首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inflammatory response is a highly co-ordinated process involving multiple factors acting in a complex network as stimulators or inhibitors. Upon infection, the sequential release of exogenous agents (e.g. bacterial and viral products) and induction of endogenous mediators (e.g. cytokines and chemokines) contribute to the recruitment of circulating leukocytes to the inflamed tissue. Microbial products trigger multiple cell types to release cytokines, which in turn are potent inducers of chemokines. Primary cytokines act as endogenous activators of the immune response, whereas inducible chemokines act as secondary mediators to attract leukocytes. Interaction between exogenous and endogenous mediators thus enhances the inflammatory response. In this review, the synergistic interaction between cytokines to induce chemokine production and the molecular mechanisms of the cooperation amongst co-induced chemokines to further increase leukocyte recruitment to the site of inflammation are discussed.  相似文献   

2.
In our previous study rats immunized with bovine retinal interphotoreceptor retinoid-binding protein (IRBP) were found to develop inflammation in the eye and the pineal gland. This inflammatory disease was distinct in several aspects from experimental autoimmune uveoretinitis (EAU) induced by the retinal S-antigen (S-Ag). The current study examined the adoptive transfer of IRBP-induced EAU. We established that lymphocytes from IRBP immunized donor rats were capable of transferring EAU after in vitro stimulation with either IRBP (lymph node or spleen cells) or concanavalin A (spleen cells only). Recipients of these cells developed uveoretinitis and pinealitis identical to the actively induced disease. As compared with the S-Ag system, recipients of IRBP sensitized cells developed disease earlier, and smaller numbers of cells were needed to transfer EAU. Development of inflammation was directly related to a cellular response to the specific retinal antigen used for sensitization. Moreover, the unique nature of ocular inflammation was reestablished in the IRBP system: high proportions of polymorphonuclear leukocytes were found in the inflamed tissue of certain recipients despite a lack of a humoral response to the specific antigen. In contrast to the eye, only mononuclear leukocytes comprised the inflammation in the pineal gland.  相似文献   

3.
The in vivo function of Th cell subsets is largely dependent on the ability of differentiated CD4+ T cells to be recruited to specific sites and secrete restricted sets of cytokines. In this paper we demonstrate that Th1 and Th2 cells secrete discrete patterns of chemokines, small m.w. cytokines that function as chemoattractants in inflammatory reactions. Th2 cells secrete macrophage-derived chemokine and T cell activation gene 3, and acquisition of this pattern of expression is dependent on Stat6. In contrast, Th1 cells secrete lymphotactin and RANTES, though unlike IFN-gamma, expression of these chemokines is independent of Stat4. We further show that supernatants from activated Th2 cells preferentially induce the chemotaxis of Th2 over Th1 cells, corresponding with Stat6-dependent expression of CCR4 and CCR8 in Th2 cells. These data provide the basis for restricted and direct T cell-mediated cellular recruitment to sites of inflammation.  相似文献   

4.
Chronic inflammatory diseases are characterized by local tissue injury caused by immunocompetent cells, in particular CD4(+) T lymphocytes, that are involved in the pathogenesis of these disorders via the production of distinctive sets of cytokines. Here, we have characterized single CD4(+) T cells that infiltrate inflamed tissue taken from patients with psoriasis, Crohn's disease, rheumatoid arthritis, or allergic asthma. Results from a cytokine production and gene profile analysis identified a population of in vivo differentiatedretinoid-related orphan receptor gamma-expressing T cells, producing high levels of IL-17, that can represent up to 30% of infiltrating T lymphocytes. Activated Th17 cells produced IL-26, TNF-alpha, lymphotoxin-beta, and IL-22. IL-17 and IL-22 concentrations secreted by tissue infiltrating Th17 cells could reach up to 100 nM and were inversely correlated with the production of Th1- and Th2-associated cytokines. In addition, tissue-infiltrating Th17 cells are also characterized by high cell surface expression of CCR6, a chemokine receptor that was not expressed by Th1 and Th2 cells, isolated from the same lesions, and by the production of CCL20/MIP3alpha, a CCR6 ligand, associated with tissue infiltration. Culture supernatants of activated Th17 cells, isolated from psoriatic lesions, induced the expression of gene products associated with inflammation and abnormal keratinocyte differentiation in an IL-17 and IL-22-dependent manner. These results show that tissue-infiltrating Th17 cells contribute to human chronic inflammatory disease via the production of several inflammatory cytokines and the creation of an environment contributing to their migration and sequestration at sites of inflammation.  相似文献   

