首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In many species, individuals discriminate among sexual signals of conspecific populations in the contexts of mate choice and male–male competition. Differences in signals among populations (geographical variation) are in part the result of signal evolution within populations (temporal variation). Understanding the relative effect of temporal and geographical signal variation on signal salience may therefore provide insight into the evolution of behavioural discrimination. However, no study, to my knowledge, has compared behavioural response to historical signals with response to current signal variation among populations. Here, I measured the response of male white-crowned sparrows (Zonotrichia leucophrys) to historical songs compared with current songs from their local population, a nearby non-local population and a distant population. Males responded most strongly to current local songs, less, but equally, to historical local and current non-local songs, and least to songs of the distant population. Moreover, response to both temporal and geographical variation in song was proportional to how much songs differed acoustically from current local songs. Signal evolution on an ecological time scale appears to have an effect on signal salience comparable to differences found between current neighbouring populations, supporting the idea that behavioural discrimination among learned signals of conspecific populations can evolve relatively rapidly.  相似文献   

2.
The divergence of conspecific recognition signals (CRS) among isolated populations facilitates the evolution of behavioral barriers to gene flow. The influence of CRS evolution on signal effectiveness in isolated populations can be assessed by testing the salience of changes in CRS from surviving ancestral populations but founder events are rarely detected. The population history of the North Island (NI) saddleback Philesturnus rufusater is absolutely known following conservation translocations which increased the number of populations from 1 to 15. With one exception there is no gene flow between these populations. The translocations have generated interisland divergence of male rhythmical song (MRS), a culturally transmitted CRS. We conducted an experimental test of behavioral discrimination in NI saddlebacks exposed to familiar and unfamiliar MRS and found that responses were significantly stronger for familiar MRS, consistent with a model of contemporary cultural evolution leading to discrimination between geographic song variants. Significantly, this result demonstrates the rapid tempo with which discrimination of CRS might evolve within isolated populations and supports both bottleneck and cultural mutation hypotheses in CRS evolution. The evolutionary implications of contemporary cultural evolution in the production and perception of CRS merit debate on the time frames over which conservation management is evaluated.  相似文献   

3.
Understanding the divergence of behavioural signals in isolated populations is critical to knowing how certain barriers to gene flow can develop. For many bird species, songs are essential for conspecific recognition and mate choice. Measuring the rate of song divergence in natural populations is difficult, but translocations of endangered birds to isolated islands for conservation purposes can yield insights, as the age and source of founder populations are completely known. We found significant and rapid evolution in the structure and diversity of bird song in North Island saddlebacks, Philesturnus rufusater, in New Zealand, with two distinct lineages evolving in < 50 years. The strong environmental filters of serial translocations resulted in cultural bottlenecks that generated drift and reduced song variability within islands. This rapid divergence coupled with loss of song diversity has important implications for the behavioural evolution of this species, demonstrating previously unrecognised biological consequences of conservation management.  相似文献   

4.
Vertebrates represent one of the best-studied groups in terms of the role that mating preferences have played in the evolution of exaggerated secondary sexual characters and mating behaviours within species. Vertebrate species however, also exhibit enormous interspecific diversity in features of mating signals that has potentially led to reproductive isolation and speciation in many groups. The role that sexual selection has played in interspecific divergence in mating signals has been less fully explored. This review summarizes our current knowledge of how mating preferences within species have shaped interspecific divergence in mate recognition signals among the major vertebrate groups. Certain signal modalities appear to characterize mating signal diversification among different vertebrate taxa. Acoustic signals play an important role in mating decisions in anuran amphibians and birds. Here, different properties of the signal may convey information regarding individual, neighbor and species recognition. Mating preferences for particular features of the acoustic signal have led to interspecific divergence in calls and songs. Divergence in morphological traits such as colouration or ornamentation appears to be important in interspecific diversity in certain groups of fishes and birds. Pheromonal signals serve as the primary basis for species-specific mating cues in many salamander species, most mammals and even some fishes. The evolution of interspecific divergence in elaborate courtship displays may have played an important role in speciation of lizards, and particular groups of fishes, salamanders, birds and mammals. While much research has focused on the importance of mating preferences in shaping the evolution of these types of mating signals within species, the link between intraspecific preferences and interspecific divergence and speciation remains to be more fully tested. Future studies should focus on identifying how variation in mating preferences within a species shapes interspecific diversity in features of mating signals in order to better understand how sexual selection may have led to speciation in vertebrates.  相似文献   

