首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rab27a is required for polarized secretion of lysosomes from cytotoxic T lymphocytes (CTLs) at the immunological synapse. A series of Rab27a-interacting proteins have been identified; however, only Munc13-4 has been found to be expressed in CTL. In this study, we screened for expression of the synaptotagmin-like proteins (Slps): Slp1/JFC1, Slp2-a/exophilin4, Slp3-a, Slp4/granuphilin, Slp5 and rabphilin in CTL. We found that both Slp1 and Slp2-a are expressed in CTL. Isoforms of Slp2-a in CTL showed variation of the linker region but conserved the C2A and C2B and Slp homology (SHD) domains. Both Slp1 and Slp2-a interact with Rab27a in CTL, and Slp2-a, but not Slp1, is rapidly degraded when Rab27a is absent. Slp2-a contains PEST-like sequences within its linker region, which render it susceptible to degradation. Both Slp1 and Slp2-a localize predominantly to the plasma membrane of both human and mouse CTLs, and we show that Slp2-a can focus tightly at the immunological synapse formed with a target cell. Individual knockouts of either Slp2-a or Slp1 fail to impair CTL-mediated killing of targets; however, overexpression of a dominant-negative construct consisting of the SHD of Slp2-a, which is 56% identical to that of Slp1, reduces target cell death, suggesting that both Slp1 and Slp2-a contribute to secretory lysosome exocytosis from CTL. These results suggest that both Slp1 and Slp2-a may form part of a docking complex, capturing secretory lysosomes at the immunological synapse.  相似文献   

2.
Slp4-a (synaptotagmin-like protein 4-a)/granuphilin-a is specifically localized on dense-core vesicles in PC12 cells and negatively controls dense-core vesicle exocytosis through specific interaction with Rab27A via the N-terminal Slp homology domain (SHD) (Fukuda, M., Kanno, E., Saegusa, C., Ogata, Y., and Kuroda, T. S. (2002) J. Biol. Chem. 277, 39673-39678). However, the mechanism of the inhibition by Slp4-a has never been elucidated at the molecular level and is still a matter of controversy. In this study, I discovered an unexpected biochemical property of Slp4-a, that Slp4-a, but not other Rab27 effectors reported thus far, is capable of interacting with both Rab27A(T23N), a dominant negative form that mimics the GDP-bound form, and Rab27A(Q78L), a dominant active form that mimics the GTP-bound form, whereas Slp4-a specifically recognizes the GTP-bound form of Rab3A and Rab8A and does not recognize their GDP-bound form. I show by deletion and mutation analyses that the TGDWFY sequence in SHD2 is essential for Rab27A(T23N) binding, whereas SHD1 is involved in Rab27A(Q78L) binding. I further show by immunoprecipitation and cotransfection assays that Munc18-1, but not syntaxin IA, directly interacts with the C-terminal domain of Slp4-a in a Rab27A-independent manner. Expression of Slp4-a mutants that lack Rab27A(T23N) binding activity (i.e. specific binding to Rab27A(Q78L)) completely reverses the inhibitory effect of the wild-type Slp4-a on high KCl-dependent neuropeptide Y secretion in PC12 cells. The results strongly indicate that interaction of Slp4-a with the GDP-bound form of Rab27A, not with syntaxin IA or Munc18-1, is the primary reason that Slp4-a expression inhibits dense core vesicle exocytosis in PC12 cells.  相似文献   

