首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In an attempt to understand the microorganisms involved in the generation of trans-1,2-dichloroethene (trans-DCE), pure-culture “Dehalococcoides” sp. strain MB was isolated from environmental sediments. In contrast to currently known tetrachloroethene (PCE)- or trichloroethene (TCE)-dechlorinating pure cultures, which generate cis-DCE as the predominant product, Dehalococcoides sp. strain MB reductively dechlorinates PCE to trans-DCE and cis-DCE at a ratio of 7.3 (±0.4):1. It utilizes H2 as the sole electron donor and PCE or TCE as the electron acceptor during anaerobic respiration. Strain MB is a disc-shaped, nonmotile bacterium. Under an atomic force microscope, the cells appear singly or in pairs and are 1.0 μm in diameter and ∼150 nm in depth. The purity was confirmed by culture-based approaches and 16S rRNA gene-based analysis and was corroborated further by putative reductive dehalogenase (RDase) gene-based, quantitative real-time PCR. Although strain MB shares 100% 16S rRNA gene sequence identity with Dehalococcoides ethenogenes strain 195, these two strains possess different dechlorinating pathways. Microarray analysis revealed that 10 putative RDase genes present in strain 195 were also detected in strain MB. Successful cultivation of strain MB indicates that the biotic process could contribute significantly to the generation of trans-DCE in chloroethene-contaminated sites. It also enhances our understanding of the evolution of this unusual microbial group, Dehalococcoides species.Dehalorespiring bacteria play an important role in the transformation and detoxification of a wide range of halogenated compounds, e.g., chlorophenols, chloroethenes, chlorobenzenes, polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) (2, 4, 9, 14, 16, 17, 32, 35, 38). Among these compounds, the organic solvents tetrachloroethene (PCE) and trichloroethene (TCE) are suspected carcinogens that are found in soil and groundwater due to their extensive usage and improper disposal (6). The widespread PCE and TCE in the subsurface environment have driven intensive studies of anaerobic microbes capable of reductive dechlorination of chloroethenes (40). Over the last decade, at least 18 isolates, which belong to the genera Desulfitobacterium, Sulfurospirillum, Desulfomonile, Desulfuromonas, Geobacter, “Dehalococcoides,” and Dehalobacter, show reductive dechlorination of chlorinated ethenes (16, 40). In particular, most of these microbes produce cis-1,2-dichloroethene (cis-DCE) as the end product in the chloroethene-contaminated sites, whereas complete detoxification of PCE or TCE to ethene has been restricted only to members of the genus Dehalococcoides. Thus, the Dehalococcoides species have received considerable attention from the bioremediation community in the past decade.Several strains of Dehalococcoides species (e.g., 195, CBDB1, BAV1, and VS) have been sequenced for their whole genomes (24, 39). Their dechlorinating capabilities have also been well addressed through identification and quantification of the known chloroethene reductive dehalogenase (RDase) genes or expression of specific RDase genes (18, 21, 25, 41). In chloroethene-contaminated sites, the natural activities of single or multiple Dehalococcoides strains can lead either to more-toxic, mobile intermediates (e.g., cis- or trans-DCEs and vinyl chloride [VC]) via partial dechlorination of PCE/TCE or to harmless ethene by complete detoxification (10, 13, 15, 41). Many mixed cultures and pure isolates have been reported to produce cis-DCE or VC during PCE/TCE dechlorination processes (15, 40, 43). However, trans-DCE has been detected in more than one-third of the U.S. Environmental Protection Agency (EPA) superfund sites (3a). The source of trans-DCE production was thought to be an abiotic process; however, recently both trans-DCE generation and cis-DCE generation were reported to occur via microbial dechlorination.To date, microbes from either Dehalococcoides- or DF-1-containing mixed cultures have been reported to produce more trans- than cis-DCE, with a ratio of 1.2:1 to 3.5:1 in laboratory-scale studies (8, 10, 22, 31). For example, in a recent report by Kittelmann and Friedrich (22), trans-/cis-DCE at a ratio of 3.5:1 was generated in tidal flat sediment-containing microcosms with microbes closely related to Dehalococcoides sp. or DF-1-like microbes. Additionally, Griffin et al. identified Dehalococcoides species of the Pinellas subgroup in several enrichment cultures, which dechlorinated TCE (∼0.25 mM) to trans-DCE and cis-DCE at a ratio of ∼3:1 (10). There is no information available on the Dehalococcoides isolates that generate trans-DCE as the main end product. This also means a lack of information on the genomic contents of trans-DCE-producing bacteria. Therefore, finding microorganisms that produce trans-DCE in pure culture will be useful for the comprehensive characterization of this group of bacteria.The aim of this study was to isolate a PCE-to-trans-DCE-dechlorinating culture to facilitate the elucidation of trans-DCE formation during reductive dechlorination processes. Microarray analysis was conducted to compare the whole-genome contents of the new isolate and the well-characterized Dehalococcoides ethenogenes strain 195 (30). In addition, a coculture which consisted of the new isolate and TCE-to-cis-DCE-to-VC-dechlorinating Dehalococcoides sp. strain ANAS1 was explored to study the interaction, distribution, and function of the dechlorinators in the dechlorinating process.  相似文献   

3.
