首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was conducted to characterise macrogeographic variation in the vocalisation of the corncrake Crex crex, a bird species with a non‐learned and highly stereotyped call. We also examined: 1) whether call characteristics remained stable across successive breeding seasons within two of the study populations and 2) whether call similarity was related to distance between populations. Recordings of 352 males from eight populations were analysed. The analyses focused on variation in 1) temporal characteristics (duration of syllables and intervals, duration of the intervals between consecutive maximal amplitude peaks within syllables, called pulse‐to‐pulse duration (PPD)), and 2) spectral characteristics (minimal and maximal frequency, frequencies below which 25%, 50% and 75% acoustic energy of signal is distributed). We found significant differences in most of the temporal and all of the spectral characteristics between populations. No differences were found in PPD. Significant interannual differences in spectral characteristics were found in both of the populations examined, whereas differences in temporal characteristics were only observed in one population. In general, geographic variation in calls showed clinal distance‐dependence, where distant populations showed larger differences in call than neighbouring populations. Our results show that geographic variation in corncrake calls may be very dynamic in the short term and that within‐population variation may occur on the same scale as between‐population variation. This finding is surprising because call characteristics in non‐learners are essentially inherited, and genetic transmission should be very slow. We suggest that the social interactions between males and/or the specific dispersal patterns of this species and the low site fidelity of adult and young birds may be responsible for such pattern.  相似文献   

2.
The aim of this study was to determine whether geographic variation exists in the composition of note types in the chick‐a‐dee call of Carolina chickadees. This determination is of interest for two reasons: earlier studies with a related species suggested minimal geographic variation in note composition, and geographic variation in social signals may represent important developmental or selection processes shaping signal use. Carolina chickadees were recorded in a naturalistic observation study in west‐central Indiana. Chick‐a‐dee calls were analyzed and compared to calls from an eastern Tennessee population that had been described in a previously published study (Auk, 125, 2008, 896). Despite much similarity in the basic rules by which notes are organized to compose calls, there were several significant differences in how calls of the two populations were structured. Furthermore, birds from Indiana used their chick‐a‐dee calls in certain contexts in different ways compared to birds from Tennessee. These findings suggest interesting population‐level variation in this call system, and future research should be able to determine whether these differences are driven by evolutionary, ecological, or developmental factors, or some combination of these factors.  相似文献   

3.
The distance calls (DC) of free-living and recently captured zebra finches (ZF) were investigated in order to establish the extent of variation in the structure within and between individuals, colonies, sexes, geographic localities and subspecies. Most work was carried out on the Australian subspecies P. g. castanotis in south-eastern Australia. The calls were analysed sonographically and analysis of two frequency and two temporal parameters were undertaken. The spectral structure of the calls was also assessed subjectively. The main findings are as follows:
  • 1 Each individual has its own uniquely structured DC. The calls of males are more distinct than those of females.
  • 2 The differences between individuals are sufficiently large to expect that they could probably be perceived by individuals.
  • 3 The DCs differ between the sexes. The female call is significantly longer. In P. g. castanotis the male call has two elements — a tonal element followed by a noise element; it also has fewer harmonics. The differences could be detected by ear. The Timor subspecies is thought to have lost the noise element.
  • 4 Adjacent colonies have DCs that are not significantly different.
  • 5 DCs from different and distant geographic localities are not significantly different except for a few locations where distinct local forms of the DC exist. The changing composition of colonies is thought to erode the development of dialects.
  • 6 The DCs of both subspecies have the same basic complex tone with the same harmonic configuration. The calls of males are of the same duration in both subspecies but those of females are longer in P. g. castanotis. The calls of P. g. guttata have a higher fundamental frequency, fewer harmonics and a higher emphasized frequency (FMA).
  • 7 The DC in P. g. castanotis is probably used to keep pairs together in the large flocks. It may also be used to detect relatives.
  相似文献   

