首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation in ACE activity is related to affect the skeletal muscle function. To elucidate the mechanism by which ACE affects skeletal muscle function, we examined the effects of loss and gain of ACE activity on myogenic differentiation in C2C12 myoblasts. The treatment of captopril, an ACE inhibitor, in differentiating cells significantly induced the up-regulation of myosin heavy chain, and the hypertrophic myotubes. In addition, an AT2 antagonist PD123319, not AT1 antagonist losartan, induced the up-regulation of myosin heavy chain. On the other hand, overexpression of ACE induced the down-regulation of myosin heavy chain. These results suggest that ACE negatively regulate the myogenesis through the mechanism at least in part via production of angiotensin II followed by its binding to AT2 receptor.  相似文献   

2.
This study compared the effects of leucine and glutamine on the mTOR pathway, on protein synthesis and on muscle-specific gene expression in myogenic C(2)C(12) cells. Leucine increased the phosphorylation state of mTOR, on both Ser2448 and Ser2481, and its downstream effectors, p70(S6k), S6 and 4E-BP1. By contrast, glutamine decreased the phosphorylation state of mTOR on Ser2448, p70(S6k) and 4E-BP1, but did not modify the phosphorylation state of mTOR on Ser2481 and S6. Whilst the phosphorylation state of the mTOR pathway is usually related to protein synthesis, the incorporation of labelled methionine/cysteine was only transiently modified by leucine and was unaltered by glutamine. However, these two amino acids affected the mRNA levels of desmin, myogenin and myosin heavy chain in a time-dependant manner. In conclusion, leucine and glutamine have opposite effects on the mTOR pathway. Moreover, they induce modification of muscle-specific gene expression, unrelated to their effects on the mTOR/p70(S6k) pathway.  相似文献   

3.
4.
5.
How phospholipase D (PLD) is involved in myogenesis remains unclear. At the onset of myogenic differentiation of L6 cells induced by the PLD agonist vasopressin in the absence of serum, mTORC1 complex was rapidly activated, as reflected by phosphorylation of S6 kinase1 (S6K1). Both the long (p85) and short (p70) S6K1 isoforms were phosphorylated in a PLD1-dependent way. Short rapamycin treatment specifically inhibiting mTORC1 suppressed p70 but not p85 phosphorylation, suggesting that p85 might be directly activated by phosphatidic acid. Vasopressin stimulation also induced phosphorylation of Akt on Ser-473 through PLD1-dependent activation of mTORC2 complex. In this model of myogenesis, mTORC2 had a positive role mostly unrelated to Akt activation, whereas mTORC1 had a negative role, associated with S6K1-induced Rictor phosphorylation. The PLD requirement for differentiation can thus be attributed to its ability to trigger via mTORC2 activation the phosphorylation of an effector that could be PKCα. Moreover, PLD is involved in a counter-regulation loop expected to limit the response. This study thus brings new insights in the intricate way PLD and mTOR cooperate to control myogenesis.  相似文献   

6.
7.
The protein kinase mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation and growth, with the ribosomal subunit S6 kinase 1 (S6K1) as one of the key downstream signaling effectors. A critical role of mTOR signaling in skeletal muscle differentiation has been identified recently, and an unusual regulatory mechanism independent of mTOR kinase activity and S6K1 is revealed. An mTOR pathway has also been reported to regulate skeletal muscle hypertrophy, but the regulatory mechanism is not completely understood. Here, we report the investigation of mTOR's function in insulin growth factor I (IGF-I)-induced C2C12 myotube hypertrophy. Added at a later stage when rapamycin no longer had any effect on normal myocyte differentiation, rapamycin completely blocked myocyte hypertrophy as measured by myotube diameter. Importantly, a concerted increase of average myonuclei per myotube was observed in IGF-I-stimulated myotubes, which was also inhibited by rapamycin added at a time when it no longer affected normal differentiation. The mTOR protein level, its catalytic activity, its phosphorylation on Ser2448, and the activity of S6K1 were all found increased in IGF-I-stimulated myotubes compared to unstimulated myotubes. Using C2C12 cells stably expressing rapamycin-resistant forms of mTOR and S6K1, we provide genetic evidence for the requirement of mTOR and its downstream effector S6K1 in the regulation of myotube hypertrophy. Our results suggest distinct mTOR signaling mechanisms in different stages of skeletal muscle development: While mTOR regulates the initial myoblast differentiation in a kinase-independent and S6K1-independent manner, the hypertrophic function of mTOR requires its kinase activity and employs S6K1 as a downstream effector.  相似文献   

