首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To elucidate gender-dependent protein regulation and molecular abnormalities in streptozotocin (STZ)-induced diabetes, we compared differentially expressed pancreatic proteins between male and female diabetic rats and their healthy controls using a 2-DE-based proteomic approach. In animal experiments, we found that females exposed to STZ displayed greater susceptibility towards diabetes development due to lower insulin secretion and severe β-cell damage. It was also accompanied with more impaired regulation of sex hormones, lower glucose tolerance, and higher blood glucose levels compared to male diabetic rats. Among 748 detected protein spots ranging in mass from 6 to 240 kDa between pH 3 and 10, a total of 42 proteins showed significant sexually-dimorphic regulation patterns between male and female diabetic rats. Proteomic data revealed that male and female rats displayed prominent gender-dimorphic differential regulation of pancreatic proteins involved in glycolysis, the citric acid cycle, amino acid synthesis, lipid metabolism, insulin biosynthesis, β-cell regeneration, cell signaling, as well as antioxidative and cellular stress defense. In conclusion, the current proteomic study revealed that severely impaired protein regulation in the pancreas, at least in part, is responsible for increased susceptibility of female rats to STZ-induced diabetes.  相似文献   

2.
Regulation of DJ1 is associated with a number of human diseases. To determine the involvement of DJ1 in progression of diabetes in a gender‐dependent manner, we investigated its tissue‐specific expression in streptozotocin (STZ)‐induced diabetic male and female rats in this study. In animal experiments, females showed greater susceptibility towards developing diabetes because of lower insulin secretion and higher blood glucose levels as compared to male diabetic rats upon exposure to STZ. Immunoblotting confirmed sexually dimorphic regulation of DJ1 in various metabolic tissues such as the liver, pancreas and skeletal muscle. Immunofluorescence analysis revealed the location as well as reinforced the gender‐dependent expression of DJ1 in hepatic tissue. Co‐immunoprecipitation assay identified several interacting proteins with DJ1 whose functions were shown to be involved in various metabolic pathways viz. antioxidative and stress defence system, protein and methionine metabolism, nitrogen metabolism, urea metabolism, etc. Using GeneMANIA, a predictive web interface for gene functions, we showed for the first time that DJ1 may regulate T1DM via the JNK1 pathway, suggesting DJ1 interacts with other proteins from various metabolic pathways. We anticipate that the current data will provide insights into the aetiology of T1DM.  相似文献   

3.
In the present study, we examined differentially regulated plasma proteins between healthy control and streptozotocin (STZ)‐induced male and female diabetic rats by 2DE‐based proteomic analysis. Animal experiments revealed that significantly lower plasma insulin levels were observed in female diabetic rats, consequently resulting in higher blood glucose levels in female diabetic rats. Importantly, plasma levels of sex hormones were significantly altered in a gender‐dependent manner before and after STZ treatment. Results of the animal experiment indicated the existence of sexual dimorphism in the regulation of plasma proteins between healthy control and diabetic rats. Plasma proteome analysis enabled us to identify a total of 38 proteins showing sexual dimorphic regulation patterns. In addition, for the first time, we identified several differentially regulated plasma proteins between healthy control and diabetic rats, including apolipoprotein E, fetuin B, α‐1‐acid glycoprotein, β‐2‐glycoprotein 1, 3‐hydroxyanthranilate 3,4‐dioxygenase, and serum amyloid P‐component. To the best of our knowledge, this is the first proteomic approach to address sexual dimorphism in diabetic animals. These proteomic data on gender‐dimorphic regulation of plasma proteins provide valuable information that can be used for evidence‐based gender‐specific clinical treatment of diabetes.  相似文献   

4.
Liu H  Choi JW  Yun JW 《Proteomics》2012,12(2):269-283
Knowledge of gender differences is important because nutritional recommendations on the basis of data collected using predominantly male subjects may not be valid for women. In the present study, we performed proteomic analysis in plasma of rats fed a high-fat diet (HFD) using 2-DE combined with MALDI-TOF-MS for analysis of differential regulation patterns between male and female plasma proteins. Male rats gained more body weight with increased values of biochemical parameters than female rats. Image analysis and further statistical analysis allowed detection and identification of 31 proteins that were significantly modulated in a gender-dependent manner in response to HFD. Those differential expressed proteins were classified into three groups based on their regulation patterns in response to diet and gender. Consequently, we found 13 proteins showing gender-different regulation in both normal diet (ND) and HFD, where 9 proteins showed identical regulation patterns (Group I) and 4 proteins exhibited opposite regulation mode (Group II) between the genders. Eighteen proteins showed no gender-difference but HFD-responsive regulation (Group III). Of these, Apo A-IV, CRP precursor, Hp precursor, and FGG showed a clear gender difference in both ND and HFD, with the same regulation patterns. Present proteomic research into gender-dimorphic protein modulation in plasma would aid in improvement of gender awareness in the health care system and in implementation of evidence-based gender-specific clinical recommendations.  相似文献   

