations in the C-terminal domain of Vpr and cytoplasmic sequestration of Vpr by overexpression of Gag-Pol resulted in impaired formation of these nuclear structures and defective G2 arrest. Consistently, we observed that G2 arrest-competent sooty mangabey Vpr could form these foci but not its G2 arrest-defective paralog Vpx, suggesting that formation of Vpr nuclear foci represents a critical early event in the induction of G2 arrest. Indeed, we found that Vpr could associate to chromatin via its C-terminal domain and that it could form a complex with VPRBP on chromatin. Finally, analysis of Vpr nuclear foci by time-lapse microscopy showed that they were highly mobile and stable structures. Overall, our results suggest that Vpr recruits the DDB1-CUL4A (VPRBP) E3 ligase to these nuclear foci and uses these mobile structures to target a chromatin-bound cellular substrate for ubiquitination in order to induce DNA damage/replication stress, ultimately leading to ATR activation and G2 cell cycle arrest.  相似文献   

13.
Newly replicated DNA segments (RDS) have been shown to form discrete foci in the mammalian nucleus. Comparison of the number of such foci in formaldehyde-fixed cell nucleus with estimated number of simultaneously active replication forks (RF) suggests that each replication focus contains a cluster of about 10 to 20 closely associated RF. That implied the cluster of synchronously activated replicons as the primary unit of mammalian DNA replication. It still remains unclear whether such clustering of RF does mean adjacency of the replicons in a genomic location (structural clustering, model 1), or it arises from transient clustering of the replicons from different DNA domains at the functioning replication machinery (functional clustering, model 2). In this study we used conventional fluorescence microscopy of the hypotonically treated nuclei preparations to investigate replication foci at the optical resolution limit. Human K562 cells were labeled with 5'-iododeoxyuridine for different time periods. We synchronized the cell culture with hydroxyurea to be able to measure an average increase in DNA content during labeling period using DNA cytometry. Under these conditions, RDS appear as multiple small foci (mini-foci, MF). Further studies revealed that most of such mini-foci of replication represent optical diffraction spots, which are standard in size and different in brightness. The number of the "spots" and variation of their brightness mostly depend on the extent of hypotonic treatment. Flow cytometry control of the synchronized cells peak movement allowed us to measure mean DNA content of the MF. In case of most effective hypotonic treatment, a MF contains about 40 Kbp of labeled DNA, and the general number of the MF approaches the number of replicons that are simultaneously active in a given moment of S-phase. Influence of the effect of hypotonic treatment on overall number of observed MF suggests that replication foci in early and mid S-phase cells do not represent stable structures, but rather arise from functional clustering of comparatively distant replicating regions, thus supporting model 2.  相似文献   

14.
To monitor gradual changes in the replication foci distribution during early S phase, different segments of newly synthesized DNA were visualized by immunocytochemical mapping of two consecutively incorporated deoxythymidine analogs in pulse-chase-pulse experiments in HeLa cells. The resulting dual-labeled fluorescence images were evaluated using cross-correlation function (CCF) analysis. General changes of CCF shape due to image deterioration caused by blur, noise, and lateral sampling (pixel size) were also discussed. Using CCF analysis of model images simulating either random initiation of new replication foci, or the firing of new foci in close proximity to completed ones, we were able to ascribe the changes in the early S replication foci distribution to the latter mechanism. In contrast to the data published previously, we monitored the dynamics of all replication foci for up to 3 h. In addition, we showed that the replication foci dynamics is well described by random walk model, so that the average de-localization of individual foci is proportional to square root of the applied chase.  相似文献   

15.
Visualization of subcellular structures and their temporal evolution is of utmost importance to understand a vast range of biological processes. Optical microscopy is the method of choice for imaging live cells and tissues; it is minimally invasive, so processes can be observed over extended periods of time without generating artifacts due to intense light irradiation. The use of fluorescence microscopy is advantageous because biomolecules or supramolecular structures of interest can be labeled specifically with fluorophores, so the images reveal information on processes involving only the labeled molecules. The key restriction of optical microscopy is its moderate resolution, which is limited to about half the wavelength of light (~200 nm) due to fundamental physical laws governing wave optics. Consequently, molecular processes taking place at spatial scales between 1 and 100 nm cannot be studied by regular optical microscopy. In recent years, however, a variety of super-resolution fluorescence microscopy techniques have been developed that circumvent the resolution limitation. Here, we present a brief overview of these techniques and their application to cellular biophysics.  相似文献   