3.
Rabphilin, Rim, and Noc2 have generally been believed to be the Rab3 isoform (Rab3A/B/C/D)-specific effectors that regulate secretory vesicle exocytosis in neurons and in some endocrine cells. The results of recent genetic analysis of rabphilin knock-out animals, however, strongly refute this notion, because there are no obvious genetic interactions between Rab3 and rabphilin in nematoda (Staunton, J., Ganetzky, B., and Nonet, M. L. (2001) J. Neurosci. 21, 9255-9264), suggesting that Rab3 is not a major ligand of rabphilin in vivo. In this study, I tested the interaction of rabphilin, Rim1, Rim2, and Noc2 with 42 different Rab proteins by cotransfection assay and found differences in rabphilin, Rim1, Rim2, and Noc2 binding to several Rab proteins that belong to the Rab functional group III (Rab3A/B/C/D, Rab26, Rab27A/B, and Rab37) and/or VIII (Rab8A and Rab10). Rim1 interacts with Rab3A/B/C/D, Rab10, Rab26, and Rab37; Rim2 interacts with Rab3A/B/C/D and Rab8A; and rabphilin and Noc2 interact with Rab3A/B/C/D, Rab8A, and Rab27A/B. By contrast, the synaptotagmin-like protein homology domain of Slp homologue lacking C2 domains-a (Slac2-a)/melanophilin specifically recognizes Rab27A/B but not other Rabs. I also found that alternative splicing events in the first alpha-helical region (alpha(1)) of the Rab binding domain of Rim1 alter the Rab binding specificity of Rim1. Site-directed mutagenesis and chimeric analyses of Rim2 and Slac2-a indicate that the acidic cluster (Glu-50, Glu-51, and Glu-52) in the alpha(1) region of the Rab binding domain of Rim2, which is not conserved in the synaptotagmin-like pro tein homology domain of Slac2-a, is a critical determinant of Rab3A recognition. Based on these results, I propose that Rim, rabphilin, and Noc2 function differently in concert with functional group III and/or VIII Rab proteins, including Rab3 isoforms.  相似文献   

4.
The small GTPase Rab27A has recently been shown to regulate melanosome transport in mammalian skin melanocytes through sequentially interacting with two Rab27A effectors, Slac2-a/melanophilin and Slp2-a. Although Slac2-a and Slp2-a contain a similar N-terminal Rab27A-binding domain (named SHD, Slp homology domain), nothing is known about the functional differences between the Slac2-a SHD and Slp2-a SHD. In this study, the Rab27A-binding affinity of ten putative Rab27A effector proteins has been investigated. It has been found that they could be classified into a low-affinity group (e.g., Slac2-a) and a high-affinity group (e.g., Slp2-a and Slp4-a) based on their Rab27A-binding affinity. Kinetic analysis of the GTP-Rab27A-binding to the SHD of Slp2-a, Slp4-a, and Slac2-a by surface plasmon resonance further indicated that the kinetic parameters of Rab27A for the Slp2-a SHD, Slp4-a SHD, and Slac2-a SHD consisted of a fast association rate constant (3.35 x 10(4), 2.06 x 10(4), and 2.11 x 10(4) M(-1) s(-1), respectively) and a slow dissociation rate constant (4.48 x 10(-4), 3.96 x 10(-4), and 2.37 x 10(-3) s(-1) respectively), and their equilibrium dissociation constants were determined to be 13.4, 19.2, and 112 nM, respectively. Our data suggest that distinct Rab27A binding activities of Slac2-a and Slp2-a ensure the order (or hierarchy) of Rab27A effectors that sequentially function in melanosome transport in melanocytes.  相似文献   

5.
Synaptotagmin-like protein 4-a (Slp4-a)/granuphilin-a was originally identified as a protein specifically associated with insulin-containing vesicles in pancreatic beta-cells (Wang, J., Takeuchi, T., Yokota, H., and Izumi, T. (1999) J. Biol. Chem. 274, 28542-28548). Previously, we showed that the N-terminal Slp homology domain of Slp4-a interacts with the GTP-bound form of Rab3A, Rab8, and Rab27A both in vitro and in intact cells (Kuroda, T. S., Fukuda, M., Ariga, H., and Mikoshiba, K. (2002) J. Biol. Chem. 277, 9212-9218). How Slp4-a.Rab complex controls regulated secretion, and which Rab isoforms dominantly interact with Slp4-a in vivo, however, have remained unknown. In this study, we showed by immunocytochemistry and subcellular fractionation that three Rabs, Rab3A, Rab8, and Rab27A, and Slp4-a are endogenously expressed in neuroendocrine PC12 cells and localized on dense-core vesicles, and we discovered that the Slp4-a.Rab8 and Slp4-a.Rab27A complexes, but not Slp4-a.Rab3A complexes, are formed on dense-core vesicles in PC12 cells, although the majority of Rab8 is present in the cell body and is free of Slp4-a. We further showed that expression of Rab27A, but not of Rab8, promotes high KCl-dependent secretion of neuropeptide Y (NPY) in PC12 cells, whereas expression of Slp4-a, but not of an Slp4-a mutant incapable of Rab27A binding, inhibits NPY secretion in PC12 cells. In contrast, expression of Slp3-a, but not of Slp3-b lacking an N-terminal Rab27A-binding domain, promotes NPY secretion. These findings suggest that the Slp family controls regulated dense-core vesicle exocytosis via binding to Rab27A.  相似文献   