5.
Wang X  Choi JW  Oh TS  Choi DK  Mukherjee R  Liu H  Yun JW 《Proteomics》2012,12(2):284-299
Gender differences in obesity stem from metabolic and hormonal differences between sexes and contribute to differences between women and men in health risks attributable to obesity. We hypothesized that liver may be an ideal target for the evaluation of gender differences in obesity development in response to a high-fat diet (HFD). Therefore, to test this hypothesis, we performed a global proteome analysis in the liver of lean and obese rats of both genders who were fed an HFD through 2-DE combined with MALDI-TOF-MS. When rats were exposed to HFD, male rats gained more body weight with increased values of plasma biochemical parameters than female rats. Image analysis and further statistical analysis of a 2-DE protein map allowed for the detection and identification of 34 proteins that were significantly modulated in a gender-dependent manner. We found 19 proteins showing identical gender-different regulation in both normal diet (ND) and HFD. Five proteins also showed clear gender differences in both ND and HFD; however, their regulation modes in HFD were opposite to those in ND. Of particular interest, 10 proteins showed gender differences only in either ND or HFD rats. Present proteomic insight into gender-dimorphic protein modulation in liver would aid in the improvement of gender awareness in the health-care system and in implementation of evidence-based gender-specific clinical recommendations.  相似文献   

6.
目的研究不同性别大鼠在2型糖尿病造模过程中的成功率及模型的稳定性。方法高糖高脂饮食联合腹腔注射小剂量链脲佐菌素诱导建立雄、雌性大鼠2型糖尿病模型。成模后所有大鼠每周固定时间测血糖和体重。观察24周后,心脏穿刺取血,测定空腹血糖(FPG)、血清胰岛素(FINS)、HbA1c、甘油三脂(TG)、胆固醇(TC)、高密度脂蛋白-胆固醇(HDL-C)、低密度脂蛋白-胆固醇(LDL-C)。结果单纯高糖高脂饮食喂养,雄、雌性大鼠血糖与正常组无显著差异;STZ注射后,雄性大鼠血糖升高并逐渐平稳,而雌性需两次STZ注射,模型才比较稳定。实验结束时,雄、雌性糖尿病大鼠FPG、FINS、HOMA-IR以及TG、TC、LDL-C均显著升高,说明模型存在胰岛素抵抗和脂代谢紊乱。结论高糖高脂饲料加一次性小剂量链脲佐菌素腹腔注射,可成功建立雄性大鼠2型糖尿病模型,而同等剂量,雌性模型需两次STZ。雄、雌性糖尿病大鼠模型具有高血糖、脂质代谢紊乱和胰岛素抵抗特点。造模成功率及稳定性与性别有关,雄性大鼠较雌性大鼠成模率高,稳定性好,且耗时更短。  相似文献   

7.
Summary Multiple factors contribute to the growth retardation which is a characteristic feature of uncontrolled diabetes. In this report we have examined the effects of streptozotocin-induced (STZ) diabetes on expression of insulin-like growth factor-I (IGF-I) and insulin-like growth factor binding protein-1 (IGFBP-1) in various tissues. As early as 7 days after STZ administration there was a modest reduction in IGF-I mRNA abundance. The reduction (10–30%) was of similar magnitude in each of the 7 tissues examined; liver, kidney, lung, diaphragm, quadraceps, heart and adipose tissue. However, the reduction achieved statistical significance only in the lung (p < 0.05) and diaphragm (p < 0.01). A further reduction in IGF-I mRNA abundance was seen in many tissues, 32 and 91 days after STZ administration. In contrast to the decrease in IGF-I mRNA, IGFBP-1 mRNA was significantly increased in the liver and kidney of diabetic rats. IGFBP-1 mRNA was detectable at only very low levels in other tissues but was increased in diabetic rats compared non-diabetic rats. In diabetic rats, a highly significant correlation (R = 0.75, p < 0.001) between hepatic IGFBP-1 mRNA and glucose was observed whereas there was no significant correlation between serum glucose and hepatic IGF-I mRNA abundance (R = 0.24, p = NS). Treatment of diabetic rats with insulin resulted in a small, non significant increase in hepatic and renal IGF-I mRNA and a significant decrease in renal IGFBP-1 mRNA abundance. The observations reported here are consistent with the hypothesis that diminished IGF-I expression and inhibition of available IGF-1 by increased levels of IGFBP-1 may explain the impaired growth seen in diabetic animals.  相似文献   

