首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The movements of the lateral leaflets of the Indian telegraph plant Desmodium gyrans (L. F.) DC, have earlier been studied in detail with regards to the effects of chemicals, DC currents, and static magnetic fields. In the present paper we have discussed the oscillation of the lateral leaflets under the influence of white light of various light levels (0-75 micromol x m(-2) x s(-1)), produced by an array of LEDs (light emitting diodes). LEDs were used in contrast to fluorescense tubes as in earlier studies in order to minimize changes of wavelength when light intensity was decreased or increased. Furthermore, care was taken to ensure that the temperature in the experimental chamber was constant. When the oscillations were first monitored in bright light, the oscillations were found to be very rapid and with decreasing light intensity the oscillations slowed down. For light levels lower than about 20 micromol x m(-2) x s(-1) the period of the oscillation of the lateral leaflets was almost constant (or even decreased slightly towards complete darkness). We also show that the oscillations could completely stop under prolonged darkness (for longer than about 6 h) and that such halted oscillations could be restarted in most of the leaflets when he light was turned back on. Such stopping of the oscillation of the lateral leaflets in prolonged darkness suggests that these short period oscillations of the lateral leaflets could have a daily component and in natural environment these oscillations could serve the purpose of optimising the amount of light falling on the leaflets or/and facilitating transpiration of water through stomata. Such a finding could have an implication for the answer to the long standing question of adaptive significance of short period oscillation of the Indian telegraph plant Desmodium gyrans (L. F.) DC.  相似文献   

2.

A conspicuous bioluminescence during nighttime was reported in an aquaculture farm in the Cochin estuary due to Gonyaulax spinifera bloom on March 20, 2020. In situ measurements on bioluminescence was carried out during nighttime to quantify the response of G. spinifera to various mechanical stimuli. The bioluminescence intensity (BI) was measured using Glowtracka, an advanced single channel sensor, attached to a Conductivity–Temperature–Depth Profiler. In steady environment, without any external stimuli, the bioluminescence generated due to the movement of fishes and shrimps in the water column was not detected by the sensor. However, stimuli such as a hand splash, oar and swimming movements, and a mixer could generate measurable bioluminescence responses. An abundance of?~?2.7?×?106 cells L?1 of G. spinifera with exceptionally high chlorophyll a of 25 mg m?3 was recorded. The BI in response to hand splash was recorded as high as 1.6?×?1011 photons cm?2 s?1. Similarly, BI of?~?1–6?×?1010 photons cm?2 s?1 with a cumulative bioluminescence of?~?2.51?×?1012 photons cm?2 (for 35 s) was recorded when there is a mixer with a constant force of 494 N/800 rpm min?1. The response of G. spinifera was spontaneous with no time lapse between application of stimuli and the bioluminescence response. Interestingly, in natural environment, application of stimulus for longer time periods (10 min) does not lower the bioluminescence intensity due to the replenishment of water thrusted in by the mixer from surrounding areas. We also demonstrated that the bioluminescence intensity decreases with increase in distance from the source of stimuli (mixer) (av. 1.84?×?1010 photons cm?2 s?1 at 0.2 m to av. 0.05?×?1010 photons cm?2 s?1 at 1 m). The BI was highest in the periphery of the turbulent wake generated by the stimuli (av. 3.1?×?1010 photons cm?2 s?1) compared to the center (av. 1.8?×?1010 photons cm?2 s?1). When the stimuli was applied vertically down, the BI decreased from 0.2 m (0.3?×?1010 photons cm?2 s?1) to 0.5 m (0.10?×?1010 photons cm?2 s?1). Our study demonstrates that the BI of G. spinifera increases with increase in mechanical stimuli and decreases with increase in distance from the stimuli.