5.
Speciation has a central place in evolution, linking genetic processes within populations to the generation of biological diversity. The formation of new species must involve the evolution of barriers to gene flow within existing species, but how these barriers arise remains a problem. In the case of prezygotic isolation it is possible that natural selection directly favours characters that decrease gene flow. Where two populations have diverged to such an extent that they produce unfit hybrids, individuals will leave more offspring if they mate within their own population. Characters increasing assortive mating will be favoured until eventually two species may result. This is the widely accepted model of speciation by reinforcement. However, recent studies suggest serious limitations on the efficacy of reinforcing selection and a lack of well-substantiated examples.  相似文献   

6.
Sexual selection on multiple signals may lead to differential rates of signal introgression across hybrid zones if some signals contribute to reproductive isolation but others facilitate gene flow. Competition among males is one powerful form of sexual selection, but male behavioral responses to multiple traits have not been considered in a system where traits have introgressed differentially. Using playbacks, mounts, and a reciprocal experimental design, we tested the hypothesis that male responses to song and plumage in two subspecies of red‐backed fairy‐wren (Malurus melanocephalus) explain patterns of differential signal introgression (song has not introgressed, whereas plumage color has introgressed asymmetrically). We found that males of both subspecies discriminated symmetrically between subspecies’ songs at a long range, but at a close range, we found that aggression was equal for both subspecies’ plumage and songs. Taken together, our results suggest that male behavioral responses hinder the introgression of song, but allow for the observed asymmetrical introgression of plumage. Our results highlight how behavioral responses are a key component of signal evolution when recently divergent taxa come together, and how differential responses to multiple signals may lead to differential signal introgression and novel trait combinations.  相似文献   

7.
Ring species are groups of organisms that dispersed along a ring‐shaped region in such a way that the two ends of the population that meet after many generations are reproductively isolated. They provide a rare opportunity to understand the role of spatial structuring in speciation. Here, we simulate the evolution of ring species assuming that individuals become sexually isolated if the genetic distance between them is above a certain threshold. The model incorporates two forms of dispersal limitation: exogenous geographic barriers that limit the population range and endogenous barriers that result in genetic structuring within the population range. As expected, species' properties that reduce gene flow within the population range facilitate the evolution of reproductive isolation and ring species formation. However, if populations are confined to narrow ranges by geographic barriers, ring species formation increases when local mating is less spatially restricted. Ring species are most likely to form if a population expands while confined to a quasi‐unidimensional range but preserving high mobility in the direction of the range expansion. These conditions are unlikely to be met or persist in real populations and may explain why ring species are rare.  相似文献   

8.
Reproductive barriers reduce gene flow between populations and maintain species identities. A diversity of barriers exist, acting before, during and after mating. To understand speciation and coexistence, these barriers need to be quantified and their potential interactions revealed. We use the hybridising field crickets Gryllus bimaculatus and G. campestris as a model to understand the full compliment and relative strength of reproductive barriers. We find that males of both species prefer conspecific females, but the effect is probably too weak to represent a barrier. In contrast, prezygotic barriers caused by females being more attracted to conspecific male song and preferentially mounting and mating with conspecifics are strong and asymmetric. Postzygotic barriers vary in direction; reductions in fecundity and egg viability create selection against hybridisation, but hybrids live longer than pure-bred individuals. Hybrid females show a strong preference for G. bimaculatus songs, which together with a complete lack of hybridisation by G. campestris females, suggests that asymmetric gene flow is likely. For comparison, we review reproductive barriers that have been identified between other Gryllids and conclude that multiple barriers are common. Different species pairs are separated by qualitatively different combinations of barriers, suggesting that reproductive isolation and even the process of speciation itself may vary widely even within closely related groups.  相似文献   