6.
Synaptotagmin-like protein 4-a (Slp4-a)/granuphilin-a is specifically localized on dense-core vesicles in certain neuroendocrine cells and negatively controls dense-core vesicle exocytosis through specific interaction with Rab27A. However, the precise molecular mechanism of its inhibitory effect on exocytosis has never been elucidated and is still a matter of controversy. Here we show by deletion and chimeric analyses that the linker domain of Slp4-a interacts with the Munc18-1.syntaxin-1a complex by directly binding to Munc18-1 and that this interaction promotes docking of dense-core vesicles to the plasma membrane in PC12 cells. Despite increasing the number of plasma membrane docked vesicles, expression of Slp4-a strongly inhibited high-KCl-induced dense-core vesicle exocytosis. The inhibitory effect by Slp4-a is absolutely dependent on the linker domain of Slp4-a, because substitution of the linker domain of Slp4-a by that of Slp5 (the closest isoform of Slp4-a that cannot bind the Munc18-1.syntaxin-1a complex) completely abrogated the inhibitory effect. Our findings reveal a novel docking machinery for dense-core vesicle exocytosis: Slp4-a simultaneously interacts with Rab27A and Munc18-1 on the dense-core vesicle and with syntaxin-1a in the plasma membrane.  相似文献   

7.
Rabphilin is a membrane trafficking protein on secretory vesicles that consists of an N-terminal Rab-binding domain and C-terminal tandem C2 domains. The N-terminal part of rabphilin has recently been shown to function as an effector domain for both Rab27A and Rab3A in PC12 cells (Fukuda, M., Kanno, E., and Yamamoto, A. (2004) J. Biol. Chem. 279, 13065-13075), but the function of the C2 domains of rabphilin during secretory vesicle exocytosis is largely unknown. In this study we investigated the interaction between rabphilin and SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors, VAMP-2/synaptobrevin-2, syntaxin IA, and SNAP-25) and SNARE-associated proteins (Munc18-1 and Munc13-1) and found that the C2B domain of rabphilin, but not of other Rab27A-binding proteins with tandem C2 domains (i.e. Slp1-5), directly interacts with a plasma membrane protein, SNAP-25. The interaction between rabphilin and SNAP-25 occurs even in the absence of Ca(2+) (EC(50) = 0.817 microm SNAP-25), but 0.5 mm Ca(2+) increases the affinity for SNAP-25 2-fold (EC(50) = 0.405 microm SNAP-25) without changing the B(max) value (1.06 mol of SNAP-25/mol of rabphilin). Furthermore, vesicle dynamics were imaged by total internal reflection fluorescence microscopy in a single PC12 cell expressing a lumen-targeted pH-insensitive yellow fluorescent protein (Venus), neuropeptide Y-Venus. Expression of the wild-type rabphilin in PC12 cells significantly increased the number of docked vesicles to the plasma membrane without altering the kinetics of individual secretory events, whereas expression of the mutant rabphilin lacking the C2B domain, rabphilin-DeltaC2B, decreased the number of docked vesicle or fusing at the plasma membrane. These findings suggest that rabphilin is involved in the docking step of regulated exocytosis in PC12 cells, possibly through interaction between the C2B domain and SNAP-25.  相似文献   

