首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Thirty accessions of domesticated (Lens culinaris ssp. culinaris) and wild (L. culinaris ssp. orientalis, L. culinaris ssp. odemensis, L. nigricans ssp. ervoides and L. nigricans ssp. nigricans) lentil were evaluated for restriction fragment length polymorphisms (RFLPs) using ten relative low-copy-number probes selected from partial genomic and cDNA libraries of lentil. Nei's average gene diversity was used as a measure of genetic variability for restriction fragment lengths within subspecies and a dendrogram was constructed from genetic distance estimates between subspecies. The wild lentils L. culinaris ssp. orientalis and L. culinaris ssp. odemensis showed the greatest variability for restriction fragment lengths and were closely positioned to domesticated lentil in the dendrogram. Little variability for restriction fragment lengths was observed within accessions of L. nigricans ssp. ervoides and L. nigricans ssp. nigricans. This observation is consistent with a previously published proposal that nigricans may have been independently domesticated. Estimates of genetic variability based on RFLPs tended to be greater than estimates from isozymes.  相似文献   

2.
Summary In segregating populations, large numbers of individuals are needed to detect linkage between markers, such as restriction fragment length polymorphisms (RFLPs), and quantitative trait loci (QTL), limiting the potential use of such markers for detecting linkage. Fewer individuals from inbred lines are needed to detect linkage. Simulation data were used to test the utility of two methods to detect linkage: maximum likelihood and comparison of marker genotype means. When there is tight linkage, the two methods have similar power, but when there is loose linkage, maximum likelihood is much more powerful. Once inbred lines have been established, they can be screened rapidly to detect QTL for several traits simultaneously. If there is sufficient coverage of the genome with RFLPs, several QTL for each trait may be detected.  相似文献   

3.
Summary Restriction fragment length polymorphisms (RFLPs) of nuclear DNAs have been used to explore the origin and evolution of the six cultivated Brassica species. Extensive RFLP variation was found at the species, subspecies and variety levels. Based on RFLP data from Brassica and related genera, a detailed phylogenetic tree was generated using the PAUP microcomputer program, which permits a quantitative analysis of the interrelationships among Brassica species. The results suggested that 1) B. nigra originated from one evolutionary pathway with Sinapis arvensis or a close relative as the likely progenitor, whereas B. campestris and B. oleracea came from another pathway with a possible common ancestor in wild B. oleracea or a closely related nine chromosome species; 2) the amphidiploid species B. napus and B. juncea have evolved through different combinations of the diploid morphotypes and thus polyphyletic origins may be a common mechanism for the natural occurrence of amphidiploids in Brassica; 3) the cytoplasm has played an important role in the nuclear genome evolution of amphidiploid species when the parental diploid species contain highly differentiated cytoplasms. A scheme for the origins of diploid and amphidiploid species is depicted based on evidence gathered from nuclear RFLP analysis, cpDNA RFLP analysis, cytogenetic studies and classical taxonomy.  相似文献   

4.
Summary Genetic linkage maps were constructed for both maize and tomato, utilizing restriction fragment length polymorphisms (RFLPs) as the source of genetic markers. In order to detect these RFLPs, unique DNA sequence clones were prepared from either maize or tomato tissue and hybridized to Southern blots containing restriction enzyme-digested genomic DNA from different homozygous lines. A subsequent comparison of the RFLP inheritance patterns in F2 populations from tomato and maize permitted arrangement of the loci detected by these clones into genetic linkage groups for both species.  相似文献   

5.
Restriction fragment analysis was used to study the inheritance of chloroplast DNA (cpDNA) in F1 progeny from crosses between Lens culinaris ssp. orientalis and L. culinaris ssp. culinaris. Twenty-five combinations of 11 restriction enzymes and three heterologous probes from Petunia hybrida cpDNA were used to screen six accessions of L.c. culinaris and one accession of L. c. orientalis for restriction fragment length polymorphisms (RFLPs). No variation in cpDNA was observed within the subspecies L. c. culinaris, but the L. c. orientalis accession was unambiguously distinguished from all six L. c. culinaris accessions by two RFLPs. Of ten F1 progeny from L. c. orientalis x L. c. culinaris crosses, nine had only maternal cpDNA restriction fragments but one F1 plant inherited cpDNA fragments from both parents. Nuclear DNA inheritance was biparental in all ten F1 progeny.  相似文献   