8.
Calpeptin inhibits myoblast fusion by inhibiting the activity of calpain. However, the mechanism by which calpeptin inhibits myogenesis is not completely understood. This study examined how calpeptin affects the expression of the myogenic regulatory factors (MRFs) and the phosphorylation of p38 mitogen-activated protein kinase (MAPK) in differentiating C2C12 myoblasts. Consistent with previous reports, calpeptin inhibited the induction of μ-calpain and the formation of myotubes in these cells. In particular, calpeptin inhibited the expression of the early and mid differentiation markers including MyoD, Myf5, myogenin, and MRF4 as well as the expression of the late markers such as troponin T and myosin heavy chain (MyHC). Calpeptin also suppressed the phosphorylation of p38 MAPK in C2C12 cells. SB203580, a specific p38 inhibitor, prevented the expression of the muscle-specific markers and their fusion into myotubes in these cells, which was further accelerated in the presence of calpeptin. These findings suggest that calpeptin inhibits the myogenesis of skeletal muscle cells by down-regulating the MRFs and involving p38 MAPK signaling.  相似文献   

9.
Sema4C is a member of transmembrane semaphorin proteins which regulate axonal guidance in the developing nervous system. The expression of Sema4C was dramatically induced not only during differentiation of C2C12 mouse myoblasts, but also during injury-induced skeletal muscle regeneration. C2C12 cells stably or transiently expressing Sema4C both showed increased myogenic differentiation reflected by accelerated myotube formation and expression of muscle-specific proteins. Overexpression of Sema4C elicited p38 phosphorylation directly, and the effects of Sema4C during myogenic differentiation could be abolished by the p38alpha-specific inhibitor SB203580. Knockdown of Sema4C by siRNA transfection during C2C12 myoblasts differentiation could suppress the phosphorylation of p38 followed by dramatically diminished myotube formation. Sema4C could activate the myogenin promoter during myogenic differentiation. This activation could be abolished by p38 inhibitor SB203580. Taken together, these observations reveal novel functional potentialities of Sema4C which suggest that Sema4C promotes terminal myogenic differentiation in a p38 MAPK-dependent manner.  相似文献   

10.
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase known to control initiation of translation through two downstream pathways: eukaryotic initiation factor 4E-binding protein 1 (4E-BP1)/eukaryotic initiation factor 4E and ribosomal p70 S6 kinase (S6K1). We previously showed in C2C12 murine myoblasts that rapamycin arrests cells in G(1) phase and completely inhibits terminal myogenesis. To elucidate the pathways that regulate myogenesis, we established stable C2C12 cell lines that express rapamycin-resistant mTOR mutants (mTORrr; S2035I) that have N-terminal deletions (Delta10 or Delta91) or are full-length kinase-dead mTORrr proteins. Additional clones expressing a constitutively active S6K1 were also studied. Our results show that Delta10mTORrr signals 4E-BP1 and permits rapamycin-treated myoblasts to differentiate, confirming the mTOR dependence of the inhibition of myogenesis by rapamycin. C2C12 cells expressing either Delta91mTORrr or kinase-dead mTORrr(D2338A) could not phosphorylate 4E-BP1 in the presence of rapamycin and could not abrogate the inhibition of myogenesis. Taken together, our results indicate that both the kinase function of mTOR and the N terminus (residues 11-91, containing part of the first HEAT domain) are essential for myogenic differentiation. In contrast, constitutive activation of S6K1 does not abrogate rapamycin inhibition of either proliferation or myogenic differentiation.  相似文献   