  相似文献   

3.
Teruo Ogawa 《BBA》1982,681(1):103-109
Illumination of leaves of Vicia faba L. provoked oscillations in the rates of CO2 uptake and O2 evolution. The oscillations were marked under anaerobic conditions, but were absent at 20% O2. The minimum CO2 concentration required for the appearance of oscillations was 600 μl · l?1. The higher the CO2 concentration, the stronger the oscillations. The effect of CO2 concentration was saturated at 1000 μl CO2 · l?1. The period of the oscillations was 5–6 min at a light intensity of 80 nE · cm?2 · s?1 and became longer on lowering of the intensity. No oscillations appeared at intensities below 12 nE · cm?2 · s?1. Oscillations could also be generated by increasing the CO2 concentration in the atmosphere during strong illumination under anaerobic conditions. The chlorophyl a fluorescence yield showed oscillations, similar in shape and frequency to those of photosynthesis, after such an environmental change. Oscillations were also observed in photosynthesis of other C3 plants, Lycopersicon esulentum Mill and Glycine max Merrill, under the same conditions as those required for V. faba, but were absent for the C4 plants, Zea mays and Amaranthus retroflexus L.  相似文献   

4.
Blue light induced stomatal opening has been studied by applying a short pulse (~5 to 60 s) of blue light to a background of saturating photosynthetic red photons, but little is known about steady-state stomatal responses. Here we report stomatal responses to blue light at high and low CO2 concentrations. Steady-state stomatal conductance (gs) of C3 plants increased asymptotically with increasing blue light to a maximum at 20% blue (120 μmol m−2 s−1). This response was consistent from 200 to 800 μmol mol−1 atmospheric CO2 (Ca). In contrast, blue light induced only a transient stomatal opening (~5 min) in C4 species above a Ca of 400 μmol mol−1. Steady-state gs of C4 plants generally decreased with increasing blue intensity. The net photosynthetic rate of all species decreased above 20% blue because blue photons have lower quantum yield (moles carbon fixed per mole photons absorbed) than red photons. Our findings indicate that photosynthesis, rather than a blue light signal, plays a dominant role in stomatal regulation in C4 species. Additionally, we found that blue light affected only stomata on the illuminated side of the leaf. Contrary to widely held belief, the blue light-induced stomatal opening minimally enhanced photosynthesis and consistently decreased water use efficiency.  相似文献   

5.
Electrophoretic movement of photosystem I (PS I) along the photosynthetic membrane of hypotonically swollen thylakoid vesicles was studied by analyzing the electric field-stimulated delayed luminescence (electrophotoluminescence) emitted from PS I. The electrophoretic mobility was inferred from the differences in electrophotoluminescence (EPL) of the photosynthetic vesicles in presence and absence of trains of low amplitude (<80 V/cm) prepulses of 1 ms duration at 4 ms spacing. The average apparent electric mobility, determined from the time course of EPL increase on one hemisphere or its decrease on the other one, as function of prepulse length and intensity was of the order of 3 · 10-5 cm2V-1s-1. The assymetric distribution of the PS I reached a steady state when the diffusional, electrostatic, and elastic forces balanced the electrophoretic driving force. A lateral diffusion coefficient of ~5 · 10-9 cm2s-1 was found for the PS I complex from the diffusional relaxation after cessation of the electric field pulse train. Experimental conditions such as concentration, temperature, and viscosity of the aqueous solution were not critical for the effect. Between 23 and 150 electron charges per moving particle were estimated from the measured electrophoretic mobility.  相似文献   

6.
The pulvinus, located at the base of soybean leaflets, is both the light perception and motor organ for heliotropic leaf movements. Our objective was to investigate the role of plasma membrane H+/ATPase and TEA-sensitive K+ channels in mediating pulvinar response to light. The plasma membrane H+/ATPase activator, fusicoccin, plasma membrane H+/ATPase inhibitors, vanadate and erythrosin-B, and the K+ channel blocker TEA were introduced to the intact pulvinus through the transpiration stream. The pulvinus was illuminated by a vertical light beam of 1,400 μmol m-2 s-1 to stimulate leaf movement. Leaf orientation was measured every 5 min for 60 min of illumination. All compounds tested inhibited pulvinar bending, but concentration and uptake time required for inhibition varied: 12.5 μM fusicoccin reduced leaf movement after 3 hr uptake, 2 mM vanadate reduced leaf movement after 6 hr uptake, 100 μM erythrosin-B reduced leaf movement after 3 hr uptake, and 15 mM TEA reduced leaf movement after 6 hr uptake. In all cases final leaf angle was reduced by higher concentrations and/or increased time for uptake of the chemical into the pulvinus. Results support the hypothesis that the proximal mechanism of heliotropic movement is similar to that of nyctinastic movements.  相似文献   

