首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To study the effects of dehydroepiandrosterone sulfate (DHA-S) on placental steroid metabolism and maternal steroidal profiles at term, the following in vivo and in vitro experiments were performed. Two hundred mg of DHA-S was given to five pregnant women 30 minutes prior to delivery. After delivery, the placenta was collected and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and sulfatase activity was determined by measuring the rate of conversion of pregnenolone to progesterone and DHA-S to DHA. The amount of C21-delta 4-steroid in the placental tissue was measured by gas chromatography mass spectrometry (GC-MS) and compared with the control groups. The maternal serum concentration of several steroids was also measured by GC-MS before and after the administration of DHA-S. 3 beta-HSD activity in the placentae from the mothers who received DHA-S before delivery was significantly lower than in the controls. On the other hand, no significant change was observed in the activity of sulfatase. The serum concentration of progesterone (P) and 20 alpha-dihydro-P (20-P) before DHA-S loading decreased following the administration whereas estradiol (E), DHA, and androstenedione (A) levels increased. To study the direct effect of DHA-S and its related steroids on placental 3 beta-HSD activity, placental tissue samples were incubated with pregnenolone in vitro. Several other steroids were added simultaneously into the medium. It was observed that placental 3 beta-HSD activity was directly inhibited by DHA-S. These results indicate that DHA-S inhibits 3 beta-HSD activity in the placenta and subsequently causes a reduction in P and 20-P.  相似文献   

2.

Background  

In the rat, the maintenance of gestation is dependent on progesterone production from the corpora lutea (CL), which are under the control of pituitary, decidual and placental hormones. The luteal metabolism of progesterone during gestation has been amply studied. However, the regulation of progesterone synthesis and degradation during pseudopregnancy (PSP), in which the CL are mainly under the control of pituitary prolactin (PRL), is not well known. The objectives of this investigation were: i) to study the luteal metabolism of progesterone during PSP by measuring the activities of the enzymes 3beta-hydroxysteroid dehydrogenase (3betaHSD), involved in progesterone biosynthesis, and that of 20alpha-hydroxysteroid dehydrogenase (20alphaHSD), involved in progesterone catabolism; and ii) to determine the role of decidualization on progesterone metabolism in PSP.  相似文献   

3.
Testosterone biosynthesis by Leydig cells can be modulated by estradiol. This modulation appears to occur at the 17-hydroxylase and 17,20-desmolase stage. In this study we have examined the effects of estradiol and progesterone on the activities of the 17-hydroxylase (17-OH) and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) in rat ovarian tissue, to examine the hypothesis that estradiol may regulate these enzymes in the ovary as well as in the testis. Estradiol capsule implants produced a decrease in 17-OH activity (0.5 +/- 0.05 vs. 2.1 +/- 0.1 nmol/mg protein/min, mean +/- SEM, p less than 0.001), and an increase in 3 beta-HSD activity (15.5 +/- 0.9 vs 9.7 +/- 0.7 nmol/mg protein/min p less than 0.001). Progesterone injections produced a decrease in both 17-OH (0.9 +/- 0.1 vs. 2.3 +/- 0.2 p less than 0.005) and 3 beta-HSD (2.5 +/- .4 vs. 8.6 +/- 0.5; p less than 0.005) activities. We conclude that estradiol decreases 17-OH activity in the ovary as it does in the testis. This, coupled with an increase in 3 beta-HSD may explain the pre-ovulatory increase in progesterone seen in many species. Progesterone seems to decrease the steroidogenic activity of the ovarian tissue, perhaps offering an explanation for the gonadotropin resistance seen in corpus luteus bearing ovaries.  相似文献   

4.
5.
The effect of the lyotropic series of anions on the stability and renaturation of tetrameric 20 beta-hydroxysteroid dehydrogenase (17,20 beta,21-trihydroxysteroid:NAD+ oxidoreductase, EC 1.1.1.53) was investigated. The variations in enzymatic activity were correlated with the changes in protein fluorescence, circular dichroism, reactivity of histidine residues and molecular weight. High concentrations of salting-out anions (phosphate, citrate, sulphate) were found to stabilize the enzyme markedly and increase the renaturation yield of the urea-denatured enzyme. Phosphate, for instance, induced the highest stabilization at about 1.2 M and the maximum reactivation (66%) at 0.5 M. At low anion concentration (0.01 M), the reactivation was only 7%. The renaturation property of salting-out anions seems to be due to their stabilizing effect on the end-product, i.e., the assembled tetramer. Salting-in anions (perchlorate, thiocyanate, iodide) inactivated the enzyme. At moderate anion concentrations (no greater than 0.25 M) the activation, which occurred slowly, without tetramer dissociation and with minor modifications of enzyme conformation, was fully reversed by concentrated phosphate or by saturating concentrations of NADH. In contrast, the inactivation induced by high anion concentrations (1-2 M) was rapid, irreversible and linked to considerable modifications of enzyme conformation.  相似文献   