5.
Although the pathogenesis of periodontal disease (PD) is not well known, cytokines, chemotactic factors and inflammatory cells are certainly involved in the disease outcome. Here, we characterized the evolution of the PD induced by Actinobacillus actinomycetemcomitans in mice, showing that oral inoculation of these bacteria leads to the migration of leukocytes to periodontal tissues and marked alveolar bone resorption. We found the expression of pro-inflammatory and Th1-type cytokines including TNF-alpha, IFN-gamma and IL-12 in periodontal tissues after infection with A. actinomycetemcomitans, from the early stages after infection and throughout the course of the disease. Similar kinetics of expression were found for the chemokines CCL5, CCL4, CCL3 and CXCL10 and for the receptors CCR5 and CXCR3, all of them linked to the Th1-type pattern. The expression of the Th2-type mediators IL-10, CCL1 and their receptors CCR4 and CCR8 was detected only after 30 days of infection, determining a time-dependent mixed pattern of polarized immune response. The chemokine expression was correlated with the presence of polymorphonuclear leukocytes, macrophages, CD4 and CD8 lymphocytes, and B cells in the inflammatory infiltrate. Interestingly, during the predominance of the Th1-type response, a sharp increase in the number of inflammatory cells and intense bone loss was seen. By contrast, after the increased expression of Th2-type mediators, the number of inflammatory cells remained constant. Our data demonstrate that mice subjected to oral inoculation of A. actinomycetemcomitans represent a useful model for the study of PD. In addition, our results suggest that expression of cytokines and chemokines can drive the selective recruitment of leukocyte subsets to periodontal tissues, which could determine the stable or progressive nature of the lesion.  相似文献   

6.
Cytokines produced by activated macrophages and Th2 cells within the lung play a key role in asthma-associated airway inflammation. Additionally, recent studies suggest that the molecule CD40 modulates lung immune responses. Because airway epithelial cells can act as immune effector cells through the expression of inflammatory mediators, the epithelium is now considered important in the generation of asthma-associated inflammation. Therefore, the goal of the present study was to examine the effects of proinflammatory and Th2-derived cytokines on the function of CD40 in airway epithelia. The results show that airway epithelial cells express CD40 and that engagement of epithelial CD40 induces a significant increase in expression of the chemokines RANTES, monocyte chemoattractant protein (MCP-1), and IL-8 and the adhesion molecule ICAM-1. Cross-linking epithelial CD40 had no effect on expression of the adhesion molecule VCAM-1. The proinflammatory cytokines TNF-alpha and IL-1beta and the Th2-derived cytokines IL-4 and IL-13 modulated the positive effects of CD40 engagement on inflammatory mediator expression in airway epithelial cells. Importantly, CD40 ligation enhanced the sensitivity of airway epithelial cells to the effects of TNF-alpha and/or IL-1beta on expression of RANTES, MCP-1, IL-8, and VCAM-1. In contrast, neither IL-4 nor IL-13 modified the effects of CD40 engagement on the expression of RANTES, MCP-1, IL-8, or VCAM-1; however, both IL-4 and IL-13 attenuated the effects of CD40 cross-linking on ICAM-1 expression. Together, these findings suggest that interactions between CD40-responsive airway epithelial cells and CD40 ligand+ leukocytes, such as activated T cells, eosinophils, and mast cells, modulate asthma-associated airway inflammation.  相似文献   