Genome annotation of the chlorinated ethene-respiring “Dehalococcoides ethenogenes” strain 195 indicated the presence of a complete nitrogenase operon. Here, results from long-term growth experiments, gene expression, and 15N2-isotope measurements confirm that strain 195 is capable of fixing atmospheric dinitrogen when a defined fixed-nitrogen source such as ammonium is unavailable.“Dehalococcoides ethenogenes” strain 195 is the first isolated bacterium that is capable of reductively dechlorinating tetrachloroethene and trichloroethene (TCE) to vinyl chloride (VC) and ethene (22). Annotation of the 1.5-Mbp genome of strain 195 has identified 17 intact reductive dehalogenase (RDase) genes (25). The variety of RDases has essentially defined the metabolic capabilities of strain 195 and other Dehalococcoides strains for respiration of chlorinated ethenes (8, 9, 15, 23, 27) and other chlorinated compounds (1, 2, 6, 21), making them important participants in bioremediation processes (19). Expression of different putative RDase genes has been examined previously in pure culture (6) and in Dehalococcoides-containing enrichment cultures (3, 4, 13, 17, 24, 28).Genome annotation of strain 195 has revealed the presence of a nitrogenase-encoding operon (nif) (DET1151-58) typical of those found in anaerobes (25). According to the published genome annotations of four strains of Dehalococcoides, strain 195 is the only one that contains a nif operon (16, 25; Joint Genome Institute, 2009, Integrated Microbial Genomes system [www.jgi.doe.gov]). A nif operon closely related to that in strain 195 has also been identified in a mixed Dehalococcoides-containing community (29); thus, the nitrogen-fixing function might be present in other unsequenced strains of Dehalococcoides.Phylogenetically, the nitrogenase structural genes of strain 195 are clustered with diverse anaerobic Bacteria, including the molybdenum (Mo)-nitrogenase in Clostridium pasteurianum, as well as Archaea, including the Mo-nitrogenase in Methanosarcina barkeri (25, 30). In the genome of strain 195, the presence of an ABC transporter for molybdenum (DET1159-61) and a nifV gene (DET1614), which encodes homocitrate synthetase used in nitrogenase FeMo-cofactor biosynthesis, suggests that the nitrogenase is of the typical molybdenum-iron type (25). While strain 195 is the only sequenced Dehalococcoides isolate that contains a nif operon, Ju et al. (14) previously identified functional nifH genes in dechlorinating organisms from diverse genera such as Sulfurospirillum multivorans, Desulfovibrio dechloracetivorans, and Desulfomonile tiedjei.Aquifers containing groundwater contaminated with chlorinated ethenes can potentially be limited in nutrients. For example, at the Wurtsmith Air Force Base, the chlorinated ethene-contaminated groundwater was found to contain less than 0.09 mM of ammonia, prompting ammonium amendment (26). Little is currently known about the potential effects of nitrogen limitation on reductive dechlorination in the environment, and the demonstration of nitrogen fixation in strain 195 was previously hindered by the use of an undefined medium (21). Here, we present results demonstrating that strain 195 is capable of fixing atmospheric dinitrogen and the physiological implications of the stress caused by nitrogen limitation.  相似文献   

4.
Members of the haloalkane dechlorinating genus Dehalogenimonas are distantly related to “Dehalococcoides” but share high homology in some variable regions of their 16S rRNA gene sequences. In this study, primers and PCR protocols intended to uniquely target Dehalococcoides were reevaluated, and primers and PCR protocols intended to uniquely target Dehalogenimonas were developed and tested. Use of the genus-specific primers revealed the presence of both bacterial groups in groundwater at a Louisiana Superfund site.“Dehalococcoides” strains are the only bacteria presently known to reductively dehalogenate the carcinogen vinyl chloride (10-12, 17, 22), and DNA-based approaches have been widely applied to detect and quantify these bacteria in mixed cultures and environmental samples (1, 3, 4, 6, 7, 13, 15, 16, 20). As recently reported, Dehalococcoides strains are the closest previously cultured phylogenetic relatives of Dehalogenimonas lykanthroporepellens strains BL-DC-8 and BL-DC-9T (18, 23). The newly isolated Dehalogenimonas strains, which can reductively dehalogenate a variety of polychlorinated alkanes (e.g., 1,2,3-trichloropropane and 1,2-dichloroethane) but not chlorinated ethenes (e.g., tetrachloroethene and vinyl chloride), however, are only distantly related to Dehalococcoides, with 90% identity in 16S rRNA gene sequences. Research reported here was aimed at (i) reevaluating PCR primers and protocols previously reported as allowing specific detection of Dehalococcoides 16S rRNA gene sequences in light of the 16S rRNA gene sequences of the recently isolated Dehalogenimonas strains and (ii) designing and testing PCR primers and protocols that allow detection and quantification of Dehalogenimonas strains.  相似文献   

5.
6.
