首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A number of gender differences exist in the human electrocardiogram (ECG): the P-wave and P-R intervals are slightly longer in men than in women, whilst women have higher resting heart rates than do men, but a longer rate-corrected QT (QTC) interval. Women with the LQT1 and LQT2 variants of congenital long-QT syndrome (LQTS) are at greater risk of adverse cardiac events. Similarly, many drugs associated with acquired LQTS have a greater risk of inducing torsades de pointes (TdP) arrhythmia in women than in men. There are also male:female differences in Brugada syndrome, early repolarisation syndrome and sudden cardiac death. The differences in the ECG between men and women, and in particular those relating to the QT interval, have been explored experimentally and provide evidence of differences in the processes underlying ventricular repolarization. The data available from rabbit, canine, rat, mouse and guinea pig models are reviewed and highlight involvement of male:female differences in Ca and K currents, although the possible involvement of rapid and persistent Na current and Na–Ca exchange currents cannot yet be excluded. The mechanisms underlying observed differences remain to be elucidated fully, but are likely to involve the influence of gonadal steroids. With respect to the QT interval and risk of TdP, a range of evidence implicates a protective role of testosterone in male hearts, possibly by both genomic and non-genomic pathways. Evidence regarding oestrogen and progesterone is less unequivocal, although the interplay between these two hormones may influence both repolarization and pro-arrhythmic risk.  相似文献   

2.
The cerebral vasculature is a target tissue for sex steroid hormones. Estrogens, androgens, and progestins all influence the function and pathophysiology of the cerebral circulation. Estrogen decreases cerebral vascular tone and increases cerebral blood flow by enhancing endothelial-derived nitric oxide and prostacyclin pathways. Testosterone has opposite effects, increasing cerebral artery tone. Cerebrovascular inflammation is suppressed by estrogen but increased by testosterone and progesterone. Evidence suggests that sex steroids also modulate blood-brain barrier permeability. Estrogen has important protective effects on cerebral endothelial cells by increasing mitochondrial efficiency, decreasing free radical production, promoting cell survival, and stimulating angiogenesis. Although much has been learned regarding hormonal effects on brain blood vessels, most studies involve young, healthy animals. It is becoming apparent that hormonal effects may be modified by aging or disease states such as diabetes. Furthermore, effects of testosterone are complicated because this steroid is also converted to estrogen, systemically and possibly within the vessels themselves. Elucidating the impact of sex steroids on the cerebral vasculature is important for understanding male-female differences in stroke and conditions such as menstrual migraine and preeclampsia-related cerebral edema in pregnancy. Cerebrovascular effects of sex steroids also need to be considered in untangling current controversies regarding consequences of hormone replacement therapies and steroid abuse.  相似文献   

3.
An individual's position in a social hierarchy profoundly affects behavior and physiology through interactions with community members, yet little is known about how the brain contributes to status differences between and within the social states or sexes. We aimed to determine sex-specific attributes of social status by comparing circulating sex steroid hormones and neural gene expression of sex steroid receptors in dominant and subordinate male and female Astatotilapia burtoni, a highly social African cichlid fish. We found that testosterone and 17β-estradiol levels are higher in males regardless of status and dominant individuals regardless of sex. Progesterone was found to be higher in dominant individuals regardless of sex. Based on pharmacological manipulations in males and females, progesterone appears to be a common mechanism for promoting courtship in dominant individuals. We also examined expression of androgen receptors, estrogen receptor α, and the progesterone receptor in five brain regions that are important for social behavior. Most of the differences in brain sex steroid receptor expression were due to sex rather than status. Our results suggest that the parvocellular preoptic area is a core region for mediating sex differences through androgen and estrogen receptor expression, whereas the progesterone receptor may mediate sex and status behaviors in the putative homologs of the nucleus accumbens and ventromedial hypothalamus. Overall our results suggest sex differences and similarities in the regulation of social dominance by gonadal hormones and their receptors in the brain.  相似文献   