6.
Summary Strain identification in Zea mays by restriction fragment length polymorphism should be feasible due to the high degree of polymorphism found at many loci. The polymorphism in maize is apparently higher than that currently known for any other organism. Five randomly selected maize inbred lines were examined by Southern filter hybridization with probes of cloned low copy sequences. Typically, several alleles could be distinguished among the inbred lines with any one probe and an appropriately selected restriction enzyme. Despite considerable polymorphism at the DNA level, 16 RFLP markers in three inbred lines of maize were examined for six to 11 generations and found be stable. Mapping of RFLP markers in maize can be accelerated by the use of B-A translocation stocks, which enable localization of a marker to chromosome arm in one generation. The use of recombinant inbred lines in further refinement of the map is discussed.  相似文献   

7.
Summary The objectives of this study were to assess the degree of restriction fragment length polymorphism (RFLP) in Cucumis melo and to determine interrelationships among cultivated varieties. Initial screening of a genomic PstI library revealed that approximately 40% of the clones were repetitive. A total of 162 unique and low-copy sequence clones were hybridized to seven diverse accesions of C. melo and a C. sativus cultivar Pacer to evaluate RFLP variation. Of these, 130 probes (80%) detected a polymorphism between C. melo accessions and C. sativus, and the majority were polymorphic with more than one enzyme digest. In contrast, only 53 probes (33%) were useful in differentiating at least one of the seven accessions. Of those, only 9% were informative with more than one enzyme digest. This indicates that within C. melo, the differences among accessions are due to infrequent base substitutions, whereas between the two species, differences are mainly due to genome rearrangements such as insertions and deletions or numerous base substitutions. Of the informative probes, 34 were used in analyzing 44 C. melo lines to establish a data base of RFLP hybridization patterns. Percent similarity based on RFLP profiles was computed among lines and analyzed by principal component analysis, to visualize relationships among lines. There were clear demarcations among, but not within, muskmelon and honeydew groups.  相似文献   

8.
Restriction fragment analysis was used to examine the inheritance of lentil mitochondrial DNA (mtDNA) in F1 and F5 progeny from intrasubspecific (Lens culinaris ssp. culinaris) crosses and in F1 progeny from intersubspecific (Lens culinaris ssp. orientalis x L. culinaris ssp. culinaris) crosses. Southern blots of digested parental and progeny DNA were hybridized to heterologous maize mtDNA probes specific to coxI and atp6 genes. Two restriction fragment polymorphisms separated L.c. ssp. culinaris Laird and Eston from L.c. ssp. culinaris ILL5588, and one restriction fragment polymorphism distinguished L.c. ssp. culinaris Laird and Eston from L.c. ssp. orientalis LO4. Twelve of 13 f1 progeny and all F5 progeny from the intrasubspecific crosses, and all F1 progeny from intersubspecific crosses had only maternal mtDNA restriction fragments. One f1 plant from an Eston x ILL5588 cross inherited mtDNA fragments from both parents. Nuclear DNA inheritance was biparental in all F1 progeny.NRCC No. 38451  相似文献   

9.
Summary Cuphea lanceolata Ait. has had a significant role in the domestication of Cuphea and is a useful experimental organism for investigating how medium-chain lipids are synthesized in developing seeds. To expand the genetics of this species, a linkage map of the C. lanceolata genome was constructed using five allozyme and 32 restriction-fragment-length-polymorphism (RFLP) marker loci. These loci were assigned to six linkage groups that correspond to the six chromosomes of this species. Map length is 288 cM. Levels of polymorphism were estimated for three inbred lines of C. lanceolata and an inbred line of C. viscosissima using 84 random genomic clones and two restriction enzymes, EcoRI and HindIII. Of the probes 29% detected RFLPs between C. lanceolata and C. viscosissima lines. Crosses between these species can be exploited to expand the map.  相似文献   