8.
Obesity-prone (OP) and obesity-resistant (OR) rats with different responses to development of obesity in spite of the same genetic background are useful animal models for searching for markers during the development of obesity. Here, we investigated whether plasma proteins of OP and OR rats may behave in a different way in males and females. We performed a comparative proteomic analysis using 2-DE combined with MALDI-TOF/MS on proteins from OP and OR male and female rats to discover gender-specific rat plasma proteins associated with susceptibility or resistance to diet-induced obesity. A total of 29 proteins showing differential expression between the groups were identified by MALDI-TOF/MS and database searches. These proteins were classified into 4 groups according to their regulation patterns in response to diet and gender. 22 proteins showed significant differences between OP and OR rats in males and/or females (Group I, II, and III) and 7 proteins exhibited only a high fat diet (HFD)-responsive difference in male or female rats (Group IV). In conclusion, the proteins negatively (ITIH3, FGG, TUBB5, and ZAG) or positively (Hp, ITIH4, and RBP) correlated with obesity found in this study could be used for selection of new targets for gender specific-medical treatment of obesity.  相似文献   

9.
Earlier studies from our laboratory have indicated insulin sensitizing action of chromium picolinate as the mechanism of its anti-diabetic activity in experimental models of type I and type II diabetes. In the present investigation, we have evaluated the effects of chronic administration of chromium picolinate on the functional and histological alterations of streptozotocin (STZ)-induced diabetes in rats. Type I diabetes was induced by intravenous injection of STZ (40 mg/kg) in adult rats, whereas, type II diabetes was induced by intraperitoneal injection of STZ (90 mg/kg) in 2-day old rat pups which in adulthood develop abnormalities resembling type II diabetes. Chromium picolinate was administered at 8 μg/ml in drinking water for 6 weeks and was found to improve glucose tolerance and increase insulin sensitivity of STZ-diabetic rats. This treatment decrease elevated serum creatinine and urea levels as well as elevated serum levels of hepatic enzymes of both groups of diabetic rats. Histopathological studies of kidney and liver show decrease in the intensity and incidence of vacuolations, cellular infiltration and hypertrophy of STZ and nSTZ (neonatal STZ) diabetic rats. Chronic treatment with chromium picolinate however, did not alter the normal function or morphology of control rats. Chronic chromium picolinate at the therapeutic doses that improved glucose tolerance, was observed to have no hepatotoxic or nephrotoxic potential. It was rather found to improve renal and hepatic function and to reduce abnormalities associated with STZ-diabetes. Chromium picolinate could play an important role in the long term management of diabetes mellitus.  相似文献   

10.
Diabetic nephropathy remains a major cause of morbidity and mortality in the diabetic population and is the leading cause of end-stage renal failure. Despite current therapeutics including intensified glycemic control and blood pressure lowering agents, renal disease continues to progress relentlessly in diabetic patients, albeit at a lower rate. Since synthetic drugs for diabetes are known to have side effects, fungal mushrooms as a natural product come into preventing the development of diabetes. Our previous report showed the hypoglycemic effect of extracellular fungal polysaccharides (EPS) in streptozotocin (STZ)-induced diabetic rats. In this study, we analyzed the differential expression patterns of rat kidney proteins from normal, STZ-induced diabetic, and EPS-treated diabetic rats, to discover diabetes-associated proteins in rat kidney. The results of proteomic analysis revealed that up to 500 protein spots were visualized, of which 291 spots were differentially expressed in the three experimental groups. Eventually, 51 spots were statistically significant and were identified by peptide mass fingerprinting. Among the differentially expressed renal proteins, 10 were increased and 16 were decreased significantly in diabetic rat kidney. The levels of different proteins, altered after diabetes induction, were returned to approximately those of the healthy rats by EPS treatment. A histopathological examination showed that EPS administration restored the impaired kidney to almost normal architecture. The study of protein expression in the normal and diabetic kidney tissues enabled us to find several diabetic nephropathy-specific proteins, such as phospholipids scramblase 3 and tropomyosin 3, which have not been mentioned yet in connection with diabetes.  相似文献   