7.
Th1 and Th17 cells are characterized by their expression of IFN-gamma or IL-17, respectively. The finding of Th cells producing both IL-17 and IFN-gamma suggested, however, that certain Th cells may modify their selective cytokine expression. In this study, we examined changes in cytokine expression in an experimental system in which polarized Th1 or Th17 cells specific against hen egg lysozyme induce ocular inflammation in recipient mice expressing hen egg lysozyme in their eyes. Whereas only IFN-gamma was expressed in eyes of Th1 recipient mice, substantial proportions of donor cells expressed IFN-gamma or both IFN-gamma and IL-17 in Th17 recipient eyes. The possibility that nonpolarized cells in Th17 preparations were responsible for expression of IFN-gamma or IFN-gamma/IL-17 in Th17 recipient eyes was contradicted by the finding that the proportions of such cells were larger in recipients of Th17 preparations with 20-25% nonpolarized cells than in recipients of 35-40% preparations. Moreover, whereas incubation in vitro of Th1 cells with Th17-polarizing mixture had no effect on their phenotype, incubation of Th17 with Th1-polarizing mixture, or in the absence of cytokines, converted most of these cells into IFN-gamma or IFN-gamma/IL-17-expressing cells. In addition, Th17 incubated with the Th1 mixture expressed T-bet, whereas no ROR-gamma t was detected in Th1 incubated with Th17 mixture. Thus, polarized Th1 cells retain their phenotype in the tested systems, whereas Th17 may switch to express IFN-gamma or IFN-gamma/IL-17 following activation in the absence of cytokines, or exposure to certain cytokine milieus at the inflammation site or in culture.  相似文献   

8.
Proinflammatory responses generated by T helper type 1 (Th1) cells may contribute significantly to immune-mediated lung injury. We describe a murine model of Th1 cell-induced lung injury in which adoptive transfer of alloreactive Th1 cells produces pulmonary inflammation characterized by mononuclear cell vasculitis, alveolitis, and interstitial pneumonitis. To investigate the link between activation of Th1 cells in the lung and inflammatory cell recruitment, we characterized cytokine and chemokine mRNA expression in Th1 cells activated in vitro and in lung tissue after adoptive transfer of Th1 cells. Activated Th1 cells per se express mRNA for interferon (IFN)-gamma and several members of the tumor necrosis factor family as well as the C-C chemokine receptor-5 ligands regulated on activation normal T cells expressed and secreted and macrophage inflammatory protein-1alpha and -1beta. Additional chemokine genes were induced in the lung after Th1 cell administration, most notably IFN-gamma-inducible protein (IP-10) and monokine induced by IFN-gamma (MIG). Remarkable increases in IP-10- and MIG-immunoreactive proteins were present in inflammatory foci lung and identified in macrophages, endothelium, bronchial epithelium, and alveolar structures. The findings suggest that IFN-gamma-inducible chemokines are an important mechanism for amplifying inflammation initiated by Th1 cells in the lung.  相似文献   

9.
The role of Th17 lymphocytes in immunopathogenic processes has been well established, but little is known about their basic cell features. In this study, we compared polarized Th1 and Th17 for key biological activities related to pathogenicity and trafficking. Th1 and Th17 lineages were derived from TCR-transgenic CD4 murine cells specific against hen egg lysozyme. When adoptively transferred into mice expressing hen egg lysozyme in their eyes, both Th1 and Th17 induced ocular inflammation but with slight differences in histological pathology. PCR analysis revealed selective expression of IFN-gamma or IL-17 in eyes of Th1 or Th17 recipients, respectively. Additionally, Th1 and Th17 were found to differ in three other key activities: 1) Th17 cells were inferior to Th1 cells in their capacity to trigger massive lymphoid expansion and splenomegaly; 2) the proportion of Th1 cells among infiltrating cells in inflamed recipient eyes declined rapidly, becoming a minority by day 7, whereas Th17 cells remained in the majority throughout this period; and 3) remarkable differences were noted between Th1 and Th17 cells in their expression of certain surface markers. In particular, reactivated Th1 expressed higher levels of CD49d and alpha(4)beta(7) (mucosal homing) in vitro and higher levels of CXCR3 (Th1 trafficking) in vivo. Reactivated Th17, however, expressed higher levels of alpha(E)beta(7) (epithelial tissue homing) and CD38 (activation, maturation and trafficking) in vitro, but in vivo Th17 expressed higher levels of alpha(4)beta(7) and CCR6 (lymphocyte trafficking). These data reveal that Th1 and Th17 cells differ in several key biological activities influencing migration and pathogenic behavior during inflammatory disease.  相似文献   