Hexachlorobenzene (HCB) has been widely used in chemical manufacturing processes and as a pesticide. Due to its resistance to biological degradation, HCB has mainly accumulated in freshwater bodies and agricultural soils. “Dehalococcoides” spp., anaerobic dechlorinating bacteria that are capable of degrading HCB, were previously isolated from river sediments. Yet there is limited knowledge about the abundance, diversity, and activity of this genus in the environment. This study focused on the molecular analysis of the composition and abundance of active Dehalococcoides spp. in HCB-contaminated European river basins. 16S rRNA-based real-time quantitative PCR and denaturing gradient gel electrophoresis in combination with multivariate statistics were applied. Moreover, a functional gene array was used to determine reductive dehalogenase (rdh) gene diversity. Spatial and temporal fluctuations were observed not only in the abundance of Dehalococcoides spp. but also in the composition of the populations and rdh gene diversity. Multivariate statistics revealed that Dehalococcoides sp. abundance is primarily affected by spatial differences, whereas species composition is under the influence of several environmental parameters, such as seasonal changes, total organic carbon and/or nitrogen content, and HCB contamination. This study provides new insight into the natural occurrence and dynamics of active Dehalococcoides spp. in HCB-contaminated river basins.Halogenated organic compounds are among the most widespread environmental pollutants. Although these compounds were previously believed to be only anthropogenic, a large number of them, including aliphatic, aromatic, and heterocyclic derivatives, are introduced into the environment via biogenic and geogenic sources (9, 21). Hexachlorobenzene (HCB) is believed to be persistent in the environment (22) due to its chemical stability and its resistance to biodegradation. HCB is a hydrophobic and bioaccumulative compound and is listed in the EC Directive (15) as a “priority hazardous substance.” At the peak production of HCB in the early 1980s, thousands of tons were produced to be used as fungicides, wood preservatives, and porosity control agents or in the manufacturing of dyes. The use of HCB is no longer allowed in most countries because of its toxicity and carcinogenicity toward fish and mammals. Nevertheless, it is still being released into the environment as a by-product of various chemical processes, as a result of incomplete combustion, or from old landfills (4, 6, 7). HCB contamination has been reported in different environments. Compared to rivers in sparsely populated regions, lakes, and the sea (32, 42), significantly larger amounts of HCB could be found in river water in agricultural areas and in densely populated or highly industrialized areas. HCB concentrations were shown to positively correlate with organic matter content of sediments and soils, and European soils were observed to have the highest HCB concentrations globally (38). Several authors reported on the fate and behavior of HCB in the environment on regional or global scales. Nevertheless, our knowledge of microbial degradation of this compound in natural environments remains limited. It has been shown that HCB from air and water bodies can be removed via physical processes like volatilization and photolysis (6, 43). Adsorption also plays an important role in the removal of HCB from aquatic environments but in turn results in deposition in sediments. In these light-limited environments, biodegradation offers great potential for transforming this persistent organic pollutant (7, 29). The only known pathway for microbial dehalogenation of HCB is reductive dechlorination under anaerobic conditions, which results in formation of less chlorinated benzenes (1).The reductively dechlorinating bacteria isolated up to now belong to the Deltaproteobacteria and Epsilonproteobacteria (Geobacter, Sulfurospirillum, Desulfuromonas, and Desulfomonile), the Firmicutes (Desulfitobacterium and Dehalobacter), or the Chloroflexi (“Dehalococcoides” and related groups) (51). So far, however, Dehalococcoides is the only bacterial genus whose members are known to transform HCB. Several Dehalococcoides strains that could grow with a broad variety of chlorinated aliphatic and aromatic compounds, including chlorinated benzenes and phenols, biphenyls, chloroethenes, and dioxins, were isolated. Nevertheless, until now only two strains, Dehalococcoides sp. strain CBDB1 (3) and “Dehalococcoides ethenogenes” 195 (17), which can transform HCB to tri- and dichlorobenzenes and use the energy conserved in the process for growth, could be isolated. Besides HCB, Dehalococcoides sp. strain CBDB1 can also reductively dechlorinate chlorinated dioxins (11) and chlorophenols (2), whereas Dehalococcoides ethenogenes 195 can dechlorinate various chlorinated ethenes, 1,2-dichloroethane, and vinyl chloride (37).Until now, microbial community analyses of Dehalococcoides spp. largely focused on chlorinated ethene-contaminated aquifers or soils. The presence of Dehalococcoides spp. in uncontaminated and contaminated (with tetrachloroethene [PCE], trichloroethene [TCE], or vinyl chloride) sites from North America, Europe, and Japan was reported elsewhere (24, 26, 30, 34, 60). Furthermore, quantitative analyses targeting the Dehalococcoides 16S rRNA gene in chlorinated ethene bioremediation sites showed that 8.6 × 103 to 2.5 × 106 copies/g aquifer material (33) and 1.9 × 102 to 1.1 × 107 copies/g soil (50) could be detected depending on the type of treatment applied. Although reductive dechlorination by Dehalococcoides spp. is an energy-yielding process, microcosm studies conducted under controlled environmental conditions showed that growth of the organisms is relatively slow (28). Moreover, the presence of other halorespiring species may result in competition for chlorinated compounds or electron donors. This may adversely affect the success of the reductive dechlorination of HCB in natural environments. Hence, monitoring of the indigenous dechlorinating species is needed to understand their diversity and activity in contaminated sites.The aim of this study was to assess the diversity of active Dehalococcoides spp. in HCB-polluted river basins and to reveal the links between species composition and abundance with changing environmental parameters, using 16S rRNA and reductive dehalogenase-encoding gene-targeted molecular analyses, in combination with multivariate statistics. River sediment, floodplain, and agricultural soil samples were collected from two European rivers, the Ebro (Spain) and the Elbe (Germany), between 2004 and 2006. This study provides new insights on the natural occurrence and dynamics of reductively dechlorinating bacteria, generating important knowledge toward understanding and predicting microbial HCB transformation.  相似文献   

7.