9.
Diversification in sexual signals is often taken as evidence for the importance of sexual selection in speciation. However, in order for sexual selection to generate reproductive isolation between populations, both signals and mate preferences must diverge together. Furthermore, assortative mating may result from multiple behavioral mechanisms, including female mate preferences, male mate preferences, and male–male competition; yet their relative contributions are rarely evaluated. Here, we explored the role of mate preferences and male competitive ability as potential barriers to gene flow between 2 divergent lineages of the tawny dragon lizard, Ctenophorus decresii, which differ in male throat coloration. We found stronger behavioral barriers to pairings between southern lineage males and northern lineage females than between northern males and southern females, indicating incomplete and asymmetric behavioral isolating barriers. These results were driven by both male and female mate preferences rather than lineage differences in male competitive ability. Intrasexual selection is therefore unlikely to drive the outcome of secondary contact in C. decresii, despite its widely acknowledged importance in lizards. Our results are consistent with the emerging view that although both male and female mate preferences can diverge alongside sexual signals, speciation is rarely driven by divergent sexual selection alone.  相似文献   

10.
Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages.  相似文献   

11.
The spatial genetic structure of populations is strongly influenced by current and historical patterns of gene flow and drift, which in the simplest case, is limited by geographic distance. We examined the microspatial genetic structure within 33 populations of song sparrows (Melospiza melodia) which included eight subspecies located across coastal areas in southern British Columbia (BC) and California. We also examined the effect of water barriers and local density estimates on genetic structuring. Across both regions, positive genetic structure was detectable at distances of less than 10 km. Genetic divergence was highest in Californian subspecies, perhaps due to reduced gene flow across sub-specific contact zones. In BC, populations distributed across islands displayed greater genetic structuring over similar spatial scales than those across mainland sites, supporting the prediction that water barriers reduce gene flow in this species. Our results confirm both the expectation for fine-scale genetic structure in these generally sedentary subspecies, and the role of landscape features in generating geographic variation in genetic structure.  相似文献   

12.
Hurt CR  Farzin M  Hedrick PW 《Genetics》2005,171(2):655-662
The timing and pattern of reproductive barrier formation in allopatric populations has received much less attention than the accumulation of reproductive barriers in sympatry. The theory of allopatric speciation suggests that reproductive barriers evolve simply as by-products of overall genetic divergence. However, observations of enhanced premating barriers in allopatric populations suggest that sexual selection driven by intraspecific competition for mates may enhance species-specific signals and accelerate the speciation process. In a previous series of laboratory trials, we examined the strength of premating and postmating barriers in an allopatric species pair of the endangered Sonoran topminnow, Poeciliopsis occidentalis and P. sonoriensis. Behavioral observations provided evidence of asymmetrical assortative mating, while reduced brood sizes and male-biased F(1) sex ratios suggest postmating incompatibilities. Here we examine the combined effects of premating and postmating barriers on the genetic makeup of mixed populations, using cytonuclear genotype frequencies of first- and second-generation offspring. Observed genotype frequencies strongly reflect the directional assortative mating observed in behavioral trials, illustrating how isolating barriers that act earlier in the reproductive cycle will have a greater effect on total reproductive isolation and may be more important to speciation than subsequent postmating reproductive barriers.  相似文献   

13.
It has long been known that rodents emit signals in the ultrasonic range, but their role in social communication and mating is still under active exploration. While inbred strains of house mice have emerged as a favourite model to study ultrasonic vocalisation (USV) patterns, studies in wild animals and natural situations are still rare. We focus here on two wild derived mouse populations. We recorded them in dyadic encounters for extended periods of time to assess possible roles of USVs and their divergence between allopatric populations. We have analysed song frequency and duration, as well as spectral features of songs and syllables. We show that the populations have indeed diverged in several of these aspects and that USV patterns emitted in a mating context differ from those emitted in same sex encounters. We find that females vocalize not less, in encounters with another female even more than males. This implies that the current focus of USVs being emitted mainly by males within the mating context needs to be reconsidered. Using a statistical syntax analysis we find complex temporal sequencing patterns that could suggest that the syntax conveys meaningful information to the receivers. We conclude that wild mice use USV for complex social interactions and that USV patterns can diverge fast between populations.  相似文献   