7.
Leaflets of soybean plants which are moderately inorganic nitrogen (N)-limited exhibit either no difference in the rate of net photosynthesis or as much as a 15–23% lower net photosynthesis rate per unit area than leaflets of N-sufficient plants [Robinson JM (1996) Photosynth Res 50: 133–148; Robinson JM (1997a) Int J Plant Sci 158: 32–43]. However, mature leaflets of N-limited soybean plants have a higher CO2photoassimilation rate per unit chlorophyll than leaflets of N-sufficient soybean plants at both moderate light intensity (500 µmol m-2s-1) and saturating light intensity (1200 µmol m-2s-1) [Robinson JM (1996) Photosynth Res 50: 133–148]. This study was undertaken to determine whether chloroplast thylakoids isolated from the leaflets of nitrogen-limited soybean plants displayed similar or higher linear electron transport rates (H2O ferredoxin NADP) per unit chlorophyll than thylakoids isolated from leaflets of N-sufficient plants. Chlorophyll concentration in reaction mixtures containing chloroplast thylakoids prepared from leaflets of N-limited plants was manipulated so that it was similar to the chlorophyll concentration in reaction mixtures of thylakoids prepared from leaflets of N-sufficient plants. Measurements of ferredoxin dependent, NADP dependent, O2photo-evolution in thylakoid isolates were carried out in saturating light (1500 µmol m-2s-1) and with (an uncoupler) in the chloroplast reaction mixtures. Chloroplast thylakoids isolated from N-limited soybean plant leaflets routinely had a 1.5 to 1.7 times higher rate of uncoupled, whole chain electron transport per unit chlorophyll in saturating light than did chloroplast thylakoids isolated from leaflets of N-sufficient plants. The results suggest that the photosystems and photosynthetic electron transport chain components are more active per unit Chl in leaflet chloroplast thylakoids of N-limited soybean plants than in thylakoids of N-sufficient plants.  相似文献   

8.
The effects of oxygen concentration and light intensity on the rates of apparent photosynthesis, true photosynthesis, photorespiration and dark respiration of detached spruce twigs were determined by means of an infra-red carbon dioxide analyzer (IRCA). A closed circuit system IRCA was filled with either 1 per cent of oxygen in nitrogen, air (21 % O2) or pure oxygen (100 % O2). Two light intensities 30 × 103 erg · cm ?2· s?1 and 120 × 103 erg · cm?2· s?1 were applied. It has been found that the inhibitory effect of high concentration of oxygen on the apparent photosynthesis was mainly a result of a stimulation of the rate of CO2 production in light (photorespiration). In the atmosphere of 100 % O2, photorespiration accounts for 66–80 per cent of total CO2 uptake (true photosynthesis). Owing to a strong acceleration of photorespiration by high oxygen concentrations, the rate of true photosynthesis calculated as the sum of apparent photosynthesis and photorespiration was by several times less inhibited by oxygen than the rate of apparent photosynthesis. The rates of dark respiration were essentially unaffected by the oxygen concentrations used in the experiments. An increase in the intensity of light from 30 × 103 erg · cm?3· s?1 to 120 · 103 erg · cm?2· s?1 enhanced the rate of photorespiration in the atmospheres of 21 and 100 % oxygen but not in 1 % O2. The rate of apparent photosynthesis, however, was little affected by light intensity in an atmosphere of 1 % oxygen.  相似文献   