4.
Short QT (SQT) syndrome is a genetic cardiac disorder characterized by an abbreviated QT interval of the patient’s electrocardiogram. The syndrome is associated with increased risk of arrhythmia and sudden cardiac death and can arise from a number of ion channel mutations. Cardiomyocytes derived from induced pluripotent stem cells generated from SQT patients (SQT hiPSC-CMs) provide promising platforms for testing pharmacological treatments directly in human cardiac cells exhibiting mutations specific for the syndrome. However, a difficulty is posed by the relative immaturity of hiPSC-CMs, with the possibility that drug effects observed in SQT hiPSC-CMs could be very different from the corresponding drug effect in vivo. In this paper, we apply a multistep computational procedure for translating measured drug effects from these cells to human QT response. This process first detects drug effects on individual ion channels based on measurements of SQT hiPSC-CMs and then uses these results to estimate the drug effects on ventricular action potentials and QT intervals of adult SQT patients. We find that the procedure is able to identify IC50 values in line with measured values for the four drugs quinidine, ivabradine, ajmaline and mexiletine. In addition, the predicted effect of quinidine on the adult QT interval is in good agreement with measured effects of quinidine for adult patients. Consequently, the computational procedure appears to be a useful tool for helping predicting adult drug responses from pure in vitro measurements of patient derived cell lines.  相似文献   

5.
During the periparturient period, dairy cows are subjected to physiological changes that may induce immunosuppression and an increased susceptibility of the animal to bacterial infections such as mastitis. The incidence of clinical environmental mastitis is high during the last period of gestation, at parturition and during the first month of lactation, suggesting a potential influence of sex steroid hormones. Efficient functioning of polymorphonuclear leukocytes (PMN) is necessary during the early phase of infection to clear the mammary gland from invading pathogens. The purpose of this study was to investigate the effect of sex steroid hormones on the oxidative burst activity of isolated PMN from ovariectomized cows. Ovariectomy was performed to minimize the interference of endogenous estrogen and progesterone levels, which are known to vary extensively during the estrus cycle. Isolated PMN were incubated with different concentrations of 17beta-estradiol, estrone or progesterone. A flow cytometric technique was used to quantify the oxidation of intracellular 2',7'-dichlorofluorescin by the oxidative burst system of PMN following stimulation with phorbol myristate acetate. Staurosporine was used as a positive control for our in vitro model. No statistically significant changes in PMN oxidative burst activity were observed at physiological or pharmacological levels of the three sex steroid hormones. A large variation existed in the oxidative burst activity among cows. In an additional experiment, the expression of estrogen receptor alpha and of progesterone receptor in PMN was evaluated immunohistochemically. No specific staining was detected for both receptors in isolated PMN following incubation with different concentrations of sex steroid hormones.  相似文献   

6.
Results are discussed indicating that neurotransmitters affect steroid hormone activity not only by controlling via neuroendocrine events the hypophysial-gonadal and hypophysial-adrenal axes, but also by modulating cell responsiveness to steroids in target cells. Hyper- or hypoactivity of pineal nerves result in enhancement or impairment of estradiol and testosterone effects on pineal metabolism in vivo and in vitro. Pineal cytoplasmic and nuclear estrogen and androgen receptors are modulated by norepinephrine released from nerve endings at the pinealocyte level. Neural activity affects the cycle of depletion-replenishment of pineal estrogen receptors following estradiol administration. Another site of modulation of steroid effects on the pinealocytes is the intracellular metabolism of testosterone and progesterone; nerve activity has a positive effect on testosterone aromatization and a negative effect on testosterone and progesterone 5α-reduction. NE activity on the pineal cells is mediated via β-adrenoceptors and cAMP. In the central nervous system information on the neurotransmitter modulation of steroid hormone action includes the following observations: (a) hypothalamic deafferentation depresses estrogen receptor levels in rat medial basal hypothalamus; (b) changes in noradrenergic transmission affect, via α-adrenoceptors, the estradiol-induced increase of cytosol progestin receptor concentration in guinea pig hypothalamus; (c) cAMP increases testosterone aromatization in cultured neurons from turtle brain; (d) electrical stimulation of dorsal hippocampus augments, and reserpine or 6-hydroxydopamine treatment decrease, corticoid binding in cat hypothalamus. In the adenohypophysis changes in dopaminergic input after median eminence lesions or bromocriptine treatment of rats result in opposite modifications of pituitary estrogen receptor levels. Therefore all these observations support the view that neurotransmitters can modulate the attachment of steroid hormones to their receptors in target cells.  相似文献   