10.
Summary A detailed genetic linkage map of Brassica oleracea was constructed based on the segregation of 258 restriction fragment length polymorphism loci in a broccoli × cabbage F2 population. The genetic markers defined nine linkage groups, covering 820 recombination units. A majority of the informative genomic DNA probes hybridized to more than two restriction fragments in the F2 population. Duplicate sequences having restriction fragment length polymorphism were generally found to be unlinked for any given probe. Many of these duplicated loci were clustered non-randomly on certain pairs of linkage groups, and conservation of the relative linkage arrangement of the loci between linkage groups was observed. While these data support previous cytological evidence for the existence of duplicated regions and the evolution of B. oleracea from a lower chromosome number progenitor, no evidence was provided for the current existence of blocks of homoeology spanning entire pairs of linkage groups. The arrangement of the analyzed duplicated loci suggests that a fairly high degree of genetic rearrangement has occurred in the evolution of B. oleracea. Several probes used in this study were useful in detecting rearrangements between the B. oleracea accessions used as parents, indicating that genetic rearrangements have occurred in the relatively recent evolution of this species.  相似文献   

11.
A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm. Thirty complementary DNA and two genomic DNA probes from loblolly pine were hybridized to Southern blots containing DNA from five species of Pinus (P. elliottii, P. lambertiana, P. radiata, P. sylvestris, and P. taeda), one species from each of four other genera of Pinaceae (Abies concolor, Larix laricina, Picea abies, and Pseudotsuga menziesii), one species from each of three other families of Coniferales [Sequoia sempervirens (Taxodiaceae), Torreya californica (Taxaceae) and Calocedrus decurrens (Cupressaceae)], and to one angiosperm species (Populus nigra). Results showed that mapped DNA probes from lobolly pine will cross-hybridize to genomic DNA of other species of Pinus and some other genera of the Pinaceae. Only a small proportion of the probes hybridized to genomic DNA from three other families of the Coniferales and the one angiosperm examined. This study demonstrates that mapped DNA probes from loblolly pine can be used to construct RFLP maps for related species, thus enabling the opportunity for comparative genome mapping in conifers.  相似文献   

12.
Summary Methodologies commonly used to detect linkage of marker loci to loci affecting quantitative traits are discussed. It is shown that variances for the quantitative trait differ among marker genotypes when using F2 or pooled backcross data if linkage exists. Hence, to analyze this type of data by single factor ANOVA or other statistical techniques that assume a common variance is inadequate. Restriction fragment length polymorphism (RFLP) markers are a powerful tool in plant breeding but cost is an important drawback; hence, a methodology is suggested to obtain the minimum number of plants in F2 populations to detect such linkage.  相似文献   

13.
Summary The feasibility of creating a restriction fragment length polymorphism (RFLP) linkage map in Brassica species was assessed by screening EcoRI-, HindIII-, or EcoRV-digested total genomic DNA from several accessions of B. campestris, B. oleracea, and B. napus using random genomic DNA clones from three Brassica libraries as hybridization probes. Differences in restriction fragment hybridization patterns occurred at frequencies of 95% for comparisons of accessions among species, 79% for comparisons of accessions among subspecies within species, and 70% for comparisons among accessions within subspecies. In addition, species differences in the level of hybridization were noted for some clones. The high degree of polymorphism found even among closely related Brassica accessions indicates that RFLP analysis will be a very useful tool in genetic, taxonomic, and evolutionary studies of the Brassica genus. Development of RFLP linkage maps is now in progress.  相似文献   