9.
With a few clear exceptions (e.g., Daphnia) it is uncertain if most aquatic invertebrates can detect and respond to ultraviolet radiation (UVR). It is known that many aquatic invertebrates are vulnerable to UVR and that anthropogenically-induced increases in surface UVR have occurred in recent decades. We examined the photoresponses of late larval instars of Chaoborus punctipennis to different combinations of UVA (320–400 nm), UVB (300–320 nm) and visible light (400–700 nm) to determine whether the larvae can detect and/or avoid UVR. To accomplish this, we exposed late instar C. punctipennis larvae to a directional light source of UVR only (peak wavelength at 360 nm), visible light only or visible plus various wavebands of UVR. We examined negative phototaxis for 10 min at a quantum flux of 2.62 x 1013 quanta s–1 cm–2 (S.D. = 3.63 x 1012 quanta s–1 cm–2). In the dark, larvae stayed close to the surface of the experimental vessels. Under all treatments containing visible light the larvae exhibited negative phototaxis and occupied the bottom of the vessels. Under UVR only, the larvae occupied the middle of the water column. Our results suggest that late instar C. punctipennis larvae are unable to detect and avoid UVB and short UVA wavelengths but they can detect long UVA wavelengths.  相似文献   

10.
The rate of transbilayer movement (flip-flop) of cholesterol was estimated using planar bilayers with defined initial asymmetry, formed by the opposing monolayers technique. Vibrio cholerae cytolysin (VCC) was utilized as a molecular tool for measuring the cholesterol concentration in the cis leaflet of asymmetric bilayers. To quantify cholesterol flip-flop in planar lipid bilayers, a mathematical model was developed. It considers both the lateral diffusion rate of cholesterol within each monolayer and the flip-flop rate. The difference in initial and steady-state cholesterol contents in bilayer leaflets was used as a start point. Assuming the lateral diffusion coefficient to be of 1 × 10−8 cm2 s−1, the characteristic time of cholesterol flip-flop at 25 ± 2 °C was estimated as <10 s.  相似文献   

11.
Mixing in ice-covered lakes   总被引:1,自引:1,他引:0  
Lars Bengtsson 《Hydrobiologia》1996,322(1-3):91-97
Mixing in ice covered lakes is caused by through-flow currents, oscillations of the ice cover and by convective currents induced by heat flow from the sediments or by solar radiation penetrating the ice. Mainly from studies in Swedish lakes, current velocities and mixing coefficients are quantified for the different processes generating water movement. Seiche movement caused by wind induced oscillations of the ice cover is found to be most efficient for the horizontal mixing giving coefficients of the order 100 cm2 s–1. The lateral dispersion in through-flow currents can be determined using standard formulas, but the dispersion coefficient is 1–2 orders of magnitude less than that for oscillation induced mixing. Convective mixing due to heat flow from the sediments lasts through the winter but is a very slow process. Convection caused by penetration of solar radiation is more effective, but this process is usually of importance only during the last month prior to break-up of the ice-cover.  相似文献   

12.
Fucoxanthin is a carotenoid that exerts multiple beneficial effects on human health. However, reports comparing microalgae culture conditions and their effect on growth and fucoxanthin production are still limited. Isochrysis galbana and Phaeodactylum tricornutum cultures in different light (62.0, 25.9, 13.5, or 9.1 μmol photons m-2 s-1), mixing conditions (1 vvm aeration or 130 rpm agitation), and media compositions (F/2 and Conway medium) were studied for comparison of cellular growth and fucoxanthin production on F/2 medium. I. galbana showed a better adaptation to tested culture conditions in comparison with P. tricornutum, reaching 2.15?×?107?±?4.07?×?106 cells mL-1 and a specific growth rate (μ) of 1.12?±?0.05 day-1 under aerated conditions and 62.0 μmol photons m-2 s-1 light intensity. Fucoxanthin concentration was about 25 % higher in P. tricornutum cultures under 13.5 μmol photons m-2 s-1 light intensity and aerated conditions, but the highest fucoxanthin total production was higher in I. galbana, where 3.32 mg can be obtained from 1 L batch cultures at the 16th day under these conditions. Moreover, higher cell densities (~32.41 %), fucoxanthin concentration (~42.46 %), and total production (~50.68 %) were observed in I. galbana cultures grown in Conway medium, if compared with cultures grown in F/2 medium. The results show that the best growth conditions did not result in the best fucoxanthin production for either microalgae, implying that there is not a direct relationship between cellular growth and fucoxanthin production. Moreover, the results suggest that I. galbana cultures on Conway medium are strong candidates for fucoxanthin production, where 1.2 to 15 times higher fucoxanthin concentration are observed in comparison to macroalgal sources.  相似文献   