8.
Rabphilin and Noc2 were originally described as Rab3A effector proteins involved in the regulation of secretory vesicle exocytosis, however, recently both proteins have been shown to bind Rab27A in vitro in preference to Rab3A (Fukuda, M. (2003) J. Biol. Chem. 278, 15373-15380), suggesting that Rab3A is not their major ligand in vivo. In the present study we showed by means of deletion and mutation analyses that rabphilin and Noc2 are recruited to dense-core vesicles through specific interaction with Rab27A, not with Rab3A, in PC12 cells. Rab3A binding-defective mutants of rabphilin(E50A) and Noc2(E51A) were still localized in the distal portion of the neurites (where dense-core vesicles had accumulated) in nerve growth factor-differentiated PC12 cells, the same as the wild-type proteins, whereas Rab27A binding-defective mutants of rabphilin(E50A/I54A) and Noc2(E51A/I55A) were present throughout the cytosol. We further showed that expression of the wild-type or the E50A mutant of rabphilin-RBD, but not the E50A/I54A mutant of rabphilin-RBD, significantly inhibited high KCl-dependent neuropeptide Y secretion by PC12 cells. We also found that rabphilin and its binding partner, Rab27 have been highly conserved during evolution (from nematoda to humans) and that Caenorhabditis elegans and Drosophila rabphilin (ce/dm-rabphilin) specifically interact with ce/dm-Rab27, but not with ce/dm-Rab3 or ce/dm-Rab8, suggesting that rabphilin functions as a Rab27 effector across phylogeny. Based on these findings, we propose that the N-terminal Rab binding domain of rabphilin and Noc2 be referred to as "RBD27 (Rab binding domain for Rab27)", the same as the synaptotagmin-like protein homology domain (SHD) of Slac2-a/melanophilin.  相似文献   

9.
Neutrophil granules contain secretory molecules that contribute to the implementation of all neutrophil functions. The molecular components that regulate the exocytosis of neutrophil granules have not been characterized. In this study, using small interfering RNA gene-targeting approaches and granulocytes from genetically modified mice, we characterized the Rab27a effectors JFC1/Slp1 and Munc13-4 as components of the exocytic machinery of granulocytes. Using total internal reflection fluorescence microscopy analysis, we show that Rab27a and JFC1 colocalize in predocked and docked vesicles in granulocytes. Next, we demonstrate that JFC1-downregulated granulocytes have impaired myeloperoxidase secretion. Using immunological interference, we confirm that JFC1 plays an important role in azurophilic granule exocytosis in human neutrophils. Interference with Rab27a but not with JFC1 impaired gelatinase B secretion in neutrophils, suggesting that a different Rab27a effector modulates this process. In similar studies, we confirmed that Munc13-4 regulates gelatinase secretion. Immunofluorescence analysis indicates that Munc13-4 localizes at secretory organelles in neutrophils. Using neutrophils from a Munc13-4-deficient mouse model (Jinx), we demonstrate that Munc13-4 plays a central role in the regulation of exocytosis of various sets of secretory organelles. However, mobilization of CD11b was not affected in Munc13-4-deficient neutrophils, indicating that secretory defects in these cells are limited to a selective group of exocytosable organelles.  相似文献   

10.
Human Griscelli syndrome type 2 (GS-2) is characterized by partial albinism and a severe immunologic disorder as a result of RAB27A mutations. In melanocytes, Rab27A forms a tripartite complex with a specific effector Slac2-a/melanophilin and myosin Va, and the complex regulates melanosome transport. Here, we report a novel homozygous missense mutation of Rab27A, i.e. K22R, in a Persian GS-2 patient and the results of analysis of the impact of the K22R mutation and the previously reported I44T mutation on protein function. Both mutations completely abolish Slac2-a/melanophilin binding activity but they affect the biochemical properties of Rab27A differently. The Rab27A(K22R) mutant lacks the GTP binding ability and exhibits cytosolic localization in melanocytes. By contrast, neither intrinsic GTPase activity nor melanosomal localization of Rab27A is affected by the I44T mutation, but the Rab27A(I44T) mutant is unable to recruit Slac2-a/melanophilin. Interestingly, the two mutations differently affect binding to other Rab27A effectors, Slp2-a, Slp4-a/granuphilin-a, and Munc13-4. The Rab27A(K22R) mutant normally binds Munc13-4, but not Slp2-a or Slp4-a, whereas the Rab27A(I44T) mutant shows reduced binding activity to Slp2-a and Munc13-4 but normally binds Slp4-a.  相似文献   