7.
Mutations to hERG which result in changes to the rapid delayed rectifier current I Kr can cause long and short QT syndromes and are associated with an increased risk of cardiac arrhythmias. Experimental recordings of I Kr reveal the effects of mutations at the channel level, but how these changes translate to the cell and tissue levels remains unclear. We used computational models of human ventricular myocytes and tissues to predict and quantify the effects that de novo hERG mutations would have on cell and tissue electrophysiology. Mutations that decreased I Kr maximum conductance resulted in an increased cell and tissue action potential duration (APD) and a long QT interval on the electrocardiogram (ECG), whereas those that caused a positive shift in the inactivation curve resulted in a decreased APD and a short QT. Tissue vulnerability to re-entrant arrhythmias was correlated with transmural dispersion of repolarisation, and any change to this vulnerability could be inferred from the ECG QT interval or T wave peak-to-end time. Faster I Kr activation kinetics caused cell APD alternans to appear over a wider range of pacing rates and with a larger magnitude, and spatial heterogeneity in these cellular alternans resulted in discordant alternans at the tissue level. Thus, from channel kinetic data, we can predict the tissue-level electrophysiological effects of any hERG mutations and identify how the mutation would manifest clinically, as either a long or short QT syndrome with or without an increased risk of alternans and re-entrant arrhythmias.  相似文献   

8.
Dehydroepiandrosterone (DHEA), a precursor of sex steroid hormones, is synthesized by cholesterol side-chain cleavage cytochrome P-450 and 17alpha-hydroxylase cytochrome P-450 mainly from cholesterol and converted to testosterone and estrogen by 3beta-hydroxysteroid dehydrogenase (3beta-HSD), 17beta-HSD, and aromatase cytochrome P-450. Although sex steroid hormones have important effects in the protection of articular cartilage, it is unclear whether articular cartilage has a local steroidogenic enzymatic machinery capable of metabolizing DHEA. This study was aimed to clarify whether steroidogenesis-related enzymes are expressed in articular chondrocytes, whether expression levels are changed by DHEA, and whether articular chondrocytes are capable of synthesizing sex steroid hormones from DHEA. Articular chondrocytes isolated from adult rats were cultured with DHEA for 3 days. All of the mRNA expressions of steroidogenesis-related enzymes were detected in cultured articular chondrocytes of rats, but the mRNA expression levels of testosterone and estradiol in cultured media increased after the addition of DHEA. These findings provided the first evidence that articular chondrocytes expressed steroidogenesis-related enzyme genes and that they are capable of locally synthesizing sex steroid hormones locally from DHEA.  相似文献   

9.
The interaction between the fertility alpha 2-microglobulin and steroid sex hormones (estrone, estriol, estradiol, progesterone, testosterone) was studied by the use of cross immunoelectrophoresis with intermediate gels. alpha 2-microglobulin was shown to bind to the above hormones, its affinity to testosterone being the highest. The ability of alpha 2-microglobulin to bind to steroid hormones can be used for its isolation by affinity chromatography with immobilized steroid hormones.  相似文献   

10.
Summary In many vertebrates, seasonal activation of sexual and territorial behaviors coincides with seasonal gonadal activation and is caused by the increase in sex steroid hormones. Both male and femaleSceloporus jarrovi are territorial, but in this species territorial behavior is seasonally activated in late April, months before seasonal gonadal maturation, which occurs in August prior to the fall mating season. Measurements of seasonal changes in circulating levels of the sex steroid hormones testosterone, progesterone, and estradiol indicated that testosterone levels in both sexes are elevated when territorial behavior is expressed, even during the period of nonbreeding-season territoriality during the summer. This suggests that a nonbreeding season behavior is activated by a sex steroid hormone in this species.  相似文献   