13.
This work investigated the effect of light and feeding on tissue composition as well as on rates of photosynthesis and calcification in the zooxanthellae (zoox) scleractinian coral, Stylophora pistillata. Microcolonies were maintained at three different light levels (80, 200, 300 μmol m−2 s−1) and subjected to two feeding regimes (starved and fed) over 9 weeks. Corals were fed both natural plankton and Artemia salina nauplii four times a weeks and samplings were made after 2, 5, and 9 weeks. Results confirmed that feeding enhances coral growth rate and increases both the dark and light calcification rates. These rates were 50-75% higher in fed corals (FC; 60±20 and 200±40 nmol Ca2+ cm−2 h−1 for dark and light calcification, respectively) compared to control corals (CC; 30±9 and 124±23 nmol Ca2+ cm−2 h−1). The dark calcification rates, however, were four times lower than the rates of light calcification (independent of trophic status). After 5 weeks, chlorophyll a (chl-a) concentrations were four to seven times higher in fed corals (7-21 μg cm−2) than in control corals (2-5 μg cm−2). The amount of protein was also significantly higher in fed corals (2.11-2.50 mg cm−2) than in control corals (1.08-1.52 mg cm−2). Rates of photosynthesis in fed corals were 2-10 times higher (1.24±0.75 μmol O2 h−1 cm−2) than those measured in control corals (0.20±0.08 μmol O2 h−1 cm−2).  相似文献   

14.
The cyanobacterium Pseudanabaena sp. FACHB 1277, a 2-methylisoborneol (2-MIB) producer isolated from Xionghe Reservoir, was identified by molecular biological methods based on the 16S rDNA sequence. Pseudanabaena sp. FACHB 1277 is a planktonic freshwater species with relatively high 2-MIB per cell density value (7.76?×?10?6 ng cell?1) and specific growth rate (0.25?±?0.01 d?1). The effects of temperature and light intensity on 2-MIB production of Pseudanabaena sp. FACHB 1277 were investigated. Of the six temperatures tested, 10, 15, 20, 25, 30, and 35 °C, the maximum total 2-MIB per cell density and minimum cell density were observed at 10 °C, while the total 2-MIB and dissolved 2-MIB (including extracellular and dissolved intracellular 2-MIB) increased with increasing temperature. Among the six tested light intensities (10, 25, 40, 55, 70, and 85 μmol photons m?2 s?1), the minimum total 2-MIB per cell density and maximum cell density were observed at 25 μmol photons m?2 s?1. The total 2-MIB and extracellular 2-MIB increased with light intensity increasing from 10 to 40 μmol photons m?2 s?1, while no significant increase was observed when the light intensity was higher than 40 μmol photons m?2 s?1. The maximum intracellular 2-MIB (including dissolved and bound) occurred at 25 μmol photons m?2 s?1. The present study indicates that increasing temperature could favor the conversion of bound intracellular to dissolved 2-MIB, while increasing light intensity stimulates the release of dissolved intracellular 2-MIB into the environment.  相似文献   

15.
The effects of plant growth conditions (light intensity, temperature and photoperiod) on the proportion of spider mites (Tetranychus urticae) and predatory mites (Phytoseiulus persimilis) entrapped by type VI trichomes were investigated in the cultivated tomato Lycopersicon esculentum. Trichomes released sticky substances showing rapid hardening when the trichome head was ruptured by contact with mites. Adult individuals of both species of mites were immobilized by exudates in a higher percentage on leaf stalks from plants grown in the light (160 einsteins cm-2s-1) than on leaf stalks from plants grown in the shade (50 einsteins cm-2 s-1). Leaf stalks from plants grown in the light showed bigger trichome heads. More predatory mites were also entrapped on the leaf stalks from plants grown at 18°C (65% RH) as compared to the ones grown at 24°C (60% RH), whereas trichome heads were bigger under the former conditions. Contrary to leaf stalks, leaflet areas, through differences in trichome density and size, showed no diffences in predator and spider mite entrapment. Trichome head size was probably related to mite entrapment. It is also hypothesised that temperature increase might influence predator entrapment through effects on trichome quality.  相似文献   