14.
Summary An understanding of the genetic nature underlying tolerance to low-phosphorus (low-P) stress could aid in the efficient development of tolerant plant strains. The objective of this study was to identify the number of loci in a maize (Zea mays L.) population segregating for tolerance to low-P stress, their approximate location, and the magnitude of their effect.Seventy-seven restriction fragment length polymorphisms (RFLPs) were identified and scored in a maize F2 population derived from a cross between line NY821 and line H99. The F2 individuals were self-pollinated to produce F3 families. Ninety F3 families were grown in a sand-alumina system, which simulated diffusion-limited, low-P soil conditions. The F3 families were evaluated for vegetative growth in a controlled-environment experiment. To identify quantitative trait loci (QTLs) underlying tolerance to low-P stress, the mean phenotypic performances of the F3 families were contrasted based on genotypic classification at each of 77 RFLP marker loci.Six RFLP marker loci were significantly associated with performance under low-P stress (P<0.01). One marker locus accounted for 25% of the total phenotypic variation. Additive gene action was predominant for all of the QTLs identified. Significant marker loci were located on four separate chromosomes representing five unlinked genomic regions. Two marker loci were associated with an additive by additive epistatic interaction. A multiple regression model including three marker loci and the significant epistatic interaction accounted for 46% of the total phenotypic variation. Heterozygosity per se was not predictive of phenotypic performance.  相似文献   

15.
Oilseed rape (Brassica napus) is an important oilseed crop worldwide. Cultivars have been developed for many growing regions, however little is known about genetic diversity inB. napus germ plasm. The purpose of the research presented here was to study the genetic diversity and relationships ofB. napus accessions using restriction fragment length polymorphisms (RFLPs). Eighty threeB. napus accessions were screened using 43 genomic DNA clones which revealed 161 polymorphic fragments. Each accession was uniquely identified by the markers with the exception of the near-isogenic cvs Triton and Tower. The RFLP data were analyzed by cluster analysis of similarity coefficients and by principal component analysis. Overall, there were three major groups of cultivars. The first group included only spring accessions, the second mostly winter accessions and the third, rutabagas and oilseed rape accessions from China and Japan. These results indicate that withinB. napus, winter and spring cultivars represent genetically distinct groups. The grouping of accessions by cluster analysis was generally consistent with known pedigrees. This consistency included the grouping of lines derived both by backcrossing or self-pollination with their parents.  相似文献   

16.
Restriction fragment length polymorphism diversity in soybean   总被引:7,自引:0,他引:7  
Summary Fifty-eight soybean accessions from the genus Glycine, subgenus Soja, were surveyed with 17 restriction fragment length polymorphism (RFLP) genetic markers to assess the level of molecular diversity and to evaluate the usefulness of previously identified RFLP markers. In general, only low levels of molecular diversity were observed: 2 of the 17 markers exhibited three alleles per locus, whereas all others had only two alleles. Thirty-five percent of the markers had rare alleles present in only 1 or 2 of the 58 accessions. Molecular diversity was least among cultivated soybeans and greatest between accessions of different soybean species such as Glycine max (L.) Merr. and G. soja Sieb. and Zucc. Principal component analysis was useful in reducing the multidimensional genotype data set and identifying genetic relationships.  相似文献   