11.
Sex hormones play an important role in adipose tissue metabolism by activating specific receptors that alter several steps of the lipolytic and lipogenic signal cascade in depot- and sex-dependent manners. However, studies focusing on steroid receptor status in adipose tissue are scarce. In the present study, we analyzed steroid content [testosterone (T), 17beta-estradiol (17beta-E2), and progesterone (P4)] and steroid receptor mRNA levels in different rat adipose tissue depots. As expected, T levels were higher in males than in females (P = 0.031), whereas the reverse trend was observed for P4 (P < 0.001). It is noteworthy that 17beta-E2 adipose tissue levels were higher in inguinal than in the rest of adipose tissues for both sexes, where no sex differences in 17beta-E2 tissue levels were noted (P = 0.010 for retroperitoneal, P = 0.005 for gonadal, P = 0.018 for mesenteric). Regarding steroid receptor levels, androgen (AR) and estrogen receptor (ER)alpha and ERbeta densities were more clearly dependent on adipose depot location than on sex, with visceral depots showing overall higher mRNA densities than their subcutaneous counterparts. Besides, expression of ERalpha predominated over ERbeta expression, and progesterone receptor (PR-B form and PR-A+B form) mRNAs were identically expressed regardless of anatomic depot and sex. In vitro studies in 3T3-L1 cells showed that 17beta-E2 increased ERalpha (P = 0.001) and AR expression (P = 0.001), indicating that estrogen can alter estrogenic and androgenic signaling in adipose tissue. The results highlighted in this study demonstrate important depot-dependent differences in the sensitivity of adipose tissues to sex hormones between visceral and subcutaneous depots that could be related to metabolic situations observed in response to sex hormones.  相似文献   

12.
The present study was designed to elucidate the feedback relationship between the release of pituitary gonadotropins and sex steroid hormones in Turner's syndrome and Klinefelter's syndrome. LH-RH stimulation test was employed to evaluate the effects of sex steroids on the release of gonadotropins. The release of gonadotropins in response to LH-RH as well as in baseline level was suppressed after the treatment with estrogen (mestranol 0.08 mg/day) for 10 days, followed by the treatment of the same period with estrogen (mestranol 0.08 mg/day) and progesterone (chlormadinone acetate 2.0 mg/day) in combination in both syndromes. The inhibitory effect of the combined treatment was greater than that of the treatment with estrogen alone. Administration of testosterone propionate (25 mg/day) for 3 days resulted in suppression of the release of both gonadotropins in baseline level and in response to LH-RH in both syndromes, but the suppressive effect appeared to be less complete as compared with that of estrogen or estrogen-progesterone. It was thus verified that the feedback interaction between the pituitary gonadotropin release and sex steroids such as estrogen, estrogen-progesterone or testosterone was operative in the same fashion in the patients with Turner's syndrome and Klinefelter's syndrome.  相似文献   

13.
Steroid hormones control the expression of many cellular regulators, and a role for estrogen in cardiovascular function and disease has been well documented. To address whether the activity of the L-type Ca2+ channel, a critical element in cardiac excitability and contractility, is altered by estrogen and its nuclear receptor, we examined cardiac myocytes from male mice in which the estrogen receptor gene had been disrupted (ERKO mice). Binding of dihydropyridine Ca2+ channel antagonist isradipine (PN200-110) was increased 45.6% in cardiac membranes from the ERKO mice compared to controls, suggesting that a lack of estrogen receptors in the heart increased the number of Ca2+ channels. Whole-cell patch clamp of acutely dissociated adult cardiac ventricular myocytes indicated that Ca2+ channel current was increased by 49% and action potential duration was increased by 75%. Examination of electrocardiogram parameters in ERKO mice showed a 70% increase in the QT interval without significant changes in PQ or QRS intervals. These results show that the membrane density of the cardiac L-type Ca2+ channel is regulated by the estrogen receptor and suggest that decreased estrogen may lead to an increase in the number of cardiac L-type Ca2+ channels, abnormalities in cardiac excitability, and increased risk of arrhythmia and cardiovascular disease.  相似文献   