16.
The lateral leaflets of Desmodium motorium (Houtt.) Merr. exhibit ultradian up- and down movements, which are paralleled by oscillations of the membrane potential of motor cells in the pulvinus. By different treatments we have tested the hypothesis that both that both oscillation-types are causally related. The reactions of the leaflet movement and the membrane potential were evaluated by the following approaches. (1) Application of vanadate. an inhibitor of the proton pump in the plasmalemma. and N2 suppressed leaflet movements and finally arrested the leaflet in the lower position. Before the oscillations damped out, a strong lengthening in period was found. This indicates that the pump is part of the ultradian clock. A period lenthening and a final suppression of the rhythm by vanadate was also seen in the extracellular electric potential of the pulvinus. Intracellular recordings in situ showed that vanadate application depolarized the motor cells. (2) Light of high fluence rates diminished the amplitude of the oscillations of the membrane potential of single motor cells and shortened the period. The same effects were observed when monitoring the lateral leaflet movement. The leaflet always moved towards the direction of the light. whether it was applied from the abaxial or from the adaxial part of the pulvinus. (3) When light was applied to the pulvinus of lateral leaflets. which had spontancously stopped moving in an upper position. oscillations were induced transiently. This effect was also found for the membrane potential of motor cells in the pulvinus. - Our results thus provide further evidence that the membrane potential controls the volume state of the motor cells in the pulvinus of lateral leaflets of Desmodium motorium .  相似文献   

17.
The lateral leaflets of Desmodium motorium exhibit rhythmic upward and downward movements with a period in the minute range. Apoplasmic K+ and H+ activities were monitored in situ in the abaxial part of the pulvini with ion-selective microelectrodes. An extracellular electric potential was recorded simultaneously. The apoplasmic H+ activity of all pulvini exhibiting a regular rhythm of the extracellular electric potential oscillated with the same period between about 10 and 20 mM. The apoplasmic K+ activity was high when the membrane potential of the motor cells was depolarized (about 36 mV) and the cells were shrunken. In contrast, the apoplasmic K+ activity was low in the swollen state of the motor cells, when the membrane potential was hyperpolarized (about -136 mV). The volatile anesthetic enflurane suppressed reversibly the movement of the leaflets. The same treatment also arrested spontaneous oscillations in the apoplasmic K+ activity in the pulvinus. The apoplasmic K+ activity oscillated roughly in phase with the K+ activity between pH 6.6 and 6.0. Application of white light disturbed the rhythm and increased the extracellular pH. Our results indicate that the physiological mechanism that drives the lateral leaflet movements of Desmodium motorium is closely related to the osmotic motors mediating the leaf movements of Mimosa, Samanea and Phaseolus.Abbreviations Em membrane potential - Eex extracellular electric potential - Hex extracellular H+ activity - Kex extracellular K+ activity - Rex extracellular electrical resistance B. Antkowiak was supported by the Stiftung Volkswagenwerk.  相似文献   

18.
Zoeae of Paralithodes camtschatica were positively phototactic to white light intensities above 1 × 1013 q cm?2 s?1. Negative phototaxis occurred at low (1 × 1012 q cm?2 s?1), but not high intensities (2.2 × 1016q cm?2 s?1). Phototactic response was directly related to light intensity. Zoeae also responded to red, green and blue light. Zoeae were negatively geotactic, but geotaxis was dominated by phototaxis. Horizontal swimming speed of stage 1 zoeae <4 d old was 2.4 ± 0.1 (SE) cms?1 and decreased to 1.7 ± 0.1 cm s?1 in older zoeae (P <0.01). Horizontal swimming speed of stage 2 zoeae was not significantly different from ≥4 d old stage 1 zoeae. Vertical swimming speed, 1.6 ± 0.1 cm s?1, and sinking rate, 0.7 ± 0.1 cm s?1, did not change with ontogeny. King crab zoeae were positively rheotactic and maintained position in horizontal currents less than 1.4 cm s?1. Starvation reduced swimming and sinking rates and phototactic response.  相似文献   