11.
Abnormal regulation of glucose and impaired carbohydrate utilization that result from a defective or deficient insulin are the key pathogenic events in type 2 diabetes mellitus (T2DM). Experimental and clinical studies have shown the antidiabetic effects of Pycnogenol® (PYC). However, the protective effects of PYC on the liver, a major metabolic organ which primarily involves in glucose metabolism and maintains the normal blood glucose level in T2DM model have not been studied. The present study evaluated the beneficial effect of PYC, French maritime pine bark extract, on hyperglycemia and oxidative damage in normal and diabetic rats. Diabetes was induced by feeding rats with a high-fat diet (HFD; 40%) for 2 weeks followed by an intraperitoneal (IP) injection of streptozotocin (STZ; 40 mg/kg; body weight). An IP dose of 10 mg/kg PYC was given continually for 4 weeks after diabetes induction. At the end of the 4-week period, blood was drawn and the rats were then sacrificed, and their livers dissected for biochemical and histopathological assays. In the HFD/STZ group, levels of glycosylated hemoglobin (HbA1c), significantly increased, while hepatic glycogen level decreased. PYC supplementation significantly reversed these parameters. Moreover, supplementation with PYC significantly ameliorated thiobarbituric reactive substances, malonaldehyde, protein carbonyl, glutathione and antioxidant enzymes [glutathione-S-transferase, catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase] in the liver of HFD/STZ rats. These results were supported with histopathological examinations. Although detailed studies are required for the evaluation of the exact protective mechanism of PYC against diabetic complications, these preliminary experimental findings demonstrate that PYC exhibits antidiabetic effects in a rat model of type 2 DM by potentiating the antioxidant defense system. These finding supports the efficacy of PYC for diabetes management.  相似文献   

12.
Previous studies have demonstrated marked alterations in trace metal metabolism in male Sprague-Dawley rats following chemical induction of the diabetic state. To determine whether such changes represented a general response to the insulin-deficient condition the levels of zinc, copper, and maganese in liver, kidney, and intestine of normal and streptozotocin (STZ)-diabetic male rats of the Sprague-Dawley, Wistar, and Long-Evans strains, female Sprague-Dawley rats, and male mice were measured. Significantly increased concentrations of zinc, copper, and maganese in liver, and zinc and copper in kidney were found in STZ-diabetic rats, regardless of sex and strain. In contrast, the zinc and copper contents in liver and kidney of control and STZ-diabetic mice were similar, but hepatic manganese levels were significantly elevated in both organs of the diabetic mouse. The concentrations of all three metals were similar in the intestine of control and diabetic rodents. Higher amounts of zinc and copper were bound to metallothionein in the liver and kidney of the diabetic rats. Nicotinamide injection prior to STZ administration protected rats against the development of diabetes and alterations in trace metal status. These data indicate that specific alterations in the metabolism of zinc, copper and manganese during episodes of pancreatic hormonal imbalance represent a general phenomenon in the rat. A possible explanation for the differential response of the STZ-diabetic mouse is discussed.  相似文献   

13.
Glycogen-targeting subunits of protein phosphatase-1 (PP-1) are scaffolding proteins that facilitate the regulation of key enzymes of glycogen metabolism by PP-1. In the current study, we have tested the effects of hepatic expression of GMDeltaC, a truncated version of the muscle-targeting subunit isoform, in rats rendered insulin-deficient via injection of a single moderate dose of streptozotocin (STZ). Three key findings emerged. First, GMDeltaC expression in liver was sufficient to fully normalize blood glucose levels (from 335 +/- 31 mg/dl prior to viral injection to 109 +/- 28 mg/dl 6 days after injection) and liver glycogen content in STZ-injected rats. Second, this normalization occurred despite very low levels of liver glucokinase expression in the insulin-deficient STZ-injected rats. Finally, the hyperphagia induced by STZ injection was completely reversed by GMDeltaC expression in liver. In contrast to these findings with GMDeltaC, overexpression of another targeting subunit, GL, in STZ-injected rats caused a large increase in liver glycogen stores but only a transient decrease in food intake and blood glucose levels. The surprising demonstration of a glucose-lowering effect of GMDeltaC in the background of depressed hepatic glucokinase expression suggests that controlled stimulation of liver glycogen storage may be an effective mechanism for improving glucose homeostasis, even when normal pathways of glucose disposal are impaired.  相似文献   