14.
Celayir S 《Hormone research》2003,60(5):215-220
BACKGROUND: The effects of different sex hormones on urodynamics in female rabbits have been investigated previously. Estrogen induces an increase in bladder capacity and compliance, whereas testosterone and progesterone reduced bladder capacity and compliance. OBJECTIVE: The aim of this study was to investigate the effects of sex hormones on bladder urodynamics in male rabbits. METHODS: 5 groups were set up for the study: group I, low midline laparotomy (LML) + 0.9% NaCl; group II, LML + testosterone; group III, LML + bilateral orchiectomy (BO) + testosterone; group IV, LML + BO + progesterone, and group V, LML + BO + estrogen. Baseline urodynamic records and blood sex hormone levels were measured. In the follow-up all rabbits from each group underwent urodynamics 5, 10 and 30 days after injection. Estrogen, progesterone and testosterone levels were also measured during the follow-up period. For statistical verification Mann-Whitney U and Kruskal-Wallis chi(2) tests were used. RESULTS: Hormone levels: Testosterone levels were found to be increased in groups II and III 5 and 10 days after the injection. Testosterone declined thereafter and returned to baseline levels on day 30. In groups IV and V progesterone and estrogen levels increased after the injection and returned to baseline levels on day 30. Urodynamics: In groups II and III testosterone increased the bladder capacity and compliance on days 5 and 10. In these groups, capacity and compliance decreased thereafter and returned to the baseline levels on day 30. These urodynamic findings correlated with the alterations in blood testosterone levels. In groups I and IV no changes were observed in bladder capacity and compliance. In group V capacity and compliance were found to be increased on day 5 after the injection and returned to baseline levels on day 30. The changes in bladder capacity were found to be statistically significant in groups II, III and V. CONCLUSION: In this study, after the injection of testosterone, bladder capacity and compliance increased with high blood testosterone levels in male rabbits. The most interesting finding was observed in the estrogen group, questioning the role of estrogens in males. These findings allow us to reconsider the role of sex hormones in bladder functions.  相似文献   

15.
The mechanisms by which sex hormones cause changes in body composition are unclear. Sex steroid deficiency might directly reduce energy expenditure/fat oxidation and thereby predispose to increased body fat. Alternatively, sex steroid deficiency could result in lean tissue loss and thus reduced energy expenditure. Our objective was to examine the independent and combined effects of acute testosterone and estrogen withdrawal on respiratory exchange ratio (RER) and resting energy expenditure (REE) in men. The objective of the study was to examine the independent and combined effects of acute estrogen and testosterone withdrawal on RER and REE in men. A total of 54 men aged 50–80 years, BMI range of 17–35 kg/m2 underwent a 3‐week eugonadal run‐in hormone‐treatment period involving suppression of endogenous sex steroids using letrozole and leuprolide acetate (Lupron) while sex steroid concentrations were maintained with transdermal testosterone (T) and estradiol (E). A second Lupron injection was then given and participants were randomized to one of the following four 3‐week treatment groups: group A (?T, ?E), group B (?T, +E), group C (+T, ?E), and group D (+T, +E). REE and RER were measured via indirect calorimetry before and after the 3‐week treatment period. Three‐week suppression and/or repletion of estrogen or testosterone did not produce changes in RER or REE within or between groups. We conclude that abrupt changes in sex steroids does not change resting substrate oxidation, indicating that changes that can be observed after more prolonged periods of deficiency are most likely due to direct effects of sex steroids on body composition.  相似文献   