10.
Allergic rhinitis is a chronic inflammatory disease orchestrated by Th2 lymphocytes. Src homology 2 domain-containing protein tyrosine phosphatase (SHP)-1 is known to be a negative regulator in the IL-4α/STAT-6 signaling pathway of the lung. However, the role of SHP-1 enzyme and its functional relationship with Th2 and Th1 cytokines are not known in the nasal airway. In this study, we aimed to study the nasal inflammation as a result of SHP-1 deficiency in viable motheaten (mev) mice and to investigate the molecular mechanisms involved. Cytology, histology, and expression of cytokines and chemokines were analyzed to define the nature of the nasal inflammation. Targeted gene depletion of Th1 (IFN-γ) and Th2 (IL-4 and IL-13) cytokines was used to identify the critical pathways involved. Matrix metalloproteinases (MMPs) were studied to demonstrate the clearance mechanism of recruited inflammatory cells into the nasal airway. We showed here that mev mice had a spontaneous allergic rhinitis-like inflammation with eosinophilia, mucus metaplasia, up-regulation of Th2 cytokines (IL-4 and IL-13), chemokines (eotaxin), and MMPs. All of these inflammatory mediators were clearly counter-regulated by Th2 and Th1 cytokines. Deletion of IFN-γ gene induced a strong Th2-skewed inflammation with transepithelial migration of the inflammatory cells. These findings suggest that SHP-1 enzyme and Th2/Th1 paradigm may play a critical role in the maintenance of nasal immune homeostasis and in the regulation of allergic rhinitis.  相似文献   

11.
Profiling of immune mediators in both nasal and plasma samples is a common approach to the study of pathogenesis in respiratory viral infections. Nevertheless, mucosal immunity functions essentially independently from peripheral immunity. In our study, 27 immune mediators were profiled in parallel, in nasopharyngeal aspirates (NPAs) and plasma from 22 < 2 year-old children with a severe respiratory syncytial virus infection involving the lower respiratory tract, using a multiplex assay. NPAs from 22 children with innocent heart murmurs were used as controls. Differences in mediator concentrations between NPAs from patients and controls were assessed using the Mann-Whitney test. Ratios of innate/adaptive-immunity mediators, Th2/Th1-cytokines and CXC/CC-chemokines were calculated for NPAs and plasmas and differences were assessed using the Wilcoxon test. Associations mediators, severity and leukocyte counts were studied using the Spearman-Karber test. Results: increased levels of Th1 cytokines (IL-1beta, IL-2, IL-12p70, IFNgamma, TNFalpha), Th2 cytokines (IL-13, IL-4, IL-6, IL-10), chemokines (IP-10, IL-8, MIP1alpha, MIP-1beta), growth factors (FGFb, PDGFbb, GCSF) and IL-1RA, IL-17 were observed in patient NPAs in comparison to controls. In the relative comparisons between patient NPAs and plasmas, a predominance of innate immunity mediators, Th2 cytokines and CXC chemokines was found at the mucosal level. No association between the level of each mediator in NPAs and plasma was found. In plasma, PDGFbb, VEGF, MIP-1alpha, IL-8 correlated with severity; RANTES and IL-6 correlated with leukocyte counts. Conclusions: acute respiratory syncytial virus infection induces a relative predominance of innate-immunity mediators, Th2 cytokines and CXC chemokines in the mucosal compartment in infected children.  相似文献   