11.
12.
Hic-5, a focal adhesion protein, has been implicated in cellular senescence and differentiation. In this study, we examined its involvement in myogenic differentiation. The hic-5 expression level in growing C2C12 myoblasts increased slightly on the first day and then gradually decreased until no hic-5 was detectable after 7 days of differentiation. In vivo, its expression level declined in the thigh and the calf skeletal muscle of mouse embryos after birth. The introduction of an antisense expression vector of hic-5 into C2C12 cells decreased the number of clones expressing the myosin heavy chain (MHC) upon exposure to the differentiation medium. In the cloned cells with low levels of hic-5, the efficiency of myotube formation was significantly reduced. The expression levels of MyoD, myogenin, MHC and p21 were also reduced in these clones. The results suggested that hic-5 plays a role in the initial stage of myogenic differentiation.  相似文献   

13.
14.
We report that late in a simian virus 40 (SV40) infection in CV-1 cells, there are significant decreases in phosphorylations of two mammalian target of rapamycin (mTOR) signaling effectors, the eIF4E-binding protein (4E-BP1) and p70 S6 kinase (p70S6K). The hypophosphorylation of 4E-BP1 results in 4E-BP1 binding to eIF4E, leading to the inhibition of cap-dependent translation. The dephosphorylation of 4E-BP1 is specifically mediated by SV40 small t antigen and requires the protein phosphatase 2A binding domain but not an active DnaJ domain. Serum-starved primary African green monkey kidney (AGMK) cells also showed decreased phosphorylations of mTOR, 4E-BP1, and p70S6K at late times in infection (48 h postinfection [hpi]). However, at earlier times (12 and 24 hpi), in AGMK cells, phosphorylated p70S6K was moderately increased, correlating with a significant increase in phosphorylation of the p70S6K substrate, ribosomal protein S6. Hyperphosphorylation of 4E-BP1 at early times could not be determined, since hyperphosphorylated 4E-BP1 was present in mock-infected AGMK cells. Elevated levels of phosphorylated eIF4G, a third mTOR effector, were detected in both CV-1 and AGMK cells at all times after infection, indicating that eIF4G phosphorylation was induced throughout the infection and unaffected by small t antigen. The data suggest that during SV40 lytic infection in monkey cells, the phosphorylations of p70S6K, S6, and eIF4G are increased early in the infection (12 and 24 hpi), but late in the infection (48 hpi), the phosphorylations of mTOR, p70S6K, and 4E-BP1 are dramatically decreased by a mechanism mediated, at least in part, by small t antigen.  相似文献   

15.
K Ban  RA Kozar 《PloS one》2012,7(7):e41584
The mTOR signaling pathway plays a crucial role in the regulation of cell growth, proliferation, survival and in directing immune responses. As the intestinal epithelium displays rapid cell growth and differentiation and is an important immune regulatory organ, we hypothesized that mTOR may play an important role in the protection against intestinal ischemia reperfusion (I/R)-induced injury. To better understand the molecular mechanisms by which the mTOR pathway is altered by intestinal I/R, p70S6K, the major effector of the mTOR pathway, was investigated along with the effects of rapamycin, a specific inhibitor of mTOR and an immunosuppressant agent used clinically in transplant patients. In vitro experiments using an intestinal epithelial cell line and hypoxia/reoxygenation demonstrated that overexpression of p70S6K promoted cell growth and migration, and decreased cell apoptosis. Inhibition of p70S6K by rapamycin reversed these protective effects. In a mouse model of gut I/R, an increase of p70S6K activity was found by 5 min and remained elevated after 6 h of reperfusion. Inhibition of p70S6K by rapamycin worsened gut injury, promoted inflammation, and enhanced intestinal permeability. Importantly, rapamycin treated animals had a significantly increased mortality. These novel results demonstrate a key role of p70S6K in protection against I/R injury in the intestine and suggest a potential danger in using mTOR inhibitors in patients at risk for gut hypoperfusion.  相似文献   