4.
The zebra finch has long been an important model system for the study of vocal learning, vocal production, and behavior. With the imminent sequencing of its genome, the zebra finch is now poised to become a model system for population genetics. Using a panel of 30 noncoding loci, we characterized patterns of polymorphism and divergence among wild zebra finch populations. Continental Australian populations displayed little population structure, exceptionally high levels of nucleotide diversity (π = 0.010), a rapid decay of linkage disequilibrium (LD), and a high population recombination rate (ρ ≈ 0.05), all of which suggest an open and fluid genomic background that could facilitate adaptive variation. By contrast, substantial divergence between the Australian and Lesser Sunda Island populations (KST = 0.193), reduced genetic diversity (π = 0.002), and higher levels of LD in the island population suggest a strong but relatively recent founder event, which may have contributed to speciation between these populations as envisioned under founder-effect speciation models. Consistent with this hypothesis, we find that under a simple quantitative genetic model both drift and selection could have contributed to the observed divergence in six quantitative traits. In both Australian and Lesser Sundas populations, diversity in Z-linked loci was significantly lower than in autosomal loci. Our analysis provides a quantitative framework for studying the role of selection and drift in shaping patterns of molecular evolution in the zebra finch genome.  相似文献   

5.
Songbirds produce calls as well as song. This paper summarizes four studies of the zebra finch long call, used by both sexes in similar behavioral contexts. Female long calls are acoustically simpler than male long calls, which include acoustic features learned during development. Production of these male-typical features requires an intact nucleus robustus archistriatalis, the sexually-dimorphic source of the telencephalic projection to brainstem vocal effectors. In experiments that quantified the long calls produced in response to long call playbacks, intact adult zebra finch males, but not females, show a categorical preference for the long calls of females over those of males. Experiments with synthetic stimuli showed that males classify long call stimuli that they hear by gender, using both spectral and temporal information, but that females use only temporal information. Juvenile males (<45 days) did not show the categorical preference, but it emerged during the same period when the robustus archistriatalis matures anatomically and the first male-typical vocalizations are produced. Adult males with robustus archistriatalis lesions lost the categorical preference for female long calls, suggesting that the robustus archistriatalis plays a role in long call discrimination. These results demonstrate that calls complement song as a potent tool for studying the neurobiology of vocal communication.  相似文献   

6.
Genetic diversity in marine microbial eukaryotic populations (protists) drives their ecological success by enabling diverse phenotypes to respond rapidly to changing environmental conditions. Despite enormous population sizes and lack of barriers to gene flow, genetic differentiation that is associated with geographic distance, currents, and environmental gradients has been reported from planktonic protists. However, for benthic protists, which have reduced dispersal opportunities, phylogeography and its phenotypic significance are little known. In recent years, the East Australian Current (EAC) has intensified its southward flow, associated with the tropicalization of temperate waters. Benthic harmful algal species have been increasingly found in south‐eastern Australia. Yet little is known about the potential of these species to adapt or extend their range in relation to changing conditions. Here, we examine genetic diversity and functional niche divergence in a toxic benthic dinoflagellate, Ostreopsis cf. siamensis, along a 1,500 km north–south gradient in southeastern Australia. Sixty‐eight strains were established from eight sampling sites. The study revealed long‐standing genetic diversity among strains established from the northern‐most sites, along with large phenotypic variation in observed physiological traits such as growth rates, cell volume, production of palytoxin‐like compounds, and photophysiological parameters. Strains from the southern populations were more uniform in both genetic and functional traits, and have possibly colonized their habitats more recently. Our study reports significant genetic and functional trait variability in a benthic harmful algal species, indicative of high adaptability, and a possible climate‐driven range extension. The observed high trait variation may facilitate development of harmful algal blooms under dynamic coastal environmental conditions.  相似文献   

7.
Vocal dialects have been well studied in songbirds, but there have been fewer examples from parrots. The Australian population of palm cockatoos (Probosciger aterrimus aterrimus) from Cape York Peninsula in far north Queensland has an unusually large vocal repertoire for a parrot. Most calls are made during their unique display ritual, which also includes a variety of postures, gestures and the use of a manufactured sound tool. Here, we quantify the geographic structural variation of contact calls within and between six major populations of palm cockatoos in Australia, as well as the extent to which frequently given call types are shared. We found that palm cockatoos from the east coast (Iron Range National Park) possess unique contact calls and have fewer call types in common with other locations. This may have resulted from their long-term isolation in rainforest habitat refugia. Such variety in vocal traits presents a rare opportunity to investigate the evolutionary forces creating behavioural diversity in wild parrots. This is also a step towards assessing links between behavioural variation and population connectivity, which is important information for determining the conservation status of palm cockatoos.  相似文献   