The purpose of this study was the enrichment and phylogenetic identification of bacteria that dechlorinate 4,5,6,7-tetrachlorophthalide (commercially designated “fthalide”), an effective fungicide for rice blast disease. Sequential transfer culture of a paddy soil with lactate and fthalide produced a soil-free enrichment culture (designated the “KFL culture”) that dechlorinated fthalide by using hydrogen, which is produced from lactate. Phylogenetic analysis based on 16S rRNA genes revealed the dominance of two novel phylotypes of the genus Dehalobacter (FTH1 and FTH2) in the KFL culture. FTH1 and FTH2 disappeared during culture transfer in medium without fthalide and increased in abundance with the dechlorination of fthalide, indicating their growth dependence on the dechlorination of fthalide. Dehalobacter restrictus TEA is their closest relative, with 97.5% and 97.3% 16S rRNA gene similarities to FTH1 and FTH2, respectively.4,5,6,7-Tetrachlorophthalide (commercially designated “fthalide”) is an effective fungicide for rice blast disease, which inhibits melanin biosynthesis and the formation of the mature appressorial cells of the rice blast pathogen on the host plant (5, 16). Fthalide has been reported to be reductively dechlorinated in soil (16) and compost (28), although its fates in paddy soil and the fthalide-dechlorinating bacteria are unknown. Besides fthalide, polychlorinated aromatic compounds are known to be reductively dechlorinated by the bacteria of several phyla. Six strains of Desulfitobacterium spp. of the phylum Firmicutes (2, 3, 6, 10, 23, 29) and Desulfomonile tiedjei DCB-1 of the phylum Proteobacteria (21) can dechlorinate polychlorinated phenols. Three strains of the phylum Chloroflexi can dechlorinate a variety of compounds, including polychlorinated phenols, benzenes, biphenyls, or dibenzo-p-dioxins: Dehalococcoides ethenogenes 195 (9, 19), Dehalococcoides sp. strain CBDB1 (1, 4), and strain DF-1 of Chloroflexi, collectively called the “o-17/DF-1 group” (18). Dehalococcoides spp. utilize hydrogen as an electron donor and acetate as a carbon source for growth coupled to the reductive dechlorination of chlorinated compounds (1, 12, 13, 19, 26). In contrast, Desulfitobacterium spp. can dechlorinate chlorinated compounds not only with hydrogen, but also organic acids, such as formate, pyruvate, lactate, or butyrate (3, 10, 23). Strain DF-1 can utilize hydrogen and formate for the dechlorination of polychlorinated biphenyls (PCBs) (18).In this study, bacteria that dechlorinate fthalide were enriched from a paddy soil with sequentially transferred cultures using a soil-free medium supplemented with single organic acids. Acetate, formate, lactate, and butyrate were used in this study because they are frequently used in the enrichment of dechlorinators and release hydrogen at different concentrations (8, 11, 14). Fthalide-dechlorinating bacteria in the enriched culture were phylogenetically identified based on the 16S rRNA gene with PCR-denaturing gradient gel electrophoresis (DGGE), a 16S rRNA gene clone library, and quantitative real-time PCR (qPCR).  相似文献   

8.
Vinyl chloride (VC) is a toxic groundwater pollutant associated with plastic manufacture and chlorinated solvent use. Aerobic bacteria that grow on VC as a carbon and energy source can evolve in the laboratory from bacteria that grow on ethene, but the genetic changes involved are unknown. We investigated VC adaptation in two variants (JS623-E and JS623-T) of the ethene-oxidizing Mycobacterium strain JS623. Missense mutations in the EtnE gene developed at two positions (W243 and R257) in cultures exposed to VC but not in cultures maintained on ethene. Epoxyalkane-coenzyme M transferase (EaCoMT) activities in cell extracts of JS623-E and JS623-T (150 and 645 nmol/min/mg protein, respectively) were higher than that of wild-type JS623 (74 nmol/min/mg protein), and in both variant cultures epoxyethane no longer accumulated during growth on ethene. The heterologous expression of two variant etnE alleles (W243G [etnE1] and R257L [etnE2]) from strain JS623 in Mycobacterium smegmatis showed that they had 42 to 59% higher activities than the wild type. Recombinant JS623 cultures containing mutant EtnE genes cloned in the vector pMV261 adapted to growth on VC more rapidly than the wild-type JS623 strain, with incubation times of 60 days (wild type), 1 day (pMVetnE1), and 35 days (pMVetnE2). The JS623(pMVetnE) culture did not adapt to VC after more than 60 days of incubation. Adaptation to VC in strain JS623 is consistently associated with two particular missense mutations in the etnE gene that lead to higher EaCoMT activity. This is the first report to pinpoint a genetic change associated with the transition from cometabolic to growth-linked VC oxidation in bacteria.Bacteria that biodegrade pollutants are useful for the cleanup of contaminated sites (i.e., bioremediation) and are interesting as models of evolutionary processes (21, 38, 40). Understanding the molecular genetic and evolutionary basis of biodegradation processes allows improved monitoring and predictions of bacterial activities in situ (39) and promises the development of improved strains and enzymes with increased specific activity (3), increased substrate affinity (16), extended substrate range (3, 16, 21, 37), extended inducer range (30, 31), or constitutive expression (39). Missense mutations in catabolic enzymes or regulatory proteins commonly lead to these changes (43), although other important mechanisms include duplication, deletion, and inversion (38-40).Vinyl chloride (VC) is a common groundwater pollutant (35) and known human carcinogen (24), and it poses a health risk to exposed populations. Although trace amounts (e.g., parts per trillion) of VC have been detected in uncontaminated soil (23), higher concentrations are found only associated with human industry, particularly the manufacture of polyvinylchloride (PVC) plastic and the chlorinated solvents trichloroethene (TCE) and perchloroethene (PCE) (4). Aerobic bacteria that grow on VC as a sole carbon and energy source are diverse, including strains of Mycobacterium (8, 17, 18), Nocardioides (8), Pseudomonas (11, 41, 42), Ochrobactrum (11), and Ralstonia (13, 33). The relative ease of the isolation of VC assimilators from