首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Effects of nitrogen (N)-deficiency on midday photoinhibition in flag leaves were compared between two contrastive Japanese rice cultivars, a traditional japonica cultivar with low yield, cv. Shirobeniya (SRB), and a japonica-indica intermediate type with high yield, cv. Akenohoshi (AKN). Both cultivars were grown under high-N and low-N conditions. At midday, low-N supply resulted in more intensive reductions in net photosynthetic rate, stomatal conductance, maximal quantum yield of photosystem II (PSII) and quantum yield of PSII electron transport in SRB than in AKN, indicating that SRB was more strongly photoinhibited than AKN under low-N condition. At midday, the low-N plants of two cultivars showed higher superoxide dismutase (SOD) activities than the high-N plants. However, ascorbate peroxidase (APX) activity was maintained in AKN but significantly decreased in SRB under low-N condition (N-deficiency). In contrast, hydrogen peroxide (H2O2) content in SRB significantly increased under low-N condition, indicating that the susceptibility to midday photoinhibition in the low-N plants of SRB is related to the increased H2O2 accumulation. It is suggested that the midday depression in photosynthesis may be a result of oxidative stress occurring in the low-N plants in which antioxidant capacity is not enough to cope with the generation of H2O2. Therefore, H2O2-scavenging capacity could be an important factor in determining the cultivar difference of midday photoinhibition in flag leaves of rice under low-N condition.  相似文献   

2.
Many farmer-popular indica rice (Oryza sativa L.) cultivars are recalcitrant to Agrobacterium-mediated transformation through tissue culture and regeneration. In planta transformation using Agrobacterium could therefore be a useful alternative for indica rice. A simple and reproducible in planta protocol with higher transformation efficiencies than earlier reports was established for a recalcitrant indica rice genotype. Agrobacterium tumefaciens containing the salt tolerance-enhancing Pea DNA Helicase45 (PDH45) gene, with the reporter and selectable marker genes, gus-INT (β-glucuronidase with intron) and hygromycin phosphotransferase (hpt), respectively, were used. Overnight-soaked mature embryos were infected and allowed to germinate, flower, and set T1 seeds. T0 plants were considered positive for the transgene if the spikelets of one or more of their panicles were positive for gus. Thereafter, selection at T1 was done by germination in hygromycin and transgenic status re-confirmation by subjecting plantlet DNA/RNA to gene-specific PCR, Southern and semi-quantitative RT-PCR. Additionally, physiological screening under saline stress was done at the T2 generation. Transformation efficiency was found to be 30–32% at the T0 generation. Two lines of the in planta transformed seedlings of the recalcitrant rice genotype were shown to be saline tolerant having lower electrolyte leakage, lower Na+/K+, minimal leaf damage, and higher chlorophyll content under stress, compared to the WT at the T2 generation.  相似文献   

3.

Key message

Two major loci with functional candidate genes were identified and validated affecting flag leaf size, which offer desirable genes to improve leaf architecture and photosynthetic capacity in rice.

Abstract

Leaf size is a major determinant of plant architecture and yield potential in crops. However, the genetic and molecular mechanisms regulating leaf size remain largely elusive. In this study, quantitative trait loci (QTLs) for flag leaf length and flag leaf width in rice were detected with high-density single nucleotide polymorphism genotyping of a chromosomal segment substitution line (CSSL) population, in which each line carries one or a few chromosomal segments from the japonica cultivar Nipponbare in a common background of the indica variety Zhenshan 97. In total, 14 QTLs for flag leaf length and nine QTLs for flag leaf width were identified in the CSSL population. Among them, qFW4-2 for flag leaf width was mapped to a 37-kb interval, with the most likely candidate gene being the previously characterized NAL1. Another major QTL for both flag leaf width and length was delimited by substitution mapping to a small region of 13.5 kb that contains a single gene, Ghd7.1. Mutants of Ghd7.1 generated using CRISPR/CAS9 approach showed reduced leaf size. Allelic variation analyses also validated Ghd7.1 as a functional candidate gene for leaf size, photosynthetic capacity and other yield-related traits. These results provide useful genetic information for the improvement of leaf size and yield in rice breeding programs.
  相似文献   