12.
Adoptive transfer of diabetogenic CD4 Th1 T cell clones into young NOD or NOD.scid recipients rapidly induces onset of diabetes and also provides a system for analysis of the pancreatic infiltrate. Although many reports have suggested a role for macrophages in the inflammatory response, there has been little direct characterization of macrophage activity in the pancreas. We showed previously that after migration to the pancreas, diabetogenic CD4 T cell clones produce a variety of inflammatory cytokines and chemokines, resulting in the recruitment of macrophages. In this study, we investigated mechanisms by which macrophages are recruited and activated by T cells. Analysis of infiltrating cells after adoptive transfer by the diabetogenic T cell clone BDC-2.5 indicates that large numbers of cells staining for both F4/80 and CD11b are recruited into the pancreas where they are activated to make IL-1beta, TNF-alpha, and NO, and express the chemokine receptors CCR5, CXCR3, and CCR8. Diabetogenic CD4 T cell clones produce several inflammatory chemokines in vitro, but after adoptive transfer we found that the only chemokine that could be detected ex vivo was CCL1. These results provide the first evidence that CCR8/CCL1 interaction may play a role in type 1 diabetes through macrophage recruitment and activation.  相似文献   

13.
14.
15.
16.
Inflammation is characterized by the recruitment of leukocytes from the vasculature. Recent studies have implicated chemokines as an important class of mediators that function principally to stimulate leukocyte recruitment, and in some cases, leukocyte activity. There are four defined chemokine subfamilies based on their primary structure, CXC, CC, C and CX3C. Members of the CC chemokine subfamily, such as monocyte chemoattractant protein 1 (MCP-1), are chemotactic for monocytes and other leukocyte subsets. The studies described below focus on the expression of MCP-1 in vitro and in vivo in an osseous environment. These studies indicate that MCP-1 is typically not expressed in normal bone or by normal osteoblasts in vitro. Upon stimulation by inflammatory mediators, MCP-1 is up-regulated. This expression is temporally and spatially associated with the recruitment of monocytes in both osseous inflammation and during developmentally regulated bone remodelling. Furthermore, exogenous MCP-1 applied to inflamed bone enhances the recruitment of monocytes. Because monocytes produce factors that influence osseous metabolism, including but not limited to prostglandins, platelet-derived growth factor, interleukin-1 or tumor necrosis factor, chemokines that initiate their recruitment are likely to be highly important.  相似文献   

17.
Interleukin 4 (IL-4) plays a central role in the orchestration of Type 2 immunity. During T cell activation in the lymph node, IL-4 promotes Th2 differentiation and inhibits Th1 generation. In the inflamed tissue, IL-4 signals promote innate and adaptive Type-2 immune recruitment and effector function, positively amplifying the local Th2 response. In this study, we identify an additional negative regulatory role for IL-4 in limiting the recruitment of Th1 cells to inflamed tissues. To test IL-4 effects on inflammation subsequent to Th2 differentiation, we transiently blocked IL-4 during ongoing dermal inflammation (using anti-IL-4 mAb) and analyzed changes in gene expression. Neutralization of IL-4 led to the upregulation of a number of genes linked to Th1 trafficking, including CXCR3 chemokines, CCL5 and CCR5 and an associated increase in IFNγ, Tbet and TNFα genes. These gene expression changes correlated with increased numbers of IFNγ-producing CD4+ T cells in the inflamed dermis. Moreover, using an adoptive transfer approach to directly test the role of IL-4 in T cell trafficking to the inflamed tissues, we found IL-4 neutralization led to an early increase in Th1 cell recruitment to the inflamed dermis. These data support a model whereby IL-4 dampens Th1-chemokines at the site of inflammation limiting Th1 recruitment. To determine biological significance, we infected mice with Leishmania major, as pathogen clearance is highly dependent on IFNγ-producing CD4+ T cells at the infection site. Short-term IL-4 blockade in established L. major infection led to a significant increase in the number of IFNγ-producing CD4+ T cells in the infected ear dermis, with no change in the draining LN. Increased lymphocyte influx into the infected tissue correlated with a significant decrease in parasite number. Thus, independent of IL-4''s role in the generation of immune effectors, IL-4 attenuates lymphocyte recruitment to the inflamed/infected dermis and limits pathogen clearance.  相似文献   