chlorinated ethene-contaminated sites suggests that such bacteria are influential in the natural attenuation of VC, but this interpretation is complicated by the fact that VC-assimilating bacteria are closely related to ethene-assimilating bacteria (8-10, 29) and cannot yet be distinguished from them by molecular tests.The VC and ethene pathway and genes are homologous to some extent with the propene assimilation pathway and genes in Xanthobacter Py2 and Gordonia B-276. The comparison of the genomes of the VC-assimilating Nocardioides JS614 and the propene-assimilating Xanthobacter Py2 indicates that growth on alkenes requires about 20 kb of alkene/epoxide catabolic genes and approximately 7 kb of coenzyme M (CoM) biosynthesis genes. The oxidation of VC and ethene is initiated by an alkene monooxygenase (AkMO; EtnABCD) (8-10, 29), which yields epoxyethane from ethene and chlorooxirane from VC (8, 17). An epoxyalkane-coenzyme M transferase (EaCoMT) enzyme, EtnE, acts upon these reactive, toxic, and mutagenic epoxides (2, 19), converting them to hydroxyalkyl-CoM derivatives. The remainder of the VC/ethene pathway is unclear. The JS614 genome indicates further homology with propene oxidizers, in that a reductase/carboxylase and SDR family dehydrogenase are present, but that other aspects of the VC/ethene pathway gene cluster are unique (e.g., the presence of a semialdehyde dehydrogenase [5] and a disulfide reductase-like gene [GenBank accession no. NC_008697]).The EtnE enzyme and the homologous XecA enzyme that acts on epoxypropane in Xanthobacter Py2 and Gordonia B-276 (9, 10, 12, 29) are unusual in their requirement for CoM as a cofactor. The C2- and C3-alkene oxidizers are the only Eubacteria known to biosynthesize and require CoM, which is otherwise found only in methanogenic Archaea. The XecA protein of Py2 has been purified and shown to be a Zn-dependent enzyme (1, 14, 26, 44). Based on sequence homology and the presence of the Cys-X-His-Xn-Cys motif (see Fig. S1 in the supplemental material), the EtnE enzymes also are likely to be Zn-dependent enzymes. Heterologous expression systems for XecA and EtnE have been developed (9, 25), but no crystal structures are available yet for EaCoMT from any source.Pure cultures of ethene-assimilating bacteria are capable of spontaneously adapting to growth on VC as a carbon source (22, 42), but the molecular basis of this phenomenon is not clear. This knowledge gap confounds the development of molecular probes specific for VC-assimilating bacteria. Pseudomonas aeruginosa strain DL1 shifted from cometabolism to growth on VC after more than 40 days of incubation (42), while Mycobacterium strains JS622, JS623, JS624, and JS625 took between 55 and 476 days to adapt to VC (22). The VC-adapted phenotype in Mycobacterium strains was not lost after growth in nonselective medium, suggesting a genetic change rather than a physiological adaptation (22).Here, we tested the hypothesis that mutations in the alkene/epoxide catabolic genes are responsible for VC adaptation. This was done by sequencing EtnEABCD genes in fosmid clones from cultures before and after VC adaptation, by sequencing etnE PCR products at different time points during VC adaptation, and by examining the EtnE enzyme activity in VC-adapted strains and recombinant strains carrying evolved etnE alleles.  相似文献   

9.
Despite extensive research on the bottom-up force of resource availability (e.g., electron donors and acceptors), slow biodegradation rates and stalling at cis-dichloroethene (cDCE) and vinyl chloride continue to be observed in aquifers contaminated with trichloroethene (TCE). The objective of this research was to gauge the impact of the top-down force of protistan predation on TCE biodegradation in laboratory microcosms. When indigenous bacteria from an electron donor-limited TCE-contaminated bedrock aquifer were present, the indigenous protists inhibited reductive dechlorination altogether. The presence of protists during organic carbon-amended conditions caused the bacteria to elongate (length:width, ≥10:1), but reductive dechlorination was still inhibited. When a commercially available dechlorinating bacterial culture and an organic carbon amendment were added in he presence of protists, the elongated bacteria predominated and reductive dechlorination stalled at cDCE. When protists were removed under organic carbon-amended conditions, reductive dechlorination stalled at cDCE, whereas in the presence organic carbon and bacterial amendments, the total chlorinated ethene concentration decreased, indicating TCE was converted to ethene and/or CO2. The data suggested that indigenous protists grazed dechlorinators to extremely low levels, inhibiting dechlorination altogether. Hence, in situ bioremediation/bioaugmentation may not be successful in mineralizing TCE unless the top-down force of protistan predation is inhibited.The bacterially mediated sequential dechlorination of trichloroethene (TCE) to cis-dichloroethene (cDCE), vinyl chloride (VC), ethene, and CO2 by dehalorespiration is often proposed as the most cost-effective in situ treatment to remediate chlorinated solvent-contaminated aquifers (35, 42). TCE mineralization to CO2 requires specific electron donors (i.e., acetate and H2) typically produced from readily fermentable organic carbon, the presence of specific bacterial species, and sulfate-reducing or methanogenic conditions (1, 4, 8, 15, 22, 25, 33, 35, 46). When the rate of mineralization is slow or stalled at one of the progeny (cDCE and VC), the problem is usually attributed to the bottom-up force of resource availability (e.g., the absence of a necessary condition such as suitable electron donors or bacterial species) (1, 4, 10, 22, 26, 43, 46). For example, whereas many bacterial species are capable of degrading TCE to cDCE and VC by dehalorespiration (33), only Dehalococcoides ethenogenes is known to convert VC to ethene (25). Hence, if an indigenous population of D. ethenogenes is not present in situ, the system will likely stall at cDCE or VC even if sufficient electron donor is added. Stalling is problematic because VC is more toxic than TCE (18). In this case, bioaugmentation with D. ethenogenes may trigger complete mineralization.An established link exists for the top-down force of predator-prey