14.
Genome divergence is greatly influenced by gene flow during early stages of speciation. As populations differentiate, geographic barriers can constrain gene flow and so affect the dynamics of divergence and speciation. Current geography, specifically disjunction and continuity of ranges, is often used to predict the historical gene flow during the divergence process. We test this prediction in eight meliphagoid bird species complexes codistributed in four regions. These regions are separated by known biogeographical barriers across northern Australia and Papua New Guinea. We find that bird populations currently separated by terrestrial habitat barriers within Australia and marine barriers between Australia and Papua New Guinea have a range of divergence levels and probability of gene flow not associated with current range connectivity. Instead, geographic distance and historical range connectivity better predict divergence and probability of gene flow. In this dynamic environmental context, we also find support for a nonlinear decrease of the probability of gene flow during the divergence process. The probability of gene flow initially decreases gradually after a certain level of divergence is reached. Its decrease then accelerates until the probability is close to zero. This implies that although geographic connectivity may have more of an effect early in speciation, other factors associated with higher divergence may play a more important role in influencing gene flow midway through and later in speciation. Current geographic connectivity may then mislead inferences regarding potential for gene flow during speciation under a complex and dynamic history of geographic and reproductive isolation.  相似文献   

15.
Detecting the factors that determine the interruption of gene flow between populations is key to understanding how speciation occurs. In this context, caves are an excellent system for studying processes of colonization, differentiation and speciation, since they represent discrete geographical units often with known geological histories. Here, we asked whether discontinuous calcareous areas and cave systems represent major barriers to gene flow within and among the five species of Sardinian cave salamanders (genus Hydromantes) and whether intraspecific genetic structure parallels geographic distance within and among caves. We generated mitochondrial cytochrome b gene sequences from 184 individuals representing 48 populations, and used a Bayesian phylogeographic approach to infer possible areas of cladogenesis for these species and reconstruct historical and current dispersal routes among distinct populations. Our results show deep genetic divergence within and among all Sardinian cave salamander species, which can mostly be attributed to the effects of mountains and discontinuities in major calcareous areas and cave systems acting as barriers to gene flow. While these salamander species can also occur outside caves, our results indicate that there is a very poor dispersal of these species between separate cave systems.  相似文献   

16.
A major challenge in evolutionary biology is explaining the origins of complex phenotypic diversity. In animal communication, complex signals may evolve from simpler signals because novel signal elements exploit preexisting biases in receivers’ sensory systems. Investigating the shape of female preference functions for novel signal characteristics is a powerful, but underutilized, method to describe the adaptive landscape potentially guiding complex signal evolution. We measured female preference functions for characteristics of acoustic appendages added to male calling songs in the grasshopper Chorthippus biguttulus, which naturally produces only simple songs. We discovered both hidden preferences for and biases against novel complex songs, and identified rules governing song attractiveness based on multiple characteristics of both the base song and appendage. The appendage's temporal position and duration were especially important: long appendages preceding the song often made songs less attractive, while following appendages were neutral or weakly attractive. Appendages had stronger effects on songs of shorter duration, but did not restore the attractiveness of very unattractive songs. We conclude that sensory biases favor, within predictable limits, the evolution of complex songs in grasshoppers. The function‐valued approach is an important tool in determining the generality of these limits in other taxa and signaling modalities.  相似文献   

17.
The behavioural signals used in mate selection are a key component in the evolution of premating isolating barriers and, subsequently, the formation of new species. The importance of mating signals has a long tradition of study in songbirds, where many species differ in their song characteristics. In oscine songbirds, individual birds usually learn their songs from a tutor. Mistakes during learning can help generate geographic dialects, akin to those within human language groups. In songbirds, dialect differences can often be substantial and there is an intuitive connection between the evolution of song amongst populations at a small scale, and the more substantive song differences between bird species and presumably used in species recognition. However, studies investigating the concordance between putative genetic and behavioural boundaries have generated mixed results. In many cases, this is possibly a function of the poor resolving power of the genetic markers employed. In this issue of Molecular Ecology, Lipshutz et al. ( 2017 ) combine genomic markers with a robust behavioural assay to address the importance of song variation amongst white‐crowned sparrow (Zonotrichia leucophrys) subspecies.  相似文献   