4.
Lin Z  Griffith ME  Li X  Zhu Z  Tan L  Fu Y  Zhang W  Wang X  Xie D  Sun C 《Planta》2007,226(1):11-20
  相似文献   

5.
6.
Rice flag leaf is the main photosynthetic organ and plays a key role in grain yield. In this study, 106 loci associated with flag leaf length and width were identified using association mapping in a rice mini core collection. Analyzing the phenotypic effects of each allele represented 156 positive and 167 negative alleles, with a few alleles showing inconsistent effect in different environments. Among the 106 loci, 69 were environment-specific loci, 16 were environmentally stable and 21 were environmentally sensitive. Fifteen associated markers were shared by two traits and were designated as pleiotropic markers. According to the frequency distribution of alleles in different variety types, 343 alleles were categorized into three types based on geographic source and usage in breeding. Among these, 156 were used alleles, 138 were unused and 49 were foreign alleles. The results further our understanding of the genetic mechanisms of flag leaf length and width.  相似文献   

7.
8.
Transposable elements (TEs) have a significant impact on the evolution of gene function and genome structures. An endogenous nonautonomous transposable element nDart was discovered in an albino mutant that had an insertion in the Mg-protoporphyrin IX methyltransferase gene in rice. In this study, we elucidated the transposition behavior of nDart, the frequency of nDart transposition and characterized the footprint of nDart. Novel independent nDart insertions in backcrossed progenies were detected by DNA blotting analysis. In addition, germinal excision of nDart occurred at very low frequency compared with that of somatic excision, 0–13.3%, in the nDart1-4(3-2) and nDart1-A loci by a locus-specific PCR strategy. A total of 253 clones from somatic excision at five nDart loci in 10 varieties were determined. nDart rarely caused deletions beyond target site duplication (TSD). The footprint of nDart contained few transversions of nucleotides flanking to both sides of the TSD. The predominant footprint of nDart was an 8-bp addition. Precise excision of nDart was detected at a rate of only 2.2%, which occurred at two loci among the five loci examined. Furthermore, the results in this study revealed that a highly conserved mechanism of transposition is involved between maize Ac/Ds and rice Dart/nDart, which are two-component transposon systems of the hAT superfamily transposons in plant species.  相似文献   

9.
Genes differentially expressed under high irradiance (HI) stress in mature flag leaves of super-hybrid rice Liangyoupeijiu (Oryza sativa ssp. indica) were studied by the silver-staining mRNA differential display technique. We obtained 167 differentially displayed bands on silver-stained polyacrylamide gels and searched for their genetic origins. Five cDNA fragments, which were upregulated by HI stress, were cloned and sequenced. The clones of G25×320, A31×380, and G29×280 putatively encode a cytosolic monodehydroascorbate reductase (MDAR), a phosphatidylinositol 4-kinase (PI-4-K), and a DEAH-box RNA helicase, respectively. Most differentially expressed genes in hybrid rice were inherited from parents and many of them were related with both parents, although some were derived from one parent only. The differentially expressed cDNA fragments having no distinct genetic origins indicated the involvement of some unclear mechanisms in the inheritance processes from parents to hybrid.This research was supported by the State Key Basic Research and Development Plan of China (G1998010100).  相似文献   

10.
11.
Nitrate uptake by rice coleoptiles was evaluated using 15N-nitrate in relation to the expression of high-affinity nitrate uptake-related genes, OsNRT2s (OsNRT2.12.4) and OsNAR2s (OsNAR2.1 and 2.2). Apparent nitrate uptake by coleoptiles was about one-sixth of that by hydroponically cultured seedling roots. Real-time RT-PCR analysis revealed that OsNRT2.1, a root-specific key gene of inducible high-affinity transport system for nitrate, was most strongly induced in coleoptiles following nitrate supply initiation, while other OsNRT2s and OsNAR2s showed modest induction. These results suggest that rice coleoptiles may have high-affinity transport systems for nitrate similar to roots, and can be model organs for nutrient uptake by submerged plant shoots.  相似文献   