11.
Uroplakins (UPs) are major differentiation products of urothelial umbrella cells and play important roles in forming the permeability barrier and in the expansion/stabilization of the apical membrane. Further, UPIa serves as a uropathogenic Escherichia coli receptor. Although it is understood that UPs are delivered to the apical membrane via fusiform vesicles (FVs), the mechanisms that regulate this exocytic pathway remain poorly understood. Immunomicroscopy of normal and mutant mouse urothelia show that the UP-delivering FVs contained Rab8/11 and Rab27b/Slac2-a, which mediate apical transport along actin filaments. Subsequently a Rab27b/Slp2-a complex mediated FV–membrane anchorage before SNARE-mediated and MAL-facilitated apical fusion. We also show that keratin 20 (K20), which forms a chicken-wire network ∼200 nm below the apical membrane and has hole sizes allowing FV passage, defines a subapical compartment containing FVs primed and strategically located for fusion. Finally, we show that Rab8/11 and Rab27b function in the same pathway, Rab27b knockout leads to uroplakin and Slp2-a destabilization, and Rab27b works upstream from MAL. These data support a unifying model in which UP cargoes are targeted for apical insertion via sequential interactions with Rabs and their effectors, SNAREs and MAL, and in which K20 plays a key role in regulating vesicular trafficking.  相似文献   

12.
The correct mobilization of cytoplasmic granules is essential for the proper functioning of human neutrophils in host defense and inflammation. In this study, we have found that human peripheral blood neutrophils expressed high levels of Rab27a, whereas Rab27b expression was much lower. This indicates that Rab27a is the predominant Rab27 isoform present in human neutrophils. Rab27a was up-regulated during neutrophil differentiation of HL-60 cells. Subcellular fractionation and immunoelectron microscopy studies of resting human neutrophils showed that Rab27a was mainly located in the membranes of specific and gelatinase-enriched tertiary granules, with a minor localization in azurophil granules. Rab27a was largely absent from CD35-enriched secretory vesicles. Tertiary and specific granule-located Rab27a population was translocated to the cell surface upon neutrophil activation with PMA that induced exocytosis of both tertiary and specific granules. Specific Abs against Rab27a inhibited Ca(2+) and GTP-gamma-S activation and PMA-induced exocytosis of CD66b-enriched tertiary and specific granules in electropermeabilized neutrophils, whereas secretion of CD63-enriched azurophil granules was scarcely affected. Human neutrophils lacked or expressed low levels of most Slp/Slac2 proteins, putative Rab27 effectors, suggesting that additional proteins should act as Rab27a effectors in human neutrophils. Our data indicate that Rab27a is a major component of the exocytic machinery of human neutrophils, modulating the secretion of tertiary and specific granules that are readily mobilized upon neutrophil activation.  相似文献   

13.
Rab GTPases coordinate vesicular trafficking within eukaryotic cells by collaborating with a set of effector proteins. Rab27a regulates numerous exocytotic pathways, and its dysfunction causes the Griscelli syndrome human immunodeficiency. Exophilin4/Slp2-a localizes on phosphatidylserine-enriched plasma membrane, and its N-terminal Rab27-binding domain (RBD27) specifically recognizes Rab27 on the surfaces of melanosomes and secretory granules prior to docking and fusion. To characterize the selective binding of Rab27 to 11 various effectors, we have determined the 1.8 A resolution structure of Rab27a in complex with Exophilin4 RBD27. The effector packs against the switch and interswitch elements of Rab27a, and specific affinity toward Rab27a is modulated by a shift in the orientation of the effector structural motif (S/T)(G/L)xW(F/Y)(2). The observed structural complementation between the interacting surfaces of Rab27a and Exophilin4 sheds light on the disparities among the Rab27 effectors and outlines a general mechanism for their recruitment.  相似文献   