14.
Epidemiological studies have demonstrated that diabetes mellitus is a serious health burden for both governments and healthcare providers. This study was hypothesized to evaluate the antihyperglycemic potential of eugenol by determine the activities of key enzymes of glucose metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into male albino Wistar rats by intraperitoneal administration of STZ (40 mg/kg body weight (b.w.)). Eugenol was administered to diabetic rats intragastrically at 2.5, 5, and 10 mg/kg b.w. for 30 days. The dose 10 mg/kg b.w. significantly reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) and increased plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and liver marker enzymes (AST, ALT, and ALP), creatine kinase and blood urea nitrogen in serum and blood of diabetic rats were significantly reverted to near normal levels by the administration of eugenol. Further, eugenol administration to diabetic rats improved body weight and hepatic glycogen content demonstrated the antihyperglycemic potential of eugenol in diabetic rats. The present findings suggest that eugenol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes, and it is sensible to broaden the scale of use of eugenol in a trial to alleviate the adverse effects of diabetes.  相似文献   

15.
To provide insights into the molecular mechanisms underlying diabetes mellitus, we performed a proteomic study on two diabetic animal models, streptozotocin (STZ)-induced diabetic rats (T1DM) and genetically diabetic (C57BL/6J ob/ob) mice (T2DM). To better understand the recovery process of those diabetic rodents, we examined the effect of hypoglycemic dipeptide Cyclo (His-Pro) (CHP) treatment on the differential expression of pancreatic proteins in both animal models. Oral administration of CHP had an excellent hypoglycemic effect in both animal models, lowering the average plasma glucose level by over 50%. Pancreatic proteins were separated by two-dimensional gel electrophoresis (2-DE) and identified by MALDI-TOF mass spectrometry. This study allowed, for the first time, the identification of 34 proteins that are related to diabetes and potential targets of CHP, a potent anti-diabetic agent for both T1DM and T2DM. The alterations in the expression of these proteins could indicate a tendency for diabetic animals to overcome their diabetic state. These proteins are involved in cellular functions such as metabolism, cellular structure, oxidative stress, as well as signal and energy transduction. Some have already been linked to diabetes, suggesting that the newly identified proteins might also be significant in the etiology of this pathology and should be further investigated. Furthermore, CHP has emerged as a potent tool for both the treatment and study of the molecular mechanisms underlying diabetes. Thus, the findings presented here provide new insights into the study and potential treatment of this pathology.  相似文献   

16.
本文评价了芦笋老茎澄清汁(CAJ)的降血糖作用,并对其降血糖机制进行了初步探讨。腹腔注射STZ制备类似1型糖尿病大鼠模型,以0.6,1.2和2.0 g/kg体重剂量的CAJ连续灌胃21 d,监测血糖,测定糖化血清蛋白、血清胰岛素、肝糖原、脂代谢及抗氧化系统部分相关指标。结果显示,CAJ可明显降低糖尿病大鼠血清中葡萄糖、糖化血清蛋白、总胆固醇和MDA含量,并显著提高受试模型鼠的血清胰岛素水平、肝糖原含量、血清SOD活性、肝脏SOD、GSH-Px和CAT的活性。上述结果表明CAJ可明显降低糖尿病大鼠的血糖水平,刺激胰岛素分泌,调节血脂,增强抗氧化能力。  相似文献   

17.
Maternal diabetes can induce permanent changes in glucose homeostasis that can occur pre- and post-natal and leads to type 2 diabetes in adulthood. This study aimed to investigate the effect of maternal diabetes on the F1 offspring peripheral glucose sensing and mitochondrial biogenesis in an attempt to clarify the mechanism of diabetogenic programming. Two groups of female Wistar rats were used (diabetic and control); diabetes was neonatally induced by STZ injection to 5-day old rats. After the pregnancy and delivery, the offspring were weaned to control diet or high-caloric (HCD) diet and followed up for 30 weeks. Every 5 weeks, OGTT was constructed, and serum and tissues were obtained for the assessment of mTFA, mtDNA, UCP2, insulin receptor (IR), phospho-insulin receptor (phospho-IR), and GLUT4. The result indicated impaired glucose tolerance (IGT) and insulin resistance in the offspring under control diet at the 15th week of age and thereafter while those offspring under HCD showed IGT at 10th week, and diabetes was evidenced at the 25th week of age. This defect in glucose metabolism was preceded by impairment in the phosphorylation of IR and decreased IR and Glut4 that cause impaired glucose sensing together with inhibited mitochondrial biogenesis in muscle and adipose tissues. This study indicated that maternal diabetes caused impaired glucose sensing and insulin resistance in the peripheral tissues and caused change in the expression of genes involved in mitochondrial biogenesis and function. Post-natal feeding with HCD may accelerate these changes. Male F1 offspring appears to be more sensitive than females for fetal programming of T2D.  相似文献   