16.
It is well recognised that oestrogens possess vasodilatory properties, and similar responses to testosterone have been demonstrated. However, vasomotor effects of other steroid hormones have not been well described. Direct comparisons of the relative vasoactivity of different steroid hormones in different vascular beds in male and female genders have not been made. Coronary and pulmonary arteries from adult Wistar rats were mounted in a wire myograph, loaded to 100 and 17 mmHg respectively, maximally pre-contracted with 1 x 10(-4) M prostaglandin-F-2-alpha, and dose response curves to 1 x 10(-6) to 1 x 10(-3) or 3 x 10(-3) M of 17 beta-oestradiol, testosterone, progesterone, and cortisol dissolved in water were constructed. Addition of each steroid hormone caused acute, dose dependent dilatation in coronary and pulmonary vessels. In coronary arteries the order of activity was testosterone > progesterone > 17 beta-oestradiol > cortisol, p < 0.001. In pulmonary arteries, the order of activity was progesterone > testosterone > cortisol > 17 beta-oestradiol, p < 0.001. Pulmonary arteries from male animals were more sensitive to the effects of testosterone than those from female animals, p = 0.003, whereas coronary arteries from female animals were more sensitive to the effects of 17 beta-oestradiol than those from male animals, p < 0.001. We have demonstrated significant differences in the in vitro vasomotor effects of different steroid hormones in two distinct vascular beds. Gender differences in vasomotor responses to steroid hormones may play a role in the aetiology of vasospastic diseases.  相似文献   

17.
The greater incidence of hypertension and coronary artery disease in men and postmenopausal women compared with premenopausal women has been related, in part, to gender differences in vascular tone and possible vascular protective effects of the female sex hormones estrogen and progesterone. However, vascular effects of the male sex hormone testosterone have also been suggested. Estrogen, progesterone, and testosterone receptors have been identified in blood vessels of human and other mammals and have been localized in the plasmalemma, cytosol, and nuclear compartments of various vascular cells, including the endothelium and the smooth muscle. The interaction of sex hormones with cytosolic/nuclear receptors triggers long-term genomic effects that could stimulate endothelial cell growth while inhibiting smooth muscle proliferation. Activation of plasmalemmal sex hormone receptors may trigger acute nongenomic responses that could stimulate endothelium-dependent mechanisms of vascular relaxation such as the nitric oxide-cGMP, prostacyclin-cAMP, and hyperpolarization pathways. Additional endothelium-independent effects of sex hormones may involve inhibition of the signaling mechanisms of vascular smooth muscle contraction such as intracellular Ca2+ concentration and protein kinase C. The sex hormone-induced stimulation of the endothelium-dependent mechanisms of vascular relaxation and inhibition of the mechanisms of vascular smooth muscle contraction may contribute to the gender differences in vascular tone and may represent potential beneficial vascular effects of hormone replacement therapy during natural and surgically induced deficiencies of gonadal hormones.  相似文献   

18.
Despite the identification of numerous autism susceptibility genes, the pathobiology of autism remains unknown. The present “case-control” study takes a global approach to understanding the molecular basis of autism spectrum disorders based upon large-scale gene expression profiling. DNA microarray analyses were conducted on lymphoblastoid cell lines from over 20 sib pairs in which one sibling had a diagnosis of autism and the other was not affected in order to identify biochemical and signaling pathways which are differentially regulated in cells from autistic and nonautistic siblings. Bioinformatics and gene ontological analyses of the data implicate genes which are involved in nervous system development, inflammation, and cytoskeletal organization, in addition to genes which may be relevant to gastrointestinal or other physiological symptoms often associated with autism. Moreover, the data further suggests that these processes may be modulated by cholesterol/steroid metabolism, especially at the level of androgenic hormones. Elevation of male hormones, in turn, has been suggested as a possible factor influencing susceptibility to autism, which affects ∼4 times as many males as females. Preliminary metabolic profiling of steroid hormones in lymphoblastoid cell lines from several pairs of siblings reveals higher levels of testosterone in the autistic sibling, which is consistent with the increased expression of two genes involved in the steroidogenesis pathway. Global gene expression profiling of cultured cells from ASD probands thus serves as a window to underlying metabolic and signaling deficits that may be relevant to the pathobiology of autism.  相似文献   

19.
The influence of estrogen, progesterone and testosterone on the activities of alkaline and acid phosphatases, adenosine triphosphatase and succinate dehydrogenase were determined by cytochemical methods in sarcoma 180 and Ehrlich's carcinoma cells transplanted in male and female Swiss mice. The results revealed differential effects of the sex hormones on different enzymes which seemed to depend on the type of tumour cell studied and the sex of the host mice.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号