12.
The genetic differentiation of nuclear, mitochondrial (mt) and chloroplast (cp) genomes was investigated by Southern and PCR analysis using 75 varieties of cultivated rice ( Oryza sativa L.) and 118 strains of common wild rice (CWR, Oryza rufipogon Griff.) from ten countries of Asia. The distinguishing differences between the Indica and Japonica cultivars were detected both in the nuclear genome and the cytoplasmic genome, confirming that the Indica-Japonica differentiation is of major importance for the three different classes of genome in cultivated rice. This differentiation was also detected in common wild rice with some differences among the genome compartments and the various regions. For nuclear DNA variation, both Indica-like and Japonica-like types were observed in the Chinese CWR, with the latter more-frequent than the former. No Japonica-like type was found in South Asia, and only two strains of the Japonica-like type were detected in Southeast Asia, thus the Indica-like type is the major type among South and Southeast Asian CWR. For mtDNA, only a few strains of the Japonica-like type were detected in CWR. For cpDNA, the Japonica type was predominant among the CWR strains from China, Bangladesh and Burma, while the Indica type was predominant among the CWR strains from Thailand, Malaysia, Cambodia and Sri Lanka, and both types were found in similar frequencies among the Indian CWR. Altogether, however, the degree of Indica-Japonica differentiation in common wild rice was much-less important than that in cultivated rice. Cluster analyses for nuclear and mitochondrial DNA variation revealed that some CWR strains showed large genetic distances from cultivated rice and formed clusters distinct from cultivated rice. Coincidence in the genetic differentiation between the three different classes of genome was much higher in cultivated rice than in CWR. Among the 75 cultivars, about 3/4 entries were "homoeotype" showing congruent results for nuclear, mt and cpDNA regarding the Indica-Japonica differentiation. In CWR, the proportions of homoeotypes were 5.7%, 15% and 48.8% in China, South Asia and Southeast Asia, respectively. Based on the average genetic distance among all the strains of CWR and cultivated rice for nuclear and mitochondrial genomes, the variability of the nuclear genome was found to be higher than that of the mitochondrial genome. The global pattern based on all genomes shows much-more diversification in CWR than that in cultivated rice.  相似文献   

13.
Uchiumi T  Uemura I  Okamoto T 《Planta》2007,226(3):581-589
In vitro fertilization (IVF) systems using isolated male and female gametes have been utilized to dissect fertilization-induced events in angiosperms, such as egg activation, zygote development and early embryogenesis, as the female gametophytes of plants are deeply embedded within ovaries. In this study, a rice IVF system was established to take advantage of the abundant resources stemming from rice research for investigations into the mechanisms of fertilization and early embryogenesis. Fusion of gametes was performed using a modified electrofusion method, and the fusion product, a zygote, formed cell wall and an additional nucleolus. The zygote divided into a two-celled embryo 15–24 h after fusion, and developed into a globular-like embryo consisting of an average of 15–16 cells by 48 h after fusion. Comparison of the developmental processes of zygotes produced by IVF with those of zygotes generated in planta suggested that zygotes produced by IVF develop and grow into early globular stage embryos in a highly similar manner to those in planta. Although the IVF-produced globular embryos did not develop into late globular-stage or differentiated embryos, but into irregularly shaped cell masses, fertile plants were regenerated from the cell masses and the seeds harvested from these plants germinated normally. The rice IVF system reported here will be a powerful tool for studying the molecular mechanisms involved in the early embryogenesis of angiosperms and for making new cultivars.  相似文献   

14.
Eight Saltol quantitative trait locus (QTL) linked simple sequence repeat (SSR) markers of rice (Oryza sativa L.) were used to study the polymorphism of this QTL in 142 diverse rice genotypes that comprised salt tolerant as well as sensitive genotypes. The SSR profiles of the eight markers generated 99 alleles including 20rare alleles and 16 null alleles. RM8094 showed the highest number (13) of alleles followed by RM3412 (12), RM562 (11), RM493 (9) and RM1287 (8) while as, RM10764 and RM10745 showed the lowest number (6) of alleles. Based on the highest number of alleles and PIC value (0.991), we identified RM8094 as suitable marker for discerning salt tolerant genotypes from the sensitive ones. Based upon the haplotype analysis using FL478 as a reference (salt tolerant genotypes containing Saltol QTL), we short listed 68 rice genotypes that may have at least one allele of FL478 haplotype. Further study may confirm that some of these genotypes might have Saltol QTL and can be used as alternative donors in salt tolerant rice breeding programmes.  相似文献   