16.
The formation of cell‐(iron)mineral aggregates as a consequence of bacterial iron oxidation is an environmentally widespread process with a number of implications for processes such as sorption and coprecipitation of contaminants and nutrients. Whereas the overall appearance of such aggregates is easily accessible using 2‐D microscopy techniques, the 3‐D and internal structure remain obscure. In this study, we examined the 3‐D structure of cell‐(iron)mineral aggregates formed during Fe(II) oxidation by the nitrate‐reducing Acidovorax sp. strain BoFeN1 using a combination of advanced 3‐D microscopy techniques. We obtained 3‐D structural and chemical information on different cellular encrustation patterns at high spatial resolution (4–200 nm, depending on the method): more specifically, (1) cells free of iron minerals, (2) periplasm filled with iron minerals, (3) spike‐ or platelet‐shaped iron mineral structures, (4) bulky structures on the cell surface, (5) extracellular iron mineral shell structures, (6) cells with iron mineral filled cytoplasm, and (7) agglomerations of extracellular globular structures. In addition to structural information, chemical nanotomography suggests a dominant role of extracellular polymeric substances (EPS) in controlling the formation of cell‐(iron)mineral aggregates. Furthermore, samples in their hydrated state showed cell‐(iron)mineral aggregates in pristine conditions free of preparation (i.e., drying/dehydration) artifacts. All these results were obtained using 3‐D microscopy techniques such as focused ion beam (FIB)/scanning electron microscopy (SEM) tomography, transmission electron microscopy (TEM) tomography, scanning transmission (soft) X‐ray microscopy (STXM) tomography, and confocal laser scanning microscopy (CLSM). It turned out that, due to the various different contrast mechanisms of the individual approaches, and due to the required sample preparation steps, only the combination of these techniques was able to provide a comprehensive understanding of structure and composition of the various Fe‐precipitates and their association with bacterial cells and EPS.  相似文献   

17.
The recent advances in chromosome configuration capture (3C)-based series molecular methods and optical super-resolution (SR) techniques offer powerful tools to investigate three dimensional (3D) genomic structure in prokaryotic and eukaryotic cell nucleus. In this review, we focus on the progress during the last decade in this exciting field. Here we at first introduce briefly genome organization at chromosome, domain and sub-domain level, respectively; then we provide a short introduction to various super-resolution microscopy techniques which can be employed to detect genome 3D structure. We also reviewed the progress of quantitative and visualization tools to evaluate and visualize chromatin interactions in 3D genome derived from Hi-C data. We end up with the discussion that imaging methods and 3C-based molecular methods are not mutually exclusive - - - - actually they are complemental to each other and can be combined together to study 3D genome organization.  相似文献   

18.
The vacuole is a unique plant organelle that plays an important role in maintaining cellular homeostasis under various environmental stress conditions. However, the effects of biotic stress on vacuole structure has not been examined using three‐dimensional (3D) visualization. Here, we performed 3D electron tomography to compare the ultrastructural changes in the vacuole during infection with different viruses. The 3D models revealed that vacuoles are remodeled in cells infected with cucumber mosaic virus (CMV) or tobacco necrosis virus A Chinese isolate (TNV‐AC), resulting in the formation of spherules at the periphery of the vacuole. These spherules contain neck‐like channels that connect their interior with the cytosol. Confocal microscopy of CMV replication proteins 1a and 2a and TNV‐AC auxiliary replication protein p23 showed that all of these proteins localize to the tonoplast. Electron microscopy revealed that the expression of these replication proteins alone is sufficient to induce spherule formation on the tonoplast, suggesting that these proteins play prominent roles in inducing vacuolar membrane remodeling. This is the first report of the 3D structures of viral replication factories built on the tonoplasts. These findings contribute to our understanding of vacuole biogenesis under normal conditions and during assembly of plant (+) RNA virus replication complexes.  相似文献   

19.
20.
An integrated suite of imaging techniques has been applied to determine the three-dimensional (3D) morphology and cellular structure of polyp tissues comprising the Caribbean reef building corals Montastraeaannularis and M. faveolata. These approaches include fluorescence microscopy (FM), serial block face imaging (SBFI), and two-photon confocal laser scanning microscopy (TPLSM). SBFI provides deep tissue imaging after physical sectioning; it details the tissue surface texture and 3D visualization to tissue depths of more than 2 mm. Complementary FM and TPLSM yield ultra-high resolution images of tissue cellular structure. Results have: (1) identified previously unreported lobate tissue morphologies on the outer wall of individual coral polyps and (2) created the first surface maps of the 3D distribution and tissue density of chromatophores and algae-like dinoflagellate zooxanthellae endosymbionts. Spectral absorption peaks of 500 nm and 675 nm, respectively, suggest that M. annularis and M. faveolata contain similar types of chlorophyll and chromatophores. However, M. annularis and M. faveolata exhibit significant differences in the tissue density and 3D distribution of these key cellular components. This study focusing on imaging methods indicates that SBFI is extremely useful for analysis of large mm-scale samples of decalcified coral tissues. Complimentary FM and TPLSM reveal subtle submillimeter scale changes in cellular distribution and density in nondecalcified coral tissue samples. The TPLSM technique affords: (1) minimally invasive sample preparation, (2) superior optical sectioning ability, and (3) minimal light absorption and scattering, while still permitting deep tissue imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号