8.
ABSTRACT

Two zebra finches and two budgerigars were trained, by operant conditioning, to detect autogenous (self-generated) distance calls in the presence of masking noise. For both species, there were no differences in detection thresholds for normal calls compared to time- reversed calls. Thresholds for autogenous calls were also compared with thresholds of the other species of birds listening to the same call. When detecting a zebra finch call, budgerigars had slightly lower thresholds than that of the zebra finch. On the other hand, when detecting a budgerigar call, zebra finches showed significantly higher thresholds than the budgerigar. From these results, and from what is known about basic hearing capabilities in these species, we conclude that these birds are not using a mechanism which utilizes “matched” or cross-correlational filtering. It is more likely that they are using “frequency-based” filtering in detecting calls in noise.  相似文献   

9.
Acoustic signals for mating are important traits that could drive population differentiation and speciation. Ecology may play a role in acoustic divergence through direct selection (e.g., local adaptation to abiotic environment), constraint of correlated traits (e.g., acoustic traits linked to another trait under selection), and/or interspecific competition (e.g., character displacement). However, genetic drift alone can also drive acoustic divergence. It is not always easy to differentiate the role of ecology versus drift in acoustic divergence. In this study, we tested the role of ecology and drift in shaping geographic variation in the advertisement calls of Microhyla fissipes. We examined three predictions based on ecological processes: (1) the correlation between temperature and call properties across M. fissipes populations; (2) the correlation between call properties and body size across M. fissipes populations; and (3) reproductive character displacement (RCD) in call properties between M. fissipes populations that are sympatric with and allopatric to a congener M. heymonsi. To test genetic drift, we examined correlations among call divergence, geographic distance, and genetic distance across M. fissipes populations. We recorded the advertisement calls from 11 populations of M. fissipes in Taiwan, five of which are sympatrically distributed with M. heymonsi. We found geographic variation in both temporal and spectral properties of the advertisement calls of M. fissipes. However, the call properties were not correlated with local temperature or the callers' body size. Furthermore, we did not detect RCD. By contrast, call divergence, geographic distance, and genetic distance between M. fissipes populations were all positively correlated. The comparisons between phenotypic Qst (Pst) and Fst values did not show significant differences, suggesting a role of drift. We concluded that genetic drift, rather than ecological processes, is the more likely driver for the geographic variation in the advertisement calls of M. fissipes.  相似文献   

10.
Geographic variation in courtship behavior can affect reproductive success of divergent phenotypes via mate choice. Over time, this can lead to reproductive isolation and ultimately to speciation. The Neotropical red‐eyed treefrog (Agalychnis callidryas) exhibits high levels of phenotypic variation among populations in Costa Rica and Panama, including differences in color pattern, body size, and skin peptides. To test the extent of behavioral premating isolation among differentiated populations, we quantified male advertisement calls from six sites and female responses to male stimuli (acoustic and visual signals) from four sites. Our results show that both male advertisement calls and female behavior vary among populations: Discriminant function analyses can predict the population of origin for 99.3% ± 0.7 of males based on male call (dominant frequency and bandwidth) and 76.1% ± 6.6 of females based on female response behavior (frequency and duration of visual displays). Further, female mate choice trials (= 69) showed that population divergence in male signals is coupled with female preference for local male stimuli. Combined, these results suggest that evolved differences among populations in male call properties and female response signals could have consequences for reproductive isolation. Finally, population variation in male and female behavior was not well explained by geographic or genetic distance, indicating a role for localized selection and/or drift. The interplay between male courtship and female responses may facilitate the evolution of local variants in courtship style, thus accelerating premating isolation via assortative mating.  相似文献   