14.
Rab27A is required for actin-based melanosome transport in mammalian skin melanocytes through its interaction with a specific effector, Slac2-a/melanophilin. Mutations that disrupt the Rab27A/Slac2-a interaction cause human Griscelli syndrome. The other Rab27 isoform, Rab27B, also binds all of the known effectors of Rab27A. In this study, we determined the crystal structure of the constitutively active form of Rab27B complexed with GTP and the effector domain of Slac2-a. The Rab27B/Slac2-a complex exhibits several intermolecular hydrogen bonds that were not observed in the previously reported Rab3A/rabphilin complex. A Rab27A mutation that disrupts one of the specific hydrogen bonds with Slac2-a resulted in the dramatic reduction of Slac2-a binding activity. Furthermore, we generated a Rab3A mutant that acquires Slac2-a binding ability by transplanting four Rab27-specific residues into Rab3A. These findings provide the structural basis for the exclusive association of Slac2-a with the Rab27 subfamily, whereas rabphilin binds several subfamilies, including Rab3 and Rab27.  相似文献   

15.
The formation of epithelial tissues requires both the generation of apical-basal polarity and the coordination of this polarity between neighbouring cells to form a central lumen. During de novo lumen formation, vectorial membrane transport contributes to the formation of a singular apical membrane, resulting in the contribution of each cell to only a single lumen. Here, from a functional screen for genes required for three-dimensional epithelial architecture, we identify key roles for synaptotagmin-like proteins 2-a and 4-a (Slp2-a/4-a) in the generation of a single apical surface per cell. Slp2-a localizes to the luminal membrane in a PtdIns(4,5)P(2)-dependent manner, where it targets Rab27-loaded vesicles to initiate a single lumen. Vesicle tethering and fusion is controlled by Slp4-a, in conjunction with Rab27/Rab3/Rab8 and the SNARE syntaxin-3. Together, Slp2-a/4-a coordinate the spatiotemporal organization of vectorial apical transport to ensure that only a single apical surface, and thus the formation of a single lumen, occurs per cell.  相似文献   

16.
Rab3A is a small GTPase implicated in the docking of secretory vesicles in neuroendocrine cells. A putative downstream target for Rab3A, rabphilin-3A, is located exclusively on secretory vesicle membranes. It contains near its C terminus two C2 domains that bind Ca2+ in a phospholipid-dependent manner and an N-terminal, Rab3A-binding domain that includes a Cys-rich region. We have determined that the Cys-rich domain binds two Zn2+ ions and is necessary but not sufficient for efficient binding of rabphilin to Rab3A. A minimal Rab3A-binding domain consists of residues 45 to 170 of rabphilin. HA1-tagged Rab3A and a green fluorescent protein (GFP)-rabphilin fusion were used to examine the roles of Rab3A and of rabphilin domains in the subcellular localization of these proteins. A Rab3A mutant (T54A) that does not bind rabphifin in vitro colocalized with the GFP-rabphilin fusion, indicating that Rab3A targeting is independent of its interaction with rabphilin. Deletion of the C2 domains of rabphilin reduced membrane association of GFP-rabphilin but did not cause mistargeting of the membrane-associated fraction. However, disruption of the zinc fingers, which drastically reduced Rab3A binding, did not reduce membrane association. These results suggest that the C2 domains are required for efficient membrane attachment of rabphilin in PC12 cells and that Rab3A binding may act to target the protein to the correct membrane.  相似文献   

17.
LPS is an efficient sensitizer of the neutrophil exocytic response to a second stimulus. Although neutrophil exocytosis in response to pathogen-derived molecules plays an important role in the innate immune response to infections, the molecular mechanism underlying LPS-dependent regulation of neutrophil exocytosis is currently unknown. The small GTPase Rab27a and its effector Munc13-4 regulate exocytosis in hematopoietic cells. Whether Rab27a and Munc13-4 modulate discrete steps or the same steps during exocytosis also remains unknown. Here, using Munc13-4- and Rab27a-deficient neutrophils, we analyzed the mechanism of lipopolysaccharide-dependent vesicular priming to amplify exocytosis of azurophilic granules. We found that both Munc13-4 and Rab27a are necessary to mediate LPS-dependent priming of exocytosis. However, we show that LPS-induced mobilization of a small population of readily releasable vesicles is a Munc13-4-dependent but Rab27a-independent process. LPS-induced priming regulation could not be fully explained by secretory organelle maturation as the redistribution of the secretory proteins Rab27a or Munc13-4 in response to LPS treatment was minimal. Using total internal reflection fluorescence microscopy and a novel mouse model expressing EGFP-Rab27a under the endogenous Rab27a promoter but lacking Munc13-4, we demonstrate that Munc13-4 is essential for the mechanism of LPS-dependent exocytosis in neutrophils and unraveled a novel mechanism of vesicular dynamics in which Munc13-4 restricts motility of Rab27a-expressing vesicles to facilitate lipopolysaccharide-induced priming of exocytosis.  相似文献   