19.
The relationship between leaf resistance to water vapour diffusion and each of the factors leaf water potential, light intensity and leaf temperature was determined for leaves on seedling apple trees (Malus sylvestris Mill. cv. Granny Smith) in the laboratory. Leaf cuticular resistance was also determined and transpiration was measured on attached leaves for a range of conditions. Leaf resistance was shown to be independent of water potential until potential fell below — 19 bars after which leaf resistance increased rapidly. Exposure of leaves to CO2-free air extended the range for which resistance was independent of water potential to — 30 bars. The light requirement for minimum leaf resistance was 10 to 20 W m?2 and at light intensities exceeding these, leaf resistance was unaffected by light intensity. Optimum leaf temperature for minimum diffusion resistance was 23 ± 2°C. The rate of change measured in leaf resistance in leaves given a sudden change in leaf temperature increased as the magnitude of the temperature change increased. For a sudden change of 1°C in leaf temperature, diffusion resistance changed at a rate of 0.01 s cm?1 min?1 whilst for a 9°C leaf temperature change, diffusion resistance changed at a rate of 0.1 s cm?1 min?1. Cuticular resistance of these leaves was 125 s cm?1 which is very high compared with resistances for open stomata of 1.5 to 4 s cm?1 and 30 to 35 s cm?1 for stomata closed in the dark. Transpiration was measured in attached apple leaves enclosed in a leaf chamber and exposed to a range of conditions of leaf temperature and ambient water vapour density. Peak transpiration of approximately 5 × 10?6 g cm?2 s?1 occurred at a vapour density gradient from the leaf to the air of 12 to 14 g m?3 after which transpiration declined due presumably to increased stomatal resistance. Leaves in CO2-free air attained a peak transpiration of 11 × 10?6 g cm?2 s?1 due to lower values of leaf resistance in CO2 free air. Transpiration then declined in these leaves due to development of an internal leaf resistance (of up to 2 s cm?1). The internal resistance was masked in leaves at normal CO2 concentrations by the increase in stomatal resistance.  相似文献   

20.
The interactive effects of light intensity, NaCl, nitrogen, and phosphorus on intracellular biomass content and extracellular polymeric substance production were assessed for Arthrospira sp. (Spirulina) in a two-phase culture process using principal component analysis and central composite face design. Under high light intensity (120 μmol photons m?2?s?1) and low NaCl (1 gL?1), NaNO3, and K2HPO4 (0.5 g L?1), the carbohydrate content was maximized to 26.61%. Interaction of both K2HPO4 (1.6 gL?1) and NaCl (1.19 gL?1) with low NaNO3 (0.5 gL?1) achieved the maximum content of lipids (15.62%), while high NaCl (40 gL?1), K2HPO4, and NaNO3 (4.5 gL?1) enhanced mainly total carotenoids (0.85%). Conversely, under low light intensity of 10 μmol photons m?2?s?1 combined with 11.76 gL?1 of NaCl, 0.5 gL?1 of NaNO3, and 2.68 gL?1 of K2HPO4, the phycobiliprotein content reached its highest level (16.09%). The maximum extracellular polymeric substance (EPS) production (0.902 gg?1?DW) was triggered under moderate light of 57.25 μmol photons m?2?s?1 and interaction of high NaCl (40 gL?1) and K2HPO4 (4.5 gL?1) with low NaNO3 (0.5 gL?1). The maximization ratios of intracellular biomass content in terms of carbohydrate, lipid, total carotenoid, phycobiliprotein, and EPS production were 3.55-, 1.73-, 9.55-, 2.92-, and 1.46-fold, respectively, greater than those obtained at optimal growth conditions. This study demonstrated that the multiple stress factors applied to the adopted two-phase culture process could be a promising strategy to produce biomass enriched in various high-value compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号