11.
Aim In birds, differentiation of acoustic characters is an important mechanism of reproductive isolation that may lead to an ethological–acoustic barrier, resulting in the formation of new species. We examined acoustic variation in mainland citril and insular Corsican finch populations, with the aim of assessing the degree of acoustic differentiation between both members of the superspecies Carduelis [citrinella] and documenting possible variation between local subpopulations that are geographically isolated. Location We chose study sites throughout the geographical ranges of citril and Corsican finches. For the citril finch, we obtained samples from the Black Forest (Germany), the Cevennes (France) and the Pyrenees (Spain); for the Corsican finch, we obtained samples from the islands Capraia and Sardinia (Italy) and Corsica (France). Methods We analysed frequent contact calls and elements of the perch song. Vocalization patterns of the study populations were compared by means of discriminant and hierarchical cluster analyses. Results There were significant differences in vocalization characteristics of perch songs and contact calls, which permitted unambiguous discrimination of citril and Corsican finch populations. However, we also detected significant differences in contact calls between mainland citril finch subpopulations. There was a pattern of clinal variation in vocalization: short, steeply modulated signals in the northern part of the geographical range (Black Forest) and long, shallowly modulated signals in the southern part (Pyrenees). Main conclusions Acoustically, mainland citril and insular Corsican finches separate well in their contact calls and perch songs. However, variation in the two vocalization patterns between subpopulations of mainland citril finches indicates that acoustic characteristics can evolve very quickly, not only on islands but also on the mainland. Local habitat differences may play a crucial role in the rapid evolution of these signals under full or partial isolation of small subpopulations. To judge the importance of signal variation as a pre‐mating isolating barrier, future studies will have to determine whether members of the distinct subpopulations are able to match their signals to each other if they re‐meet, and whether intraspecific species recognition is still possible.  相似文献   

12.
Divergence of acoustic signals in a geographic scale results from diverse evolutionary forces acting in parallel and affecting directly inter-male vocal interactions among disjunct populations. Pleurodema thaul is a frog having an extensive latitudinal distribution in Chile along which males'' advertisement calls exhibit an important variation. Using the playback paradigm we studied the evoked vocal responses of males of three populations of P. thaul in Chile, from northern, central and southern distribution. In each population, males were stimulated with standard synthetic calls having the acoustic structure of local and foreign populations. Males of both northern and central populations displayed strong vocal responses when were confronted with the synthetic call of their own populations, giving weaker responses to the call of the southern population. The southern population gave stronger responses to calls of the northern population than to the local call. Furthermore, males in all populations were stimulated with synthetic calls for which the dominant frequency, pulse rate and modulation depth were varied parametrically. Individuals from the northern and central populations gave lower responses to a synthetic call devoid of amplitude modulation relative to stimuli containing modulation depths between 30–100%, whereas the southern population responded similarly to all stimuli in this series. Geographic variation in the evoked vocal responses of males of P. thaul underlines the importance of inter-male interactions in driving the divergence of the acoustic traits and contributes evidence for a role of intra-sexual selection in the evolution of the sound communication system of this anuran.  相似文献   

13.
Many alpine species are under threat from global climate change, as their geographic ranges become increasingly fragmented and unsuitable. Understanding rates and determinants of gene flow among such fragmented populations, over historical as well as recent timescales, can help to identify populations under threat. It is also important to clarify the degree to which loss of local populations reduces overall genetic diversity within the taxon. The endangered Blue Mountains Water Skink (Eulamprus leuraensis) is restricted to <40 small swamps in montane south‐eastern Australia. Our analyses of seven microsatellite loci of 241 animals from 13 populations show strong geographic structure, with major genetic divergence even between populations separated by <0.5 km. Dispersal between populations is scarce, and appears to involve mostly males. Our analyses suggest potential recent bottleneck events in all the identified populations, and lower genetic diversity and population size parameter at lower‐elevation sites than at higher‐elevation sites. Management of this endangered taxon thus needs to treat most populations separately, because of their genetic distinctiveness and low rates of genetic exchange.  相似文献   