18.
Acupuncture is widely used for pain treatment in patients with osteoarthritis or low back pain, but molecular mechanisms remain largely enigmatic. In the early phase of inflammation neutrophilic chemokines direct opioid-containing neutrophils in the inflamed tissue and stimulate opioid peptide release and antinociception. In this study the molecular pathway and neuroimmune connections in complete Freund''s adjuvant (CFA)-induced hind paw inflammation and electroacupuncture for peripheral pain control were analyzed. Free moving Wistar rats with hind paw inflammation were treated twice with electroacupuncture at GB30 (Huan Tiao - gall bladder meridian) (day 0 and 1) and analyzed for mechanical and thermal nociceptive thresholds. The cytokine profiles as well as the expression of opioid peptides were quantified in the inflamed paw. Electroacupuncture elicited long-term antinociception blocked by local injection of anti-opioid peptide antibodies (beta-endorphin, met-enkephalin, dynorphin A). The treatment altered the cytokine profile towards an anti-inflammatory pattern but augmented interferon (IFN)-gamma and the chemokine CXCL10 (IP-10: interferon gamma-inducible protein) protein and mRNA expression with concomitant increased numbers of opioid peptide-containing CXCR3+ macrophages. In rats with CFA hind paw inflammation without acupuncture repeated injection of CXCL10 triggered opioid-mediated antinociception and increase opioid-containing macrophages. Conversely, neutralization of CXCL10 time-dependently decreased electroacupuncture-induced antinociception and the number of infiltrating opioid peptide-expressing CXCR3+ macrophages. In summary, we describe a novel function of the chemokine CXCL10 - as a regulator for an increase of opioid-containing macrophages and antinociceptive mediator in inflammatory pain and as a key chemokine regulated by electroacupuncture.  相似文献   

19.
Wound healing requires a complex series of reactions and interactions among cells and their mediators, resulting in an overlapping series of events including coagulation, inflammation, epithelialization, formation of granulation tissue, matrix and scar formation. Cytokines and chemokines promote inflammation, angiogenesis, facilitate the passage of leukocytes from circulation into the tissue, and contribute to the regulation of epithelialization. They integrate inflammatory events and reparative processes that are important for modulating wound healing. Thus both cytokines and chemokines are important targets for therapeutic intervention. The chemokine-mediated regulation of angiogenesis is highly sophisticated, fine tuned, and involves pro-angiogenic chemokines, including CXCL1-3, 5-8 and their receptors, CXCR1 and CXCR2. CXCL1 and CXCR2 are expressed in normal human epidermis and are further induced during the wound healing process of human burn wounds, especially during the inflammatory, epithelialization and angiogenic processes. Human skin explant studies also show CXCR2 is expressed in wounded keratinocytes and Th/1/Th2 cytokine modulation of CXCR2 expression correlates with proliferation of epidermal keratinocytes. Murine excision wound healing, chemical burn wounds and skin organ culture systems are valuable models for examining the role of inflammatory cytokines and chemokines in wound healing.  相似文献   

20.
The immune response of atopic individuals against allergens is characterized by increased levels of Th2 cytokines and chemokines. However, the way in which the cytokine/chemokine profile is matched to the type of invading allergen, and why these profiles sometimes derail and lead to disease, is not well understood. We recently demonstrated that pollen modulates dendritic cell (DC) function in a way that results in an enhanced capacity to initiate Th2 responses in vitro. Here, we examined the effects of aqueous birch pollen extracts (Bet.-APE) on chemokine receptor expression and chemokine production by human monocyte-derived DCs. Bet.-APE strongly induced expression and function of CXCR4 and reduced CCR1 and CCR5 expression on immature DCs. In addition, DC treatment with Bet.-APE significantly reduced LPS-induced production of CXCL10/IP-10, CCL5/RANTES; induced CCL22/macrophage-derived chemokine; and did not significantly change release of CCL17/thymus and activation-regulated chemokine. At a functional level, Bet.-APE increased the capacity of LPS-stimulated DCs to attract Th2 cells, whereas the capacity to recruit Th1 cells was reduced. Bet.-APE significantly and dose-dependently enhanced intracellular cAMP, suggesting that water-soluble factors from pollen grains bind a G(alphas)-protein-coupled receptor. E(1)-Phytoprostanes were identified to be one player in the Th2-polarizing potential of aqueous pollen extracts. In summary, our results demonstrate that pollen itself releases regulatory mediators which generate a Th2-promoting micromilieu with preferential recruitment of Th2 cells to the site of pollen exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号