18.
Rebaudioside A (Reb A), a major constituent of Stevia rebaudiana, was recently proposed as an insulinotropic agent. The aim of this investigation was to evaluate the antihyperglycemic effect of Reb A on the activities of hepatic enzymes of carbohydrate metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in adult male Albino Wistar rats, weighing 180-200 g, by a single intraperitoneal injection at a dose of STZ (40 mg/kg body weight). Diabetic rats showed significant (P<0.05) increase in the levels of plasma glucose and glycosylated hemoglobin and significant (P<0.05) decrease in the levels of plasma insulin and hemoglobin. Activities of gluconeogenic enzymes such as glucose-6-phosphatase and fructose-1,6-bisphosphatase were significantly (P<0.05) increased while hexokinase and glucose-6-phosphate dehydrogenase were significantly (P<0.05) decreased in the liver along with glycogen. Oral treatment with Reb A to diabetic rats significantly (P<0.05) decreased blood glucose and reversed these hepatic carbohydrate metabolizing enzymes in a significant manner. Histopathology changes of pancreas confirmed the protective effects of Reb A in diabetic rats. Thus, the results show that Reb A possesses an antihyperglycemic activity and provide evidence for its traditional usage in the control of diabetes.  相似文献   

19.
Impaired ascorbic acid metabolism in streptozotocin-induced diabetic rats   总被引:3,自引:0,他引:3  
Ascorbic acid (AA) metabolism in streptozotocin (STZ)-induced diabetic rats was determined by examining urinary excretion, renal reabsorption, reductive regeneration, and biosynthesis of AA at 3 and 14 days after STZ administration. AA concentrations in the plasma, liver, and kidney of the diabetic rats were significantly lower than those of controls on d 3, and decreased further as the diabetic state continued. Hepatic AA regeneration significantly decreased in the diabetic rats on d 3 in spite of increased gene expressions of AA regenerating enzymes and was further reduced on d 14. Hepatic activity of L-gulono-gamma-lactone oxidase, a terminal enzyme of hepatic AA biosynthesis, also decreased significantly on d 3 and decreased further on d 14. Urinary excretion of AA was significantly increased on d 3, with an increase in urine volume but no change in gene expressions of renal AA transporters (SVCT1 and SVCT2). Urinary excretion of AA was normalized on d 14. The results suggest that impaired hepatic and renal regeneration, as well as increased urinary excretion and impaired hepatic biosynthesis of AA, contributed to the decrease in AA in plasma and tissues of STZ-induced diabetic rats.  相似文献   

20.
Bauhinia forficata, commonly known as "paw-of-cow", is widely used in Brazil folk medicine for the treatment of Diabetes mellitus. The purposes of present study were to determine the repercussions of diabetes on the defense system against oxidative stress in pregnant female rats and to characterize the influence of the treatment with Bauhinia forficata extract on the antioxidant system, glycemic control, hepatic glycogen, cholesterol, triglycerides, total proteins and lipids. Virgin female Wistar rats were injected with 40 mg/kg streptozotocin (STZ) before mating. Oral administration of an aqueous extract of Bauhinia forficata leaves was given to non-diabetic and diabetic pregnant rats in 3 doses: 500 mg/kg from 0 to 4th day of pregnancy, 600 mg/kg from 5th to 14th day and 1000 mg/kg from 15th to 20th day. All the females were killed on the day 21 of pregnancy. A maternal blood sample was collected by venous puncture and the maternal liver was removed for biochemical measurement. The diabetic pregnant rats presented hyperglycemia, hyperlipemia, hypertriglyceridemia, hypercholesterolemia, hyperuricemia, decreased determinations of reduced glutathione (GSH) and superoxide dismutase (SOD). Treatment with B. forficata extract did not interfere in the albumin, total protein and lipid, triglyceride, cholesterol and SOD determinations. Increased hepatic glycogen, decreased uric acid concentration and increased GSH activity was observed. This last fact suggests that the plant may have some action on antioxidant defense system. However, the demonstration of the active component present in B. forficata responsible for its antioxidant effect and the increase in hepatic glycogen deserve further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号