15.
Transgenic Bacillus thuringiensis (Bt) rice have been reported to acquire effective resistance against the target pests; however, the insertion and expression of alien Bt genes may have some unintended effects on the growth characteristics of rice. A screen-house experiment was conducted and repeated twice to investigate the growth characteristics and Bt protein expressions in two Bt rice lines [MH63 (Cry2A*) and MH63 (Cry1Ab/Ac)], which had different Bt protein expression levels in leaves, under zero nitrogen (N0) and recommended nitrogen (NR) fertilizer applications. Compared to the counterpart MH63, MH63 (Cry2A*) under N0 experienced accelerated leaf senescence and a lower internal N use efficiency (IEN), resulting in a 23.2% decrease in grain yield and a lower accumulated biomass. These variations were revealed to be correlated to the higher ratio of the Bt protein content to the soluble protein content (BTC/SPC) with a maximum value of 4.3‰ in MH63 (Cry2A*) leaves in the late growth stage. Under NR, no differences in growth characteristics between MH63 (Cry2A*) and MH63 were found. The growth characteristics of MH63 (Cry1Ab/Ac), with a lower BTC/SPC in the late growth stage compared to MH63 (Cry2A*), were identical to those of MH63 under the two N applications. Results show that the transgenic Bt rice MH63 (Cry2A*), with a relatively higher Bt protein expression in the late growth stage, had an inferior adaptation to nitrogen deficiency compared to its non-Bt counterpart. And this inferior adaptation was found to be correlated with the higher BTC/SPC in MH63 (Cry2A*) leaves in the late growth stage.  相似文献   

16.
Genotyping-by-sequencing (GBS) is a rapid and cost-effective genome-wide genotyping technique applicable whether a reference genome is available or not. Due to the cost-coverage trade-off, however, GBS typically produces large amounts of missing marker genotypes, whose imputation becomes therefore both challenging and critical for later analyses. In this work, the performance of four general imputation methods (K-nearest neighbors, Random Forest, singular value decomposition, and mean value) and two genotype-specific methods (“Beagle” and FILLIN) was measured on GBS data from alfalfa (Medicago sativa L., autotetraploid, heterozygous, without reference genome) and rice (Oryza sativa L., diploid, 100 % homozygous, with reference genome). Alfalfa SNP were aligned on the genome of the closely related species Medicago truncatula L.. Benchmarks consisted in progressive data filtering for marker call rate (up to 70 %) and increasing proportions (up to 20 %) of known genotypes masked for imputation. The relative performance was measured as the total proportion of correctly imputed genotypes, globally and within each genotype class (two homozygotes in rice, two homozygotes and one heterozygote in alfalfa). We found that imputation accuracy was robust to increasing missing rates, and consistently higher in rice than in alfalfa. Accuracy was as high as 90–100 % for the major (most frequent) homozygous genotype, but dropped to 80–90 % (rice) and below 30 % (alfalfa) in the minor homozygous genotype. Beagle was the best performing method, both accuracy- and time-wise, in rice. In alfalfa, KNNI and RFI gave the highest accuracies, but KNNI was much faster.  相似文献   

17.
To explore the molecular mechanism of allelopathic rice in response to low nitrogen (N) supply or accompanying weed stress, allelopathic rice PI 312777 and its counterpart Lemont were grown under low N supply or co-cultured with barnyardgrass [Echinochloa crus-galli (L.) Beauv.] in hydroponics. The suppression subtractive hybridization (SSH) technique was employed to isolate the up-regulated genes in the treated rice accession. The results indicated that the expression of the genes associated with N utilization was significantly up-regulated in allelopathic rice PI 312777, and the higher efficiency of N uptake and its utilization were also detected in PI 312777 than that in Lemont when the two rice accessions were exposed to low N supply. This result suggested that the allelopathic rice had higher ability to adapt to low N stress than its non-allelopathic counterpart. However, a different response was observed when the allelopathic rice was exposed to accompanying weed (barnyardgrass) co-cultured in full Hoagland solution (normal N supply). It showed that the expression of the genes associated with allelochemical synthesis and its detoxification were all up-regulated in the allelopathic rice when co-cultured with the target weed under normal N supply. The results suggested that the allelopathic rice should be a better competitor in the rice-weed co-culture system, which could be attributed to increasing de novo biosynthesis and detoxification of allelochemicals in rice, consequently resulting in enhanced allelopathic effect on the target and preventing the autotoxicity in this process. These findings suggested that the accompanying weed, barnyardgrass is not only the stressful factor, but also one of the triggers in activating allelopathy in rice. This implies that the allelopathic rice is sensible of the existing target in chemical communication.  相似文献   