18.
Animal mating signals evolve in part through indirect natural selection on anatomical traits that influence signal expression. In songbirds, for example, natural selection on beak form and function can influence the evolution of song features, because of the role of the beak in song production. In this study we characterize the relationship between beak morphology and song features within a bimodal population of Geospiza fortis on Santa Cruz Island, Galápagos. This is the only extant population of Darwin's finches that is known to possess a bimodal distribution in beak size. We test the hypothesis that birds with larger beaks are constrained to produce songs with lower frequencies and decreased vocal performance. We find that birds with longer, deeper, and wider beaks produce songs with significantly lower minimum frequencies, maximum frequencies and frequency bandwidths. Results from the analysis of the relationship between beak morphology and trill rate are mixed. Measures of beak morphology correlated positively with 'vocal deviation', a composite index of vocal performance. Overall these results support a resonance model of vocal tract function, and suggest that beak morphology, a primary target of ecological selection in Darwin's finches, affects the evolution of mating signals. We suggest that differences in song between the two modes of the distribution may influence mate recognition and perhaps facilitate assortative mating by beak size and population divergence.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 489–498.  相似文献   

19.
Studying reproductive barriers between populations of the same species is critical to understand how speciation may proceed. Growing evidence suggests postmating, prezygotic (PMPZ) reproductive barriers play an important role in the evolution of early taxonomic divergence. However, the contribution of PMPZ isolation to speciation is typically studied between species in which barriers that maintain isolation may not be those that contributed to reduced gene flow between populations. Moreover, in internally fertilizing animals, PMPZ isolation is related to male ejaculate—female reproductive tract incompatibilities but few studies have examined how mating history of the sexes can affect the strength of PMPZ isolation and the extent to which PMPZ isolation is repeatable or restricted to particular interacting genotypes. We addressed these outstanding questions using multiple populations of Drosophila montana. We show a recurrent pattern of PMPZ isolation, with flies from one population exhibiting reproductive incompatibility in crosses with all three other populations, while those three populations were fully fertile with each other. Reproductive incompatibility is due to lack of fertilization and is asymmetrical, affecting female fitness more than males. There was no effect of male or female mating history on reproductive incompatibility, indicating that PMPZ isolation persists between populations. We found no evidence of variability in fertilization outcomes attributable to different female × male genotype interactions, and in combination with our other results, suggests that PMPZ isolation is not driven by idiosyncratic genotype × genotype interactions. Our results show PMPZ isolation as a strong, consistent barrier to gene flow early during speciation and suggest several targets of selection known to affect ejaculate‐female reproductive tract interactions within species that may cause this PMPZ isolation.  相似文献   

20.
Polyploidy is a major feature of angiosperm evolution and diversification. Most polyploid species have formed multiple times, yet we know little about the genetic consequences of recurrent formations. Among the clearest examples of recurrent polyploidy are Tragopogon mirus and T. miscellus (Asteraceae), each of which has formed repeatedly in the last ~80 years from known diploid progenitors in western North America. Here, we apply progenitor‐specific microsatellite markers to examine the genetic contributions to each tetraploid species and to assess gene flow among populations of independent formation. These data provide fine‐scale resolution of independent origins for both polyploid species. Importantly, multiple origins have resulted in considerable genetic variation within both polyploid species; however, the patterns of variation detected in the polyploids contrast with those observed in extant populations of the diploid progenitors. The genotypes detected in the two polyploid species appear to represent a snapshot of historical population structure in the diploid progenitors, rather than modern diploid genotypes. Our data also indicate a lack of gene flow among polyploid plants of independent origin, even when they co‐occur, suggesting potential reproductive barriers among separate lineages in both polyploid species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号