relationships between protists and bacteria in a range of surface water systems (13, 19-21, 29). Our previous work with groundwater protists in a wastewater contaminated sandy aquifer demonstrated that size selective predation by protists affects biodegradation of the organic carbon. Our subsequent work in a TCE-contaminated bedrock aquifer at the Bedrock Bioremediation Center (BBC) research site (Portsmouth, NH) suggested that bottom-up resource availability could not totally explain stalls at cDCE. This led us to hypothesize that the top-down force of selective predation by protists on dehalorespiring bacteria inhibited the required compositional shift in the bacterial community to one dominated by D. ethenogenes, thus preventing the conversion of cDCE and VC to ethene and CO2 (2, 15). This, coupled with bacterial studies by Travis and Rosenberg (41), Lewis (32) and Snyder et al. (40), led us to postulate that protistan predation could have a negative impact on TCE biodegradation. Continuously stirred reactors were used to examine how the presence of protists influenced the rate of bacterially mediated reductive dechlorination. Experiments were conducted using ambient (≤0.8 mM as C) and amended (10 mM as C) organic carbon concentrations with protists present and absent. TCE biodegradation was also assessed when the indigenous community was amended with a commercially available bacterial culture containing D. ethenogenes (34).(A portion of this research was originally submitted to the University of New Hampshire, Durham, by J. Cunningham as an M.S. thesis [12].)  相似文献   

10.
11.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

12.
Immunogold localization revealed that OmcS, a cytochrome that is required for Fe(III) oxide reduction by Geobacter sulfurreducens, was localized along the pili. The apparent spacing between OmcS molecules suggests that OmcS facilitates electron transfer from pili to Fe(III) oxides rather than promoting electron conduction along the length of the pili.There are multiple competing/complementary models for extracellular electron transfer in Fe(III)- and electrode-reducing microorganisms (8, 18, 20, 44). Which mechanisms prevail in different microorganisms or environmental conditions may greatly influence which microorganisms compete most successfully in sedimentary environments or on the surfaces of electrodes and can impact practical decisions on the best strategies to promote Fe(III) reduction for bioremediation applications (18, 19) or to enhance the power output of microbial fuel cells (18, 21).The three most commonly considered mechanisms for electron transfer to extracellular electron acceptors are (i) direct contact between redox-active proteins on the outer surfaces of the cells and the electron acceptor, (ii) electron transfer via soluble electron shuttling molecules, and (iii) the conduction of electrons along pili or other filamentous structures. Evidence for the first mechanism includes the necessity for direct cell-Fe(III) oxide contact in Geobacter species (34) and the finding that intensively studied Fe(III)- and electrode-reducing microorganisms, such as Geobacter sulfurreducens and Shewanella oneidensis MR-1, display redox-active proteins on their outer cell surfaces that could have access to extracellular electron acceptors (1, 2, 12, 15, 27, 28, 31-33). Deletion of the genes for these proteins often inhibits Fe(III) reduction (1, 4, 7, 15, 17, 28, 40) and electron transfer to electrodes (5, 7, 11, 33). In some instances, these proteins have been purified and shown to have the capacity to reduce Fe(III) and other potential electron acceptors in vitro (10, 13, 29, 38, 42, 43, 48, 49).Evidence for the second mechanism includes the ability of some microorganisms to reduce Fe(III) that they cannot directly contact, which can be associated with the accumulation of soluble substances that can promote electron shuttling (17, 22, 26, 35, 36, 47). In microbial fuel cell studies, an abundance of planktonic cells and/or the loss of current-producing capacity when the medium is replaced is consistent with the presence of an electron shuttle (3, 14, 26). Furthermore, a soluble electron shuttle is the most likely explanation for the electrochemical signatures of some microorganisms growing on an electrode surface (26, 46).Evidence for the third mechanism is more circumstantial (19). Filaments that have conductive properties have been identified in Shewanella (7) and Geobacter (41) species. To date, conductance has been measured only across the diameter of the filaments, not along the length. The evidence that the conductive filaments were involved in extracellular electron transfer in Shewanella was the finding that deletion of the genes for the c-type cytochromes OmcA and MtrC, which are necessary for extracellular electron transfer, resulted in nonconductive filaments, suggesting that the cytochromes were associated with the filaments (7). However, subsequent studies specifically designed to localize these cytochromes revealed that, although the cytochromes were extracellular, they were attached to the cells or in the exopolymeric matrix and not aligned along the pili (24, 25, 30, 40, 43). Subsequent reviews of electron transfer to Fe(III) in Shewanella oneidensis (44, 45) appear to have dropped the nanowire concept and focused on the first and second mechanisms.Geobacter sulfurreducens has a number of c-type cytochromes (15, 28) and multicopper proteins (12, 27) that have been demonstrated or proposed to be on the outer cell surface and are essential for extracellular electron transfer. Immunolocalization and proteolysis studies demonstrated that the cytochrome OmcB, which is essential for optimal Fe(III) reduction (15) and highly expressed during growth on electrodes (33), is embedded in the outer membrane (39), whereas the multicopper protein OmpB, which is also required for Fe(III) oxide reduction (27), is exposed on the outer cell surface (39).OmcS is one of the most abundant cytochromes that can readily be sheared from the outer surfaces of G. sulfurreducens cells (28). It is essential for the reduction of Fe(III) oxide (28) and for electron transfer to electrodes under some conditions (11). Therefore, the localization of this important protein was further investigated.  相似文献   

13.