18.
Carbon balancing within the plant species is an important feature for climatic adaptability. Photosynthesis and respiration traits are directly linked with carbon balance. These features were studied in 20 wild rice accessions Oryza spp., and cultivars. Wide variation was observed within the wild rice accessions for photosynthetic oxygen evolution or photosynthetic rate (A), dark (R d), and light induced respiration (LIR) rates, as well as stomatal density and number. The mean rate of A varied from 10.49 μmol O2 m?2 s?1 in cultivated species and 13.09 μmol O2 m?2 s?1 in wild spp., The mean R d is 2.09 μmol O2 m?2 s?1 and 2.31 μmol O2 m?2 s?1 in cultivated and wild spp., respectively. Light induced Respiration (LIR) was found to be almost twice in wild rice spp., (16.75 μmol O2 m?2 s?1) compared to cultivated Oryza spp., Among the various parameters, this study reveals LIR and A as the key factors for positive carbon balance. Stomatal contribution towards carbon balance appears to be more dependent on abaxial surface where several number of stomata are situated. Correlation analysis indicates that R d and LIR increase with the increase in A. In this study, O. nivara (CR 100100, CR 100097), O. rufipogon (IR 103404) and O. glumaepatula (IR104387) were identified as potential donors which could be used in rice breeding program. Co-ordination between gas exchange and patchiness in stomatal behaviour appears to be important for carbon balance and environmental adaptation of wild rice accessions, therefore, survival under harsh environment.  相似文献   

19.
The chromogen gene C is critical for anthocyanin regulation in rice, and apiculus color is an important agronomic trait in selective breeding and variety purification. Mapbased cloning and in-depth functional analysis of the C gene will be useful for understanding the molecular mechanism of anthocyanin biosynthesis and for rice breeding. Japonica landrace Lijiangxintuanheigu (LTH) has red apiculi and purple stigmas. Genetic analysis showed that red apiculus and purple stigma in LTH co-segregated indicating control by a single dominant gene, or by two completely linked genes. Using 1,851 recessive individuals from two F2 populations, the target gene OsC was delimited to a 70.8 kb interval on chromosome 6 that contains the rice homologue of the maize anthocyanin regulatory gene C1. When the entire OsC gene and its full-length cDNA cloned from LTH were transformed into japonica cultivar Kitaake with colorless apiculi and stigmas all positive transformants had red apiculi but non-colored stigmas, validating that OsC alone was responsible for the apiculus color and represented the functional C gene. OsC was constitutively expressed in all tissues examined, with strongest expression in leaf blades. These results set a foundation to clarify the regulatory mechanisms of OsC in the anthocyanin biosynthetic pathway.  相似文献   

20.
A significant level of root elongation was induced in rice (Oryza sativa) grown under phosphorus-deficient conditions. The root elongation clearly varied among a total of 62 varieties screened under two different phosphorus levels. Two contrasting varieties, Gimbozu, with a low elongating response and Kasalath, with a high elongating response, were chosen and crossed to produce a hybrid population for QTL analyses. QTLs for the phosphorus deficiency-induced root elongation were detected by two linkage maps, i.e., one with 82 F3 families constructed by 97 simple sequence repeat (SSR) and sequence-tag site markers and another with 97 F8 lines by 790 amplified fragment length polymorphism and SSR markers. A single QTL for the elongation response was detected on chromosome 6, with a LOD score of 4.5 in both maps and explained about 20% of total phenotypic variance. In addition, this QTL itself, or a region tightly linked with it, partly explained an ability to reduce accumulation of excess iron in the shoots. The identified QTL will be useful to improve rice varieties against a complex nutritional disorder caused by phosphorus deficiency and iron toxicity.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号