6.
7.
8.
The brains of rats and humans express the enzymes required for the synthesis of aldosterone from cholesterol, including the 3beta-steroid dehydrogenase that catalyzes the conversion of pregnenolone to progesterone in the pathway of adrenal steroid synthesis. Salt-induced hypertension in the Dahl inbred salt-sensitive (SS/jr) rat is associated with normal to low levels of circulating aldosterone, yet it is abrogated by the central infusion of mineralocorticoid receptor antagonists. To test the hypothesis that de novo synthesis of aldosterone in the brain has a pathophysiological role in the salt-induced hypertension of the SS rat, the 3beta-steroid dehydrogenase antagonist trilostane was infused continuously intracerebroventricularly or subcutaneously in two different cohorts of Dahl SS/jr rats, one female, the other male, during and after the development of salt-induced hypertension. The doses of trilostane used had no effect on blood pressure when infused subcutaneously. Animals receiving vehicle intracerebroventricularly experienced a 30- to 45-mmHg increase in systolic blood pressure measured by tail cuff. The intracerebroventricular, but not subcutaneous, infusion of 0.3 microg/h trilostane effectively blocked the increase in systolic blood pressure and reversed the hypertension produced by drinking 0.9% saline. Trilostane was equally effective in female and male rats. Weight gain, serum aldosterone and corticosterone concentrations, and behavior assessed subjectively and by elevated plus maze were unchanged by the trilostane treatment. These studies suggest that the synthesis in the brain of a mineralocorticoid receptor agonist, probably aldosterone, is responsible in part for the salt-induced hypertension of the inbred Dahl SS/jr rat.  相似文献   

9.
10.
S K Dey  Z Dickmann 《Steroids》1974,24(1):57-62
In previous studies (1–3), we have shown that Δ5 -3β-hydroxysteroid dehydrogenase (3β-HSD) activity in rat embryos begins on Day 4 of pregnancy (Day 1 = day of finding spermatozoa in the vagina), it peaks on Day 5, and sharply declines on Day 6. The present study investigated the presence of estradiol-17β-hydroxysteroid dehydrogenase (17β-HSD) in rat embryos recovered on Days 4, 5 and 6. The pattern of the 17β-HSD activity was similar to that of 3β-HSD. Thus, the present results strengthen our previous contention that rat morulae and blastocysts synthesize steroid hormones; moreover, the results suggest that one of the hormones synthesized is estrogen.  相似文献   

11.
Pig testicular 20 beta-hydroxysteroid dehydrogenase (20 beta-HSD) has also 3 alpha- and 3 beta-HSD (3 alpha/beta-HSD) activities. The purified 20 beta-HSD preparation from neonatal pig testes could catalyze the conversion of 5 alpha-dihydrotestosterone (5 alpha-DHT) in the presence of beta-NADPH to 5 alpha-androstane-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol at the ratio of 4:3, and the specific 3 alpha/beta-HSD activity of 20 beta-HSD for 5 alpha-DHT was about 10 or 15 times larger than the 20 beta-HSD activities for 17 alpha-hydroxypregn-4-ene-3,20-dione (17 alpha-hydroxyprogesterone) or progesterone, respectively. The result indicates that the testicular 20 beta-HSD has high 3 alpha(axial, 3R)- and 3 beta(equatorial, 3S)-HSD activity. The testicular 20 beta-HSD could catalyze the reversible conversion of various 5 alpha- or 5 beta-dihydrosteroids which have a 3-carbonyl or 3-hydroxyl group with beta-NADP(H) as the preferred cofactor. The enzyme transferred the 4-proS hydrogen of NADPH to the 5 alpha-DHT for both 3 alpha- and 3 beta-hydroxylation and it was the same as the 20 beta-hydroxylation of 17 alpha-hydroxyprogesterone. Although the 3 alpha/beta-HSD activity has been known to be present in 3 alpha,20 beta-HSD of Streptomyces hydrogenans, the enzymological properties for 3 alpha/beta-HSD activity catalyzed by testicular 20 beta-HSD were different from the properties for 3 alpha/beta-HSD activity catalyzed by prokaryotic 3 alpha, 20 beta-HSD with respect to the specificity of the catalytic reaction and the cofactor requirement.  相似文献   