14.
Desulfitobacterium hafniense strain PCP-1 reductively dechlorinates pentachlorophenol (PCP) to 3-chlorophenol and a variety of halogenated aromatic compounds at the ortho, meta, and para positions. Several reductive dehalogenases (RDases) are thought to be involved in this cascade of dehalogenation. We partially purified a novel RDase involved in the dechlorination of highly chlorinated phenols from strain PCP-1 cultivated in the presence of 2,4,6-trichlorophenol. The RDase was membrane associated, and the activity was sensitive to oxygen, with a half-life of 128 min upon exposure to air. The pH and temperature optima were 7.0 and 55°C, respectively. Several highly chlorinated phenols were dechlorinated at the ortho positions. The highest dechlorinating activity levels were observed with PCP, 2,3,4,5-tetrachlorophenol, and 2,3,4-trichlorophenol. 3-Chloro-4-hydroxyphenylacetate, 3-chloro-4-hydroxybenzoate, dichlorophenols, and monochlorophenols were not dechlorinated. The apparent Km value for PCP was 46.7 μM at a methyl viologen concentration of 2 mM. A mixture of iodopropane and titanium citrate caused a light-reversible inhibition of the dechlorinating activity, suggesting the involvement of a corrinoid cofactor. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the partially purified preparation revealed 2 bands with apparent molecular masses of 42 and 47 kDa. Mass spectrometry analysis using Mascot to search the genome sequence of D. hafniense strain DCB-2 identified the 42-kDa band as NADH-quinone oxidoreductase, subunit D, and the 47-kDa band as the putative chlorophenol RDase CprA3. This is the first report of an RDase with high affinity and high dechlorinating activity toward PCP.Halogenated compounds are generally known as toxic environmental pollutants. Hydrogenolytic reductive dehalogenation, a reaction involving the replacement of one halogen atom with one hydrogen atom, is the predominant mechanism for their transformation in anaerobic environments. This process can sustain microbial growth via electron transport-coupled phosphorylation (10, 26, 31). The majority of the known reductive dehalogenases (RDases) belong to the CprA/PceA family. These are single-polypeptide membrane-associated anaerobic enzymes that are synthesized as preproteins with a cleavable twin arginine translocation (TAT) peptide signal. They contain one corrinoid and two iron-sulfur clusters as cofactors.CprA enzymes catalyzing the reductive dechlorination of chloroaromatics have been purified from Desulfitobacterium hafniense strain DCB-2 (6), Desulfitobacterium dehalogenans (30), Desulfitobacterium chlororespirans strain Co23 (12, 14), Desulfitobacterium sp. strain PCE1 (29), and D. hafniense strain PCP-1 (28) and characterized, and PceA enzymes have been purified from Sulfurospirillum multivorans (22, 23), Desulfitobacterium sp. strain PCE-S (18, 19), D. hafniense strain TCE1 (29), Dehalococcoides ethenogenes 195 (15, 16), Desulfitobacterium sp. strain PCE1 (29), Dehalobacter restrictus (17, 25), Desulfitobacterium sp. strain Y51 (27), and Dehalococcoides sp. strain VS (20) and characterized. However, none of these enzymes showed high dechlorinating activity toward highly chlorinated phenols such as pentachlorophenol (PCP).D. hafniense strain PCP-1 is the only known strict anaerobic bacterium which reductively dechlorinates PCP to 3-chlorophenol (3-CP) and a variety of halogenated aromatic compounds at the ortho, meta, and para positions (2, 7). It dechlorinates PCP at the ortho, ortho, para, and meta positions in the following order: PCP → 2,3,5,6-tetrachlorophenol (2,3,5,6-TeCP) → 3,4,5-trichlorophenol (3,4,5-TCP) → 3,5-dichlorophenol (3,5-DCP) → 3-CP (7). Several RDases are thought to operate during this sequence of dechlorinations. Two RDases have already been purified from strain PCP-1. The first one, CrdA, is a membrane-associated enzyme, not related to CprA/PceA-type RDases, that mediates ortho dechlorination of 2,4,6-TCP and several chlorophenols (3). The second enzyme, CprA5, catalyzes the meta and para dechlorination of 3,5-DCP and several chlorophenols (28). Three other putative cprA genes were identified in strain PCP-1 (cprA2, cprA3, and cprA4), which suggests that other RDases with different specificities toward halogenated compounds exist in this strain (8, 31, 32). In this study, we have partially purified and characterized a new CprA-type RDase (CprA3) from strain PCP-1. CprA3 is the first reported RDase with high affinity toward PCP and with high ortho-dechlorinating activity toward PCP and other highly chlorinated phenols.  相似文献   

15.
16.