18.
Rab27A was the only Rab protein whose dysfunction was found to cause human immunodeficiency. Since Griscelli syndrome patients (i.e., Rab27A-deficient) exhibit silvery hair color (i.e., pigmentary dilution) in addition to loss of cytotoxic killing activity by cytotoxic T lymphocytes, and Rab27A protein is expressed in a wide variety of secretory cells, Rab27A (or its closely related isoform Rab27B) has been implicated in the regulation of different types of membrane trafficking, including melanosome transport and various regulated secretion events. How does Rab27 protein regulate these different types of membrane trafficking? Recent discoveries of three different families of Rab27-binding proteins (a total of eleven distinct proteins) have supplied an important clue to the answer of this question: different types of Rab27 effectors function in different cell types. In this review I describe the literature on the identification of Rab27-binding proteins (i.e., the synaptotagmin-like protein (Slp) family with tandem C2 Ca(2+)-binding motifs, the Slac2 family without any C2 motifs, and Munc13-4, a putative priming factor for exocytosis) and the current state of our understanding of the molecular mechanism of the Rab27-dependent membrane trafficking.  相似文献   

19.
The synaptotagmin-like protein (Slp) family is implicated in regulating Rab27A-mediated membrane transport, but how it might do this is unknown. Here we report that Slp2-a, a previously uncharacterized Rab27A-binding protein in melanocytes, controls melanosome distribution in the cell periphery and regulates the morphology of melanocytes. Slp2-a is the most abundantly expressed of the Slp- and Slac2-family proteins in melanocytes and colocalizes with Rab27A on melanosomes. Knockdown of endogenous Slp2-a protein by small-interfering RNAs (siRNAs) markedly reduced the number of melanosomes in the cell periphery of mouse melanocytes ('peripheral dilution'). Expression of siRNA-resistant Slp2-a (Slp2-a(SR)) rescued the peripheral dilution of melanosomes induced by Slp2-a siRNAs, but Slp2-a(SR) mutants, which failed to interact with either phospholipids or Rab27A, did not. Loss of Slp2-a protein also induced a change in melanocyte morphology, from their normal elongated shape to a more rounded shape, which depended on the phospholipid-binding activity of Slp2-a, but not on its Rab27A-binding activity. By contrast, knockdown of Slac2-a (also called melanophilin), another Rab27A-binding protein in melanocytes, caused perinuclear aggregation of melanosomes alone without altering cell shape. These results reveal the differential and sequential roles of Rab27A-binding proteins in melanosome transport in melanocytes.  相似文献   

20.
rab27A, which encodes a small GTP-binding protein, was recently identified as a gene in which mutations caused human hemophagocytic syndrome (Griscelli syndrome) and ashen mice, which exhibit defects in melanosome transport as well as in regulated granule exocytosis in cytotoxic T lymphocytes. However, little is known about the molecular mechanism of Rab27A-dependent membrane trafficking or the specific effector molecules of Rab27A. In this study, we discovered that the Slp (synaptotagmin-like protein) homology domain (SHD) of Slp1--3 and Slac2-a/b specifically and directly binds the GTP-bound form of Rab27A both in vitro and in intact cells but not of the other Rabs tested (Rab1, Rab2, Rab3A, Rab4, Rab5A, Rab6A, Rab7, Rab8, Rab9, Rab10, Rab11A, Rab17, Rab18, Rab20, Rab22, Rab23, Rab25, Rab28, and Rab37). Immunocytochemical analysis revealed that Slp2 (or Slp1) colocalized with Rab27A in the melanosomes of melanoma cells. Slp2 and Rab27A were distributed to the periphery of the cells (especially at the dendritic tips) in the wild-type melanoma cells, whereas they accumulated in the perinuclear region in the melanosome transport-defective cells (S91/Cloudman). These results strongly indicated that the SHD of Slp1--3 and Slac2 functions as an in vivo Rab27A binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号