首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The luminal surface of a blood vessel accommodates a complex multicomponent system of mainly carbohydrates and proteins called glycocalyx. According to the concept of the double protective layer, glycocalyx is the first protection barrier of the vascular wall. The structure of glycocalyx is determined by a group of proteoglycans, glycoproteins, and glycosaminoglycans. Two groups of molecules are distinguished within the glycocalyx constituents, that is, membrane proteoglycans (syndecans and glypicans bound to endothelial cell membranes) and soluble proteoglycans (perlecan, biglycan, versican, decorin, and mimecan). There are five types of glycosaminoglycan chains; these are heperan sulfate, chondroitin sulfate, dermatan sulfate, keratan sulfate, and hyaluronan. There is a dynamic equilibrium between the soluble components of glycocalyx and flowing blood, which allows for separation of the endothelial surface layer. Due to its complexity and location at the interface of blood circulation system, glycocalyx is involved in the maintenance of vascular homeostasis. Here, the molecular composition of glycocalyx, properties of its components, biosynthesis, and common structural features are discussed.  相似文献   

2.
The endothelial glycocalyx is increasingly considered as an intravascular compartment that protects the vessel wall against pathogenic insults. The purpose of this study was to translate an established experimental method of estimating capillary glycocalyx dimension into a clinically useful tool and to assess its reproducibility in humans. We first evaluated by intravital microscopy the relation between the distance between the endothelium and erythrocytes, as a measure of glycocalyx thickness, and the transient widening of the erythrocyte column on glycocalyx compression by passing leukocytes in hamster cremaster muscle capillaries. We subsequently assessed sublingual microvascular glycocalyx thickness in 24 healthy men using orthogonal polarization spectral imaging. In parallel, systemic glycocalyx volume (using a previously published tracer dilution technique) as well as cardiovascular risk profiles were assessed. Estimates of microvascular glycocalyx dimension from the transient erythrocyte widening correlated well with the size of the erythrocyte-endothelium gap (r = 0.63). Measurements in humans were reproducible (0.58 +/- 0.16 and 0.53 +/- 0.15 microm, coefficient of variance 15 +/- 5%). In univariate analysis, microvascular glycocalyx thickness significantly correlated with systemic glycocalyx volume (r = 0.45), fasting plasma glucose (r = 0.43), and high-density lipoprotein-cholesterol (r = 0.40) and correlated negatively with low-density lipoprotein-cholesterol (r = -0.41) as well as body mass index (r = -0.45) (all P < 0.05). In conclusion, the dimension of the endothelial glycocalyx can be measured reproducibly in humans and is related to cardiovascular risk factors. It remains to be tested whether glycocalyx dimension can be used as an early marker of vascular damage and whether therapies aimed at glycocalyx repair can protect the vasculature against pathogenic challenges.  相似文献   

3.
PURPOSE OF REVIEW: Although cardiovascular prevention has improved substantially, we still face the challenge of finding new targets to reduce the sequelae of atherosclerosis further. In this regard, optimizing the vasculoprotective effects of the vessel wall itself warrants intensive research. In particular, the endothelial glycocalyx, consisting of proteoglycans, glycoproteins and adsorbed plasma proteins, may