17.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

18.
19.
20.
Adhesive pili on the surface of the serotype M1 Streptococcus pyogenes strain SF370 are composed of a major backbone subunit (Spy0128) and two minor subunits (Spy0125 and Spy0130), joined covalently by a pilin polymerase (Spy0129). Previous studies using recombinant proteins showed that both minor subunits bind to human pharyngeal (Detroit) cells (A. G. Manetti et al., Mol. Microbiol. 64:968-983, 2007), suggesting both may act as pilus-presented adhesins. While confirming these binding properties, studies described here indicate that Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role as a wall linker. Pili were localized predominantly to cell wall fractions of the wild-type S. pyogenes parent strain and a spy0125 deletion mutant. In contrast, they were found almost exclusively in culture supernatants in both spy0130 and srtA deletion mutants, indicating that the housekeeping sortase (SrtA) attaches pili to the cell wall by using Spy0130 as a linker protein. Adhesion assays with antisera specific for individual subunits showed that only anti-rSpy0125 serum inhibited adhesion of wild-type S. pyogenes to human keratinocytes and tonsil epithelium to a significant extent. Spy0125 was localized to the tip of pili, based on a combination of mutant analysis and liquid chromatography-tandem mass spectrometry analysis of purified pili. Assays comparing parent and mutant strains confirmed its role as the adhesin. Unexpectedly, apparent spontaneous cleavage of a labile, proline-rich (8 of 14 residues) sequence separating the N-terminal ∼1/3 and C-terminal ∼2/3 of Spy0125 leads to loss of the N-terminal region, but analysis of internal spy0125 deletion mutants confirmed that this has no significant effect on adhesion.The group A Streptococcus (S. pyogenes) is an exclusively human pathogen that commonly colonizes either the pharynx or skin, where local spread can give rise to various inflammatory conditions such as pharyngitis, tonsillitis, sinusitis, or erysipelas. Although often mild and self-limiting, GAS infections are occasionally very severe and sometimes lead to life-threatening diseases, such as necrotizing fasciitis or streptococcal toxic shock syndrome. A wide variety of cell surface components and extracellular products have been shown or suggested to play important roles in S. pyogenes virulence, including cell surface pili (1, 6, 32). Pili expressed by the serotype M1 S. pyogenes strain SF370 mediate specific adhesion to intact human tonsil epithelia and to primary human keratinocytes, as well as cultured keratinocyte-derived HaCaT cells, but not to Hep-2 or A549 cells (1). They also contribute to adhesion to a human pharyngeal cell line (Detroit cells) and to biofilm formation (29).Over the past 5 years, pili have been discovered on an increasing number of important Gram-positive bacterial pathogens, including Bacillus cereus (4), Bacillus anthracis (4, 5), Corynebacterium diphtheriae (13, 14, 19, 26, 27, 44, 46, 47), Streptococcus agalactiae (7, 23, 38), and Streptococcus pneumoniae (2, 3, 24, 25, 34), as well as S. pyogenes (1, 29, 32). All these species produce pili that are composed of a single major subunit plus either one or two minor subunits. During assembly, the individual subunits are covalently linked to each other via intermolecular isopeptide bonds, catalyzed by specialized membrane-associated transpeptidases that may be described as pilin polymerases (4, 7, 25, 41, 44, 46). These are related to the classical housekeeping sortase (usually, but not always, designated SrtA) that is responsible for anchoring many proteins to Gram-positive bacterial cell walls (30, 31, 33). The C-terminal ends of sortase target proteins include a cell wall sorting (CWS) motif consisting, in most cases, of Leu-Pro-X-Thr-Gly (LPXTG, where X can be any amino acid) (11, 40). Sortases cleave this substrate between the Thr and Gly residues and produce an intermolecular isopeptide bond linking the Thr to a free amino group provided by a specific target. In attaching proteins to the cell wall, the target amino group is provided by the lipid II peptidoglycan precursor (30, 36, 40). In joining pilus subunits, the target is the ɛ-amino group in the side chain of a specific Lys residue in the second subunit (14, 18, 19). Current models of pilus biogenesis envisage repeated transpeptidation reactions adding additional subunits to the base of the growing pilus, until the terminal subunit is eventually linked covalently via an intermolecular isopeptide bond to the cell wall (28, 41, 45).The major subunit (sometimes called the backbone or shaft subunit) extends along the length of the pilus and appears to play a structural role, while minor subunits have been detected either at the tip, the base, and/or at occasional intervals along the shaft, depending on the species (4, 23, 24, 32, 47). In S. pneumoniae and S. agalactiae one of the minor subunits acts as an adhesin, while the second appears to act as a linker between the base of the assembled pilus and the cell wall (7, 15, 22, 34, 35). It was originally suggested that both minor subunits of C. diphtheriae pili could act as adhesins (27). However, recent data showed one of these has a wall linker role (26, 44) and may therefore not function as an adhesin.S. pyogenes strain SF370 pili are composed of a major (backbone) subunit, termed Spy0128, plus two minor subunits, called Spy0125 and Spy0130 (1, 32). All three are required for efficient adhesion to target cells (1). Studies employing purified recombinant proteins have shown that both of the minor subunits, but not the major subunit, bind to Detroit cells (29), suggesting both might act as pilus-presented adhesins. Here we report studies employing a combination of recombinant proteins, specific antisera, and allelic replacement mutants which show that only Spy0125 is the pilus-presented adhesin and that Spy0130 has a distinct role in linking pili to the cell wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号