12.
To better understand the changes that occur following exposure to peroxisome proliferators, we utilized mRNA differential display and microarray to screen for peroxisome proliferator target genes apart from those involved in lipid metabolism in male C57B6 mice by using the ubiquitous plasticizer, di(2-ethylhexyl)phthalate (DEHP). One noted change was the dose-dependent suppression of the mouse hormone metabolizing 3 beta-hydroxysteroid dehydrogenase V (HSD3b5), which is specifically expressed in the male mouse liver. Northern analysis showed that HSD3b5 mRNA levels decreased dramatically upon one-day exposure to 2.0% dietary DEHP, and were nearly undetectable by one week of treatment. Food restriction also significantly suppressed HSD3b5 expression; however, in this case the suppression was delayed and to a lesser extent. Another mouse 3 beta-hydroxysteroid dehydrogenase, HSD3b4, predominantly expressed in kidneys, was also regulated by DEHP and food restriction. The sex-specific gene, HSD3b5, was affected more by DEHP and food restriction than the tissue-specific gene, HSD3b4.  相似文献   

13.
14.
Ketoconazole, an orally-active, broad spectrum mycotic agent, was shown to inhibit in vitro human placental microsomal aromatase but was without effect on 3 beta-hydroxysteroid dehydrogenase-isomerase (3 beta-HSD-I) and 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) activities. The Km of placental aromatase for testosterone was 30 +/- 1.1 nmol/l (mean +/- SEM, n = 6). Inhibition (determined by Lineweaver-Burk plot) was non-competitive with respect to substrate with a Ki value of 3.0 +/- 1.4 mumol/l (mean +/- SEM, n = 6). Ketoconazole was without effect on the 3 beta-HSD-I and 17 beta-HSD activities when using [3H] pregnenolone and [3H] oestradiol, respectively, as substrates. Since ketoconazole is known to inhibit cytochrome P-450-dependent enzyme reactions, the results of the present study support the contention that cytochrome P-450 is involved in the aromatisation process.  相似文献   

15.
The role of progesterone in the initiation of parturition in the sheep is unclear. Whether a decrease in plasma progesterone is the essential prerequisite for the initiation of parturition or whether other factors also maintain uterine quiescence until delivery is not known. The effect of withdrawal of progesterone on the initiation of parturition has been investigated by intravenous administration of trilostane, a 3 beta-hydroxysteroid dehydrogenase delta 5-4 isomerase inhibitor, to late pregnant sheep. Twenty-five or 100 mg trilostane caused a precipitous decrease in plasma progesterone to about 30% of preinjection levels. Progesterone remained depressed for up to 7 days after treatment. 13,14-Dihydro-15-keto-prostaglandin F2 alpha (PGFM) became elevated between 7 and 36 h after trilostane injection but gradually returned to preinjection levels during the subsequent 36 h, at a time when plasma progesterone was still depressed. Four of 11 animals treated with 100 or 200 mg trilostane aborted prematurely at a time when plasma PGFM was maximal and plasma progesterone minimal. There were no consistent changes in plasma estradiol-17 beta or ovine placental lactogen concentrations after treatment with trilostane. It is suggested that a decrease in plasma progesterone will cause a transient increase in plasma PGFM concentrations which can lead to the premature initiation of parturition. In some instances the myometrium does not appear to respond to the elevated PGFM concentrations even when the estrogen:progesterone ratio is elevated by a decrease in plasma progesterone.  相似文献   

16.
We report here the formation of a microemulsion with non-ionic detergents and cyclohexane. The activity and stability of 20 beta-hydroxysteroid dehydrogenase solubilized in all water systems and in microemulsions of Nonidet P-40: Triton X-35/water/cyclohexane was investigated. In the microemulsion the activity depended on the molecular ratio of water to surfactant (Wo); maximal activity was obtained at Wo of 8.4. The stability in the microemulsion was higher at Wo = 11.75 i.e. the enzyme, retained about 50% of activity after eight days.  相似文献   