17.
Summary RFLPs were used to study genome evolution and phylogeny in Brassica and related genera. Thirtyeight accessions, including 10 accessions of B. rapa (syn. campestris), 9 cultivated types of B. oleracea, 13 nine-chromosome wild brassicas related to B. oleracea, and 6 other species in Brassica and allied genera, were examined with more then 30 random genomic DNA probes, which identified RFLPs mapping to nine different linkage groups of the B. rapa genome. Based on the RFLP data, phylogenetic trees were constructed using the PAUP microcomputer program. Within B. rapa, accessions of pak choi, narinosa, and Chinese cabbage from East Asia constituted a group distinct from turnip and wild European populations, consistent with the hypothesis that B. rapa had two centers of domestication. A wild B. rapa accession from India was positioned in the tree between European types and East Asian types, suggesting an evolutionary pathway from Europe to India, then to South China. Cultivated B. oleracea morphotypes showed monophyletic origin with wild B. oleracea or B. alboglabra as possible ancestors. Various kales constitute a highly diverse group, and represent the primitive morphotypes of cultivated B. oleracea from which cabbage, broccoli, cauliflower, etc. probably have evolved. Cauliflower was found to be closely related to broccoli, whereas cabbage was closely related to leafy kales. A great diversity existed among the 13 collections of nine-chromosome wild brassicas related to B. oleracea, representing various taxonomic states from subspecies to species. Results from these studies suggested that two basic evolutionary pathways exist for the diploid species examined. One pathway gave rise to B. fruticulosa, B. nigra, and Sinapis arvensis, with B. adpressa or a close relative as the initial ancestor. Another pathway gave rise to B. oleracea and B. rapa, with Diplotaxis erucoides or a close relative as the initial ancestor. Raphanus sativus and Eruca sativus represented intermediate types between the two lineages, and might have been derived from introgression or hybridization between species belonging to different lineages. Molecular evidence for an ascending order of chromosome numbers in the evolution of Brassica and allied genera was obtained on the basis of RFLP data and phylogenetic analysis.  相似文献   

18.
Summary Preliminary analysis using nuclear RFLPs provided evidence that subspecies within Brassica rapa originated from two different centers. One center is in Europe, represented by turnip and turnip rape from which the oilseed sarson was derived. A second center is in South China containing a variety of Chinese vegetables of which pak choi and narinosa seem to be the most ancient forms. Based on RFLP data, the accessions of B. oleracea examined could be divided into three distinct groups, represented by thousand head kale, broccoli and cabbage. Thousand head kale and Chinese kale appear to be the primitive types. Observations of parallel variation among subspecies of both species are discussed.  相似文献   

19.
Summary A survey of qualitative genetic variation at 3 morphological trait loci, 17 isozyme loci and a putative isozyme locus (amylase) was made for 105 lentil (Lens culinaris Medikus) germplasm accessions from Chile, Greece and Turkey. New alleles were found for Lap-1, Me-2, Pgm-c, Pgm-p and 6-Pgd-c. The average proportion of polymorphic loci per population was 0.19, with a range of 0 to 0.42 over populations. Germplasm from Chile was equally variable to that from Greece and Turkey on the basis of individual loci and in a multilocus sense, despite its post-Columbus introduction to the New World. Evidence was found from associations between allelic states at different loci of a complex multilocus structure of lentil populations. A single multilocus genotype represented 10.2% of all plants sampled. The rate of outcrossing varied from 2.2% and 2.9% in Turkish and Greek landraces to 6.6% among Chilean populations. Using the survey data, a random sampling strategy for core collection formation was compared with two stratified sampling methods. The advantage of stratified sampling over random sampling was only significant at P=0.28.  相似文献   

20.
Angelica acutiloba, a medicinal plant used as a natural medicine Touki, was clonally propagated through axillary buds in vitro. No substantial differences were found in the random amplified polymorphic DNA (RAPD) pattern between the original A. acutiloba and the plant propagated in vitro, suggesting no changes in the DNA sequences and structure during in vitro propagation. The genetic similarities of several Angelica plants were investigated by restriction fragment length polymorphism (RFLP) and RAPD analyses. The RFLP and RAPD patterns of A. sinensis Diels were substantially different from those of A. acutiloba. Using ten different restriction enzymes, no RFLP was observed in the varieties of A. acutiloba. By RAPD analysis, A. acutiloba varieties can be classified into two major subgroups, i.e., A. acutiloba Kitagawa and A. acutiloba Kitagawa var. sugiyamae Hikino. The varieties of A. acutiloba Kitagawa in Japan and Angelica spp. in northeast China exhibited a very close genetic relationship. Received: 13 March 1998 / Revision received: 28 July 1998 / Accepted: 21 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号