14.
Reers H  Jacot A  Forstmeier W 《PloS one》2011,6(4):e18466
Individual recognition systems require the sender to be individually distinctive and the receiver to be able to perceive differences between individuals and react accordingly. Many studies have demonstrated that acoustic signals of almost any species contain individualized information. However, fewer studies have tested experimentally if those signals are used for individual recognition by potential receivers. While laboratory studies using zebra finches have shown that fledglings recognize their parents by their "distance call", mutual recognition using the same call type has not been demonstrated yet. In a laboratory study with zebra finches, we first quantified between-individual acoustic variation in distance calls of fledglings. In a second step, we tested recognition of fledgling calls by parents using playback experiments. With a discriminant function analysis, we show that individuals are highly distinctive and most measured parameters show very high potential to encode for individuality. The response pattern of zebra finch parents shows that they do react to calls of fledglings, however they do not distinguish between own and unfamiliar offspring, despite individual distinctiveness. This finding is interesting in light of the observation of a high percentage of misdirected feedings in our communal breeding aviaries. Our results demonstrate the importance of adopting a receiver's perspective and suggest that variation in fledgling contact calls might not be used in individual recognition of offspring.  相似文献   

15.
The weeping lizard, Liolaemus chiliensis, emits distress calls when trapped by a predator. Conspecific lizards respond to such calls with prolonged immobility, which may increase their probability of remaining undetected by a predator. This benefit, however, depends on the ability to react to the alert message of the call, which may be impaired by natural variation in the calls. The distress calls of L. chiliensis show geographic variation, and here we tested the response of two geographically distant populations (>700 km apart) to local (homotypic) and non‐local (heterotypic) distress calls; if populations are finely tuned to their local calls, they may not be able to respond to heterotypic calls. We found that geographic variation in calls affects the lizards’ response, but this effect was population dependent; whereas southern lizards responded to calls of both populations, the northern lizards only reacted to homotypic distress calls. The factors that determine this asymmetric response to heterotypic calls are unclear and we discuss three hypotheses that have a common component in the difference in body size between the tested populations, which seems to play a key role in determining the response to distress calls in this species.  相似文献   

16.
Analyses of the genetic population structure of spotted seatrout Cynoscion nebulosus along the south‐eastern U.S. coast using 13 microsatellites suggest significant population differentiation between fish in North Carolina (NC) compared with South Carolina (SC) and Georgia (GA), with New River, NC, serving as an area of integration between northern and southern C. nebulosus. Although there is a significant break in gene flow between these areas, the overall pattern throughout the sampling range represents a gradient in genetic diversification with the degree of geographic separation. Latitudinal distance and estuarine density appear to be main drivers in the genetic differentiation of C. nebulosus along the south‐eastern U.S. coast. The isolation‐by‐distance gene‐flow pattern creates fine‐scale differences in the genetic composition of proximal estuaries and dictates that stocking must be confined to within 100 km of the location of broodstock collection in order to maintain the natural gradient of genetic variation along the south‐eastern U.S. coast.  相似文献   

17.
Aim The distribution of genetic variation in the Australian dry sclerophyll plant Hardenbergia violacea (Fabaceae) is examined in the context of Pleistocene climate change in order to identify likely refugia. Particular consideration is given to the origin of range disjunctions in South Australia and Tasmania, and to determining whether the Tasmanian population is indigenous or recently introduced from mainland Australia. Location Southeastern Australian mainland and Tasmania. Methods A combination of chloroplast polymerase chain reaction–restriction fragment length polymorphism and genomic amplified fragment length polymorphism (AFLP) marker systems was used to examine the genetic structure of 292 individuals from 13 populations across the range of H. violacea in southeastern Australia. Results Hardenbergia violacea populations in Tasmania and southern Victoria were characterized by low, almost monotypic chloroplast diversity. New South Wales showed higher haplotype diversity and haplotype sharing among widely distributed populations. Principal coordinates analysis (PCoA) of the AFLP data found a strong latitudinal cline in AFLP variation from northern New South Wales south to Tasmania. The Tasmanian population formed an isolated and somewhat disjunct genetic cluster at one end of this cline. However, the South Australian population was an exception to the clinal variation shown by all other populations, forming a highly disjunct cluster in the PCoA. Within‐population genetic diversity was low in both disjunct populations. Main conclusions The genetic evidence indicates that the Tasmanian population is likely to be indigenous and probably the product of vicariance, which was followed by range contraction at the Last Glacial Maximum or an earlier glacial event. The deep phylogenetic disjunction in South Australia is evidence of a much earlier separation on mainland Australia. The chloroplast structure indicates that, during the Pleistocene, H. violacea underwent broad‐scale recolonization in southern Victoria and Tasmania, possibly from a large continental refugium in eastern New South Wales. We conclude that H. violacea, and presumably the sclerophyll communities in which it occurs, have undergone multiple range contractions to large continental refugia during different Pleistocene glaciations in southeastern Australia.  相似文献   