16.
17.
The PI3K/Akt/mTOR signaling pathway is critical for cellular growth and survival in skeletal muscle, and is activated in response to growth factors such as insulin-like growth factor-I (IGF-I). We found that in C2C12 myoblasts, deficiency of PI3K p110 catalytic subunits or Akt isoforms had distinct effects on phosphorylation of mTOR and p70S6K. siRNA-mediated knockdown of PI3K p110α, p110β, and simultaneous knockdown of p110α and p110β resulted in increased basal and IGF-I-stimulated phosphorylation of mTOR S2448 and p70S6K T389; however, phosphorylation of S6 was reduced in p110β-deficient cells, possibly due to reductions in total S6 protein. We found that IGF-I-stimulated Akt1 activity was enhanced in Akt2- or Akt3-deficient cells, and that knockdown of individual Akt isoforms increased mTOR/p70S6K activation in an isoform-specific fashion. Conversely, levels of IGF-I-stimulated p70S6K phosphorylation in cells simultaneously deficient in both Akt1 and Akt3 were increased beyond those seen with loss of any single Akt isoform, suggesting an alternate, Akt-independent mechanism that activates mTOR/p70S6K. Our results collectively suggest that mTOR/p70S6K is activated in a PI3K/Akt-dependent manner, but that in the absence of p110α or Akt, alternate pathway(s) may mediate activation of mTOR/p70S6K in C2C12 myoblasts.  相似文献   

18.
DTX4(Deltex 4 homolog)蛋白属于Deltex家族成员|Deltex家族是Notch信号通路的调节因子. 已知Notch信号通路在成肌分化中发挥重要作用. 然而,DTX4是否参与调控肌肉发育尚未有报道. 本研究探索DTX4对成肌分化的影响及作用机制. 实时定量PCR和蛋白质印迹分析揭示,伴随小鼠C2C12成肌细胞(myoblast)分化为肌管(myotube)过程,成肌分化标志蛋白肌球蛋白重链(myosin heavy-chain,MyHC)、肌细胞生成素(myogenin)表达逐渐升高,DTX4 mRNA及蛋白质表达水平也逐渐升高. 通过顺序专一的siRNA敲减DTX4表达后,C2C12成肌细胞肌管面积和肌管融合指数明显减少|MyHC、肌细胞生成素蛋白表达水平明显降低|但ERK信号通路未见明显变化.上述结果表明,敲减DTX4表达抑制C2C12细胞成肌分化.我们的结果提示,DTX4可能参与C2C12细胞成肌分化.  相似文献   

19.
Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.  相似文献   

20.
为研究脑信号蛋白家族(Semaphorins)成员Sema7A对成肌细胞增殖和分化的影响,本文设计并合成了Sema7A基因的小干扰RNA(small interfering RNA,siRNA),用此siRNA转染C2C12成肌细胞.通过Hoechst核染和流式细胞术检测细胞增殖情况,免疫荧光检测肌管的形成情况,real-time qPCR和Western印迹技术检测成肌标记基因的变化.结果显示,干扰Sema7A后,C2C12成肌细胞增殖减慢,处在G2和S期的细胞所占的比例明显下降,而G1期细胞的比例升高.免疫荧光检测结果显示,干扰Sema7A后,肌管的直径及MyHC+细胞所占比例均显著降低.Real-time qPCR和Western印迹结果也显示,肌肉分化标志基因MyoD、MyoG、MyHC的mRNA及蛋白质表达均下降.进一步检测Sema7A受体下游信号通路发现,干扰Sema7A后,其下游信号分子PI3K和AKT的磷酸化水平被下调.以上结果表明,Sema7A可以调节C2C12成肌细胞的增殖和分化,可能是通过其受体作用于PI3K/AKT信号通路实现的,这为进一步研究Sema7A在骨骼肌发育中的作用提供实验基础.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号