首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, production of S-adenosyl-L-methionine in Corynebacterium glutamicum was investigated by overexpressing genes metK and vgb. Compared with vector control, overexpression of metK alone in C. glutamicum ATCC13032 and IWJ001 increased SAM production 5.11 and 11.65 times, respectively; while overexpression of metK and vgb in C. glutamicum ATCC13032 and IWJ001 increased SAM production 5.83 and 14.95 times, respectively. Further studies on IWJ001/pDXW-8-metk-vgb showed that the limiting factor for SAM production is intracellular ATP supply. Since IWJ001 is an L-isoleucine production strain, IWJ001/pDXW-8-metk-vgb could produce both SAM and L-isoleucine. After 72 h fermentation, SAM and L-isoleucine in IWJ001/pDXW-8-metk-vgb reached 0.67 g/L and 13.8 g/L, respectively. The results demonstrate the potential application of C. glutamicum for co-production of SAM and amino acids.  相似文献   

2.
Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for l-valine production by over-expressing ilvEBN r C genes at 31?°C in 72?h fermentation. Different strategies were carried out to reduce the by-products’ accumulation in l-valine fermentation and also to increase the availability of precursor for l-valine biosynthesis. The native promoter of ilvA of C. glutamicum was replaced with a weak promoter MPilvA (P-ilvAM1CG) to reduce the biosynthetic rate of l-isoleucine. Effect of different relative dissolved oxygen on l-valine production and by-products’ formation was recorded, indicating that 15?% saturation may be the most appropriate relative dissolved oxygen for l-valine fermentation with almost no l-lactic acid and l-glutamate formed. To minimize l-alanine accumulation, alaT and/or avtA was inactivated in C. glutamicum and B. flavum, respectively. Compared to high concentration of l-alanine accumulated by alaT inactivated strains harboring ilvEBN r C genes, l-alanine concentration was reduced to 0.18?g/L by C. glutamicum ATCC13032MPilvAavtA pDXW-8-ilvEBN r C, and 0.22?g/L by B. flavum JV16avtA::Cm pDXW-8-ilvEBN r C. Meanwhile, l-valine production and conversion efficiency were enhanced to 31.15?g/L and 0.173?g/g by C. glutamicum ATCC13032MPilvAavtA pDXW-8-ilvEBN r C, 38.82?g/L and 0.252?g/g by B. flavum JV16avtA::Cm pDXW-8-ilvEBN r C. This study provides combined strategies to improve l-valine yield by minimization of by-products’ production.  相似文献   

3.
Previously we have characterized a threonine dehydratase mutant TDF383V (encoded by ilvA1) and an acetohydroxy acid synthase mutant AHASP176S, D426E, L575W (encoded by ilvBN1) in Corynebacterium glutamicum IWJ001, one of the best l-isoleucine producing strains. Here, we further characterized an aspartate kinase mutant AKA279T (encoded by lysC1) and a homoserine dehydrogenase mutant HDG378S (encoded by hom1) in IWJ001, and analyzed the consequences of all these mutant enzymes on amino acids production in the wild type background. In vitro enzyme tests confirmed that AKA279T is completely resistant to feed-back inhibition by l-threonine and l-lysine, and that HDG378S is partially resistant to l-threonine with the half maximal inhibitory concentration between 12 and 14 mM. In C. glutamicum ATCC13869, expressing lysC1 alone led to exclusive l-lysine accumulation, co-expressing hom1 and thrB1 with lysC1 shifted partial carbon flux from l-lysine (decreased by 50.1 %) to l-threonine (4.85 g/L) with minor l-isoleucine and no l-homoserine accumulation, further co-expressing ilvA1 completely depleted l-threonine and strongly shifted carbon flux from l-lysine (decreased by 83.0 %) to l-isoleucine (3.53 g/L). The results demonstrated the strongly feed-back resistant TDF383V might be the main driving force for l-isoleucine over-synthesis in this case, and the partially feed-back resistant HDG378S might prevent the accumulation of toxic intermediates. Information exploited from such mutation-bred production strain would be useful for metabolic engineering.  相似文献   

4.
The catabolic or biodegradative threonine dehydratase (E.C. 4.2.1.16) of Escherichia coli is an isoleucine feedback-resistant enzyme that catalyzes the degradation of threonine to α-ketobutyrate, the first reaction of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while the native threonine dehydratase of C. glutamicum was totally inhibited by 15 mM isoleucine, the heterologous catabolic threonine dehydratase expressed in the same strain was much less sensitive to isoleucine; i.e., it retained 60% of its original activity even in the presence of 200 mM isoleucine. To determine whether expressing the catabolic threonine dehydratase (encoded by the tdcB gene) provided any benefit for isoleucine production compared to the native enzyme (encoded by the ilvA gene), fermentations were performed with the wild-type strain, an ilvA-overexpressing strain, and a tdcB-expressing strain. By expressing the heterologous catabolic threonine dehydratase in C. glutamicum, we were able to increase the production of isoleucine 50-fold, whereas overexpression of the native threonine dehydratase resulted in only a fourfold increase in isoleucine production. Carbon balance data showed that when just one enzyme, the catabolic threonine dehydratase, was overexpressed, 70% of the carbon available for the lysine pathway was redirected into the isoleucine pathway.  相似文献   

5.
A less frequently employed Escherichia coli strain W, yet possessing useful metabolic characteristics such as less acetic acid production and high L ‐valine tolerance, was metabolically engineered for the production of L ‐valine. The ilvA gene was deleted to make more pyruvate, a key precursor for L ‐valine, available for enhanced L ‐valine biosynthesis. The lacI gene was deleted to allow constitutive expression of genes under the tac or trc promoter. The ilvBNmut genes encoding feedback‐resistant acetohydroxy acid synthase (AHAS) I and the L ‐valine biosynthetic ilvCED genes encoding acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and branched chain amino acid aminotransferase, respectively, were amplified by plasmid‐based overexpression. The global regulator Lrp and L ‐valine exporter YgaZH were also amplified by plasmid‐based overexpression. The engineered E. coli W (ΔlacI ΔilvA) strain overexpressing the ilvBNmut, ilvCED, ygaZH, and lrp genes was able to produce an impressively high concentration of 60.7 g/L L ‐valine by fed‐batch culture in 29.5 h, resulting in a high volumetric productivity of 2.06 g/L/h. The most notable finding is that there was no other byproduct produced during L ‐valine production. The results obtained in this study suggest that E. coli W can be a good alternative to Corynebacterium glutamicum and E. coli K‐12, which have so far been the most efficient L ‐valine producer. Furthermore, it is expected that various bioproducts including other amino acids might be more efficiently produced by this revisited platform strain of E. coli. Bioeng. 2011; 108:1140–1147. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
NAD激酶催化辅酶Ⅰ[NAD(H)]发生磷酸化,转变成辅酶Ⅱ[NADP(H)],而还原态辅酶Ⅱ(NADPH)是L-异亮氨酸合成的必要辅因子。为了提高NADPH的供应,首先克隆了谷氨酸棒杆菌NAD激酶基因ppnK,并利用大肠杆菌-棒状杆菌诱导型穿梭表达载体pDXW-8和组成型穿梭表达载体pDXW-9在L-异亮氨酸合成菌——乳糖发酵短杆菌JHI3-156中进行表达。摇瓶发酵后,ppnK诱导表达菌JHI3-156/pDXW-8-ppnK的NAD激酶酶活(4.33±0.74 U/g)比pDXW-8空载菌提高了83.5%,辅酶Ⅱ与辅酶Ⅰ的比例提高了63.8%,L-异亮氨酸产量(3.86±0.12 g/L)提高了82.9%;ppnK组成表达菌JHI3-156/pDXW-9-ppnK的NAD激酶酶活(7.67±0.65 U/g)比pDXW-9空载菌提高了2.20倍,辅酶Ⅱ与辅酶Ⅰ的比例提高了1.34倍,NADPH含量提高了21.7%,L-异亮氨酸产量(2.99±0.18 g/L)提高了41.7%。这说明NAD激酶有助于辅酶Ⅱ的供应和L-异亮氨酸的生物合成,这对于其他氨基酸的生产也有一定的参考依据。  相似文献   

7.
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Kmr). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum ΔilvA ΔpanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.  相似文献   

8.
As an important biological methyl group donor, S-adenosyl-l-methionine is used as nutritional supplement or drug for various diseases, but bacterial strains that can efficiently produce S-adenosyl-l-methionine are not available. In this study, Corynebacterium glutamicum strain HW104 which can accumulate S-adenosyl-l-methionine was constructed from C. glutamicum ATCC13032 by deleting four genes thrB, metB, mcbR and Ncgl2640, and six genes metK, vgb, lysCm, homm, metX and metY were overexpressed in HW104 in different combinations, forming strains HW104/pJYW-4-metK-vgb, HW104/pJYW-4-SAM2C-vgb, HW104/pJYW-4-metK-vgb-metYX, and HW104/pJYW-4-metK-vgb-metYX-homm-lysCm. Fermentation experiments showed that HW104/pJYW-4-metK-vgb produced more S-adenosyl-l-methionine than other strains, and the yield achieved 196.7 mg/L (12.15 mg/g DCW) after 48 h. The results demonstrate the potential application of C. glutamicum for production of S-adenosyl-l-methionine without addition of l-methionine.  相似文献   

9.
Wild-type Corynebacterium glutamicum was metabolically engineered to convert glucose and mannose into guanosine 5′-diphosphate (GDP)-l-fucose, a precursor of fucosyl-oligosaccharides, which are involved in various biological and pathological functions. This was done by introducing the gmd and wcaG genes of Escherichia coli encoding GDP-d-mannose-4,6-dehydratase and GDP-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase, respectively, which are known as key enzymes in the production of GDP-l-fucose from GDP-d-mannose. Coexpression of the genes allowed the recombinant C. glutamicum cells to produce GDP-l-fucose in a minimal medium containing glucose and mannose as carbon sources. The specific product formation rate was much higher during growth on mannose than on glucose. In addition, the specific product formation rate was further increased by coexpressing the endogenous phosphomanno-mutase gene (manB) and GTP-mannose-1-phosphate guanylyl-transferase gene (manC), which are involved in the conversion of mannose-6-phosphate into GDP-d-mannose. However, the overexpression of manA encoding mannose-6-phosphate isomerase, catalyzing interconversion of mannose-6-phosphate and fructose-6-phosphate showed a negative effect on formation of the target product. Overall, coexpression of gmd, wcaG, manB and manC in C. glutamicum enabled production of GDP-l-fucose at the specific rate of 0.11 mg g cell?1 h?1. The specific GDP-l-fucose content reached 5.5 mg g cell?1, which is a 2.4-fold higher than that of the recombinant E. coli overexpressing gmd, wcaG, manB and manC under comparable conditions. Well-established metabolic engineering tools may permit optimization of the carbon and cofactor metabolisms of C. glutamicum to further improve their production capacity.  相似文献   

10.
Tan Y  Xu D  Li Y  Wang X 《Plasmid》2012,67(1):44-52
Bacillus subtilis sacB gene with its 463 bp upstream region including its native promoter has been used for marker-free gene deletion in Corynebacterium glutamicum, but the role of this upstream region is not clear. In this study, it was demonstrated that the upstream region of sacB failed to efficiently promote its expression in C. glutamicum, and the native promoter of sacB is weak in C. glutamicum. The expression level of sacB under its native promoter in C. glutamicum is not high enough for cells to confer sucrose sensitivity. Therefore, a new promoter PlacM and a novel vector pDXW-3 were constructed. PlacM is 18 times stronger than the native promoter of sacB in C. glutamicum. The pDXW-3 contains B. subtilissacB with the PlacM fused at the 5′-end, a general Escherichia coli replicon oriE for easy cloning, a kanamycin resistance marker for selection, and a multiple unique restriction sites for XhoI, NotI, EagI, SalI, SacI, BamHI, and NheI, respectively. By using pDXW-3, the aceE gene in the chromosome of C. glutamicum was deleted. This sacB-based system should facilitate gene disruption and allelic exchange by homologous recombination in many bacteria.  相似文献   

11.
12.
l-Valine biosynthesis was analysed by comparing different plasmids in pyruvate-dehydrogenase-deficient Corynebacterium glutamicum strains in order to achieve an optimal production strain. The plasmids contained different combinations of the genes ilvBNCDE encoding for the l-valine forming pathway. It was shown that overexpression of the ilvBN genes encoding acetolactate synthase is obligatory for efficient pyruvate conversion and to prevent l-alanine as a by-product. In contrast to earlier studies, overexpression of ilvE encoding transaminase B is favourable in pyruvate-dehydrogenase-negative strains. Its amplification enhanced l-valine formation and avoided extra- and intracellular accumulation of ketoisovalerate.  相似文献   

13.
14.
Corynebacterium glutamicum, an established microbial cell factory for the biotechnological production of amino acids, was recently genetically engineered for aerobic succinate production from glucose in minimal medium. In this work, the corresponding strains were transformed with plasmid pVWEx1-glpFKD coding for glycerol utilization genes from Escherichia coli. This plasmid had previously been shown to allow growth of C. glutamicum with glycerol as sole carbon source. The resulting strains were tested in minimal medium for aerobic succinate production from glycerol, which is a by-product in biodiesel synthesis. The best strain BL-1/pVWEx1-glpFKD formed 79 mM (9.3 g l−1) succinate from 375 mM glycerol, representing 42% of the maximal theoretical yield under aerobic conditions. A specific succinate production rate of 1.55 mmol g−1 (cdw) h−1 and a volumetric productivity of 3.59 mM h−1 were obtained, the latter value representing the highest one currently described in literature. The results demonstrate that metabolically engineered strains of C. glutamicum are well suited for aerobic succinate production from glycerol.  相似文献   

15.
In Corynebacterium glutamicum, acetohydroxy acid synthase (AHAS, encoded by ilvBN) is regulated by the end products in biosynthesis pathway, which catalyzes the first common reaction in the biosynthesis of branched-chain amino acids (BCAAs). In this study, conserved A42, A89 and K136 residues in AHAS regulatory subunit were chosen for site-directed mutagenesis, and the resulting mutations A42V, A89V and K136E exhibited higher resistance to inhibition by BCAAs than wild type AHAS. Furthermore, double-mutation was carried out on A42V, A89V and K136E mutations. Expectedly, A42V-A89V mutation exhibited nearly complete resistance to inhibition by all three BCAAs, which retained above 93% enzyme activity even at 10 mM. Strains were further studied to investigate the effects of over-expressing different mutant ilvBN on the biosynthesis of BCAAs. It was found that production of BCAAs was increased with the increase of resistance to BCAAs. However, the increase of isoleucine and leucine was slower than valine which showed a significant increase (up to 86.30 mM). Furthermore, strains harboring plasmids with different mutant ilvBN could significantly decrease production of alanine (main byproduct). This work gives additional understanding of roles of A42, A89 and K136 residues and makes the A42V, A89V, K136E and A42V-A89V mutations a good starting point for further development by protein engineering.  相似文献   

16.
We previously demonstrated the simplicity of oxygen-deprived Corynebacterium glutamicum to produce d-lactate, a primary building block of next-generation biodegradable plastics, at very high optical purity by introducing heterologous D-ldhA gene from Lactobacillus delbrueckii. Here, we independently evaluated the effects of overexpressing each of genes encoding the ten glycolytic enzymes on d-lactate production in C. glutamicum. We consequently show that while the reactions catalyzed by glucokinase (GLK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), phosphofructokinase (PFK), triosephosphate isomerase (TPI), and bisphosphate aldolase had positive effects on d-lactate productivity by increasing 98, 39, 15, 13, and 10 %, respectively, in 10 h reactions in minimal salts medium, the reaction catalyzed by pyruvate kinase had large negative effect by decreasing 70 %. The other glycolytic enzymes did not affect d-lactate productivity when each of encoding genes was overexpressed. It is noteworthy that all reactions associated with positive effects are located upstream of glycerate-1,3-bisphosphate in the glycolytic pathway. The d-lactate yield also increased by especially overexpressing TPI encoding gene up to 94.5 %. Interestingly, overexpression of PFK encoding gene reduced the yield of succinate, one of the main by-products of d-lactate production, by 52 %, whereas overexpression of GAPDH encoding gene increased succinate yield by 26 %. Overexpression of GLK encoding gene markedly increased the yield of dihydroxyacetone and glycerol by 10- and 5.8-fold in exchange with decreasing the d-lactate yield. The effect of overexpressing glycolytic genes was also evaluated in 80 h long-term reactions. The variety of effects of overexpressing each of genes encoding the ten glycolytic enzymes on d-lactate production is discussed.  相似文献   

17.
18.
The fed-batch culture system was employed to enhance production of α-ketoglutarate (α-KG) by the strainsof Corynebacterium glutamicum, whose genes encoding the key enzymes responsible for the biosynthesis of L-glutamate from α-KG were deleted. In a shake flask fermentation, C. glutamicum JH110 in which the 3 genes, gdh (encoding glutamate dehydrogenase), gltB (encoding glutamate synthase), and aceA (encoding isocitrate lyase) were disrupted showed the highest production of α-KG (12.4 g/L) compared to the strains JH102 (gdh mutant), JH103 (gltB mutant), and JH107 (gdh gltB double mutant). In the fed-batch cultures using a 5 L-jar fermenter, the strain JH107 produced more α-KG (19.5 g/L), but less glutamic acid (23.3 g/L) than those produced by the parent strain HH109, as well as JH102. The production of α-KG was significantly enhanced and the accumulation of glutamicacid was minimized by the ammonium-limited fed-batch cultures employing C. glutamicum JH107. Further improvement of α-KG production by the strain JH107 was achieved through the ammonium-limited fed-batch culture with the feeding of molasses, and the levels of α-KG and glutamic acid produced were 51.1 and 0.01 g/L, respectively.  相似文献   

19.
Currently, the majority of tools in synthetic biology have been designed and constructed for model organisms such as Escherichia coli and Saccharomyces cerevisiae. In order to broaden the spectrum of organisms accessible to such tools, we established a synthetic biological platform, called CoryneBrick, for gene expression in Corynebacterium glutamicum as a set of E. coli-C. glutamicum shuttle vectors whose elements are interchangeable with BglBrick standard parts. C. glutamicum is an established industrial microorganism for the production of amino acids, proteins, and commercially promising chemicals. Using the CoryneBrick vectors, we showed various time-dependent expression profiles of a red fluorescent protein. This CoryneBrick platform was also applicable for two-plasmid expression systems with a conventional C. glutamicum expression vector. In order to demonstrate the practical application of the CoryneBrick vectors, we successfully reconstructed the xylose utilization pathway in the xylose-negative C. glutamicum wild type by fast BglBrick cloning methods using multiple genes encoding for xylose isomerase and xylulose kinase, resulting in a growth rate of 0.11?±?0.004 h?1 and a xylose uptake rate of 3.35 mmol/gDW/h when 1 % xylose was used as sole carbon source. Thus, CoryneBrick vectors were shown to be useful engineering tools in order to exploit Corynebacterium as a synthetic platform for the production of chemicals by controllable expression of the genes of interest.  相似文献   

20.
An L-isoleucine-overproducing recombinant strain of E. coli, TVD5, was also found to overproduce L-valine. The L-isoleucine productivity of TVD5 was markedly decreased by addition of L-lysine to the medium. Introduction of a gene encoding feedback-resistant aspartokinase III increased L-isoleucine productivity and decreased L-valine by-production. The resulting strain accumulated 12 g/l L-isoleucine from 40 g/l glucose, and suppression of L-isoleucine productivity by L-lysine was relieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号