17.
The enzyme 17beta-hydroxysteroid dehydrogenase is required for the synthesis and 11beta-hydroxysteroid dehydrogenase for the regulation of androgens in rat Leydig cells. This histochemical study describes ontogenetic changes in distribution and intensity of these enzymes in Leydig cells from postnatal day (pnd) 1-90. Using NAD or NADP as the cofactor, 17beta-hydroxysteroid dehydrogenase (substrate: 5-androstene-3beta,17beta-diol) peaks were observed on pnd 16 for fetal Leydig cells and on pnd 19 and 37 for adult Leydig cells. Between pnd 13 and 25 the fetal cells showed a higher intensity for the 17beta-enzyme than the adult cells; more fetal Leydig cells were stained with NADP, whereas more adult cells were positive with NAD on pnd 13 and 16. A nearly identical distribution of 11beta-hydroxysteroid dehydrogenase (substrate: corticosterone) was observed with NAD or NADP as the cofactor; the reaction was present from pnd 31 onwards, first in a few adult Leydig cells and later in almost all these cells homogeneously. The ontogenetic curves of the two enzymes show an inverse relationship. To conclude: (1) Generally, a stronger reaction for 17beta-hydroxysteroid dehydrogenase is shown with NAD as cofactor than with NADP; using NADP, fetal Leydig cells show a stronger staining than adult Leydig cells. (2) The data possibly support the notion of a new isoform of 11beta-hydroxysteroid dehydrogenase in addition to types 1 and 2.  相似文献   

18.
19.
The NADH-dependent steroid metabolizing enzyme 3 alpha, 20 beta-hydroxysteroid dehydrogenase (EC 1.1.1.53), from Streptomyces hydrogenans, has been crystallized in the active tetrameric form. Single crystals (approximately 0.75 X 0.40 X 0.40 mm) of square bipyramid shape have been grown reproducibly at room temperature in the presence of excess NADH. Diffraction experiments have been performed at the Cornell High Energy Synchrotron Source. The space group is P43212 or its enantiomorph, and the cell dimensions are a = 106.0(5) A and c = 204(1) A. The asymmetric unit is a tetramer of identical subunits of approximately 25,000 daltons each. The specific volume is 2.8 A3/dalton. A native data set at 2.5-A resolution has been collected. Two potential heavy atom derivatives, with K2Pt(CN)4 and KAu(CN)2, have been identified from the diffraction photographs.  相似文献   

20.
The 11beta-hydroxysteroid dehydrogenase (11betaHSD) type 1 (11betaHSD1) enzyme is an NADP+-dependent oxidoreductase, usually reductase, of major glucocorticoids. The NAD+-dependent type 2 (11betaHSD2) enzyme is an oxidase that inactivates cortisol and corticosterone, conferring extrinsic specificity of the mineralocorticoid receptor for aldosterone. We reported that addition of a reducing agent to renal homogenates results in the monomerization of 11betaHSD2 dimers and a significant increase in NAD+-dependent corticosterone conversion. Estrogenic effects on expression, dimerization, and activity of the kidney 11betaHSD1 and -2 enzymes are described herein. Renal 11betaHSD1 mRNA and protein expressions were decreased to very low levels by estradiol (E2) treatment of both intact and castrated male rats; testosterone had no effect. NADP+-dependent enzymatic activity of renal homogenates from E2-treated rats measured under nonreducing conditions was less than that of homogenates from intact animals. Addition of 10 mM DTT to aliquots from these same homogenates abrogated the difference in NADP+-dependent activity between E2-treated and control rats. In contrast, 11betaHSD2 mRNA and protein expressions were significantly increased by E2 treatment. There was a marked increase in the number of juxtamedullary proximal tubules stained by the antibody against 11betaHSD2 after the administration of E2. Notwithstanding, neither the total corticosterone and 11-dehydrocorticosterone excreted in the urine nor their ratio differed between E2- and vehicle-treated rats. NAD+-dependent enzymatic activity in the absence or presence of a reducing agent demonstrated that the increase in 11betaHSD2 protein was not associated with an increase in in vitro activity unless the dimers were reduced to monomers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号