18.
Male chimpanzees produce a species‐typical call, the pant hoot, to communicate to conspecifics over long‐distances. Calls given by males from the well‐known Gombe and Mahale populations typically consist of four different phases: an introduction, build‐up, climax, and let‐down. Recent observations suggest that chimpanzees living in the Kibale National Park, Uganda, consistently give calls that lack a build‐up and are thus qualitatively distinguishable acoustically from those made by other East African conspecifics. We analyzed additional recordings from Mahale and Kibale to re‐examine geographic variation in chimpanzee calls. Results indicate that males from both sites produce pant hoots containing all four parts of the call. Calls made by chimpanzees from the two populations, however, differ in quantitative acoustic measures. Specifically, males at Kibale initiate their calls with significantly longer elements and build‐up over briefer periods at slower rates than individuals from Mahale. Kibale males also deliver acoustically less variable calls than chimpanzees at Mahale. Although climax elements do not differ between populations in any single acoustic feature, discriminant function analysis reveals that acoustic variables can be used in combination to assign calls to the correct population at rates higher than that expected by chance. Ecological factors related to differences in habitat acoustics, the sound environment of the local biota, and body size are likely to account for these observed macrogeographic variations in chimpanzee calls. Am. J. Primatol. 47:133–151, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

19.
We use a combination of microsatellite marker analysis and mate-choice behavior experiments to assess patterns of reproductive isolation of the túngara frog Physalaemus pustulosus along a 550-km transect of 25 populations in Costa Rica and Panama. Earlier studies using allozymes and mitochondrial DNA defined two genetic groups of túngara frogs, one ranging from Mexico to northern Costa Rica (northern group), the second ranging from Panama to northern South America (southern group). Our more fine-scale survey also shows that the northern and southern túngara frogs are genetically different and geographically separated by a gap in the distribution in central Pacific Costa Rica. Genetic differences among populations are highly correlated with geographic distances. Temporal call parameters differed among populations as well as between genetic groups. Differences in calls were explained better by geographic distance than by genetic distance. Phonotaxis experiments showed that females preferred calls of males from their own populations over calls of males from other populations in about two-thirds to three-fourths of the contrasts tested. In mating experiments, females and males from the same group and females from the north with males from the south produced nests and tadpoles. In contrast, females from the south did not produce nests or tadpoles with males from the north. Thus, northern and southern túngara frogs have diverged both genetically and bioacoustically. There is evidence for some prezygotic isolation due to differences in mate recognition and fertilization success, but such isolation is hardly complete. Our results support the general observation that significant differences in sexual signals are often not correlated with strong genetic differentiation.  相似文献   

20.
The Indian Ocean is an area in which a rich suite of cetacean fauna, including at least two subspecies of blue whale, is found; yet little information beyond stranding data and short‐term surveys for this species is available. Pygmy blue whale (Balaenoptera musculus spp.) call data are presented that provide novel information on the seasonal and geographic distribution of these animals. Acoustic data were recorded from January 2002 to December 2003 by hydrophones at three stations of the International Monitoring System, including two near the subequatorial Diego Garcia Atoll and a third southwest of Cape Leeuwin, Australia. Automated spectrogram correlation methods were used to scan for call types attributed to pygmy blue whales. Sri Lanka calls were the most common and were detected year‐round off Diego Garcia. Madagascar calls were only recorded on the northern Diego Garcia hydrophone during May and July, whereas Australia calls were only recorded at Cape Leeuwin, between December and June. Differences in geographic and seasonal patterns of these three distinct call types suggest that they may represent separate acoustic populations of pygmy blue whales and that these “acoustic populations” should be considered when assessing conservation needs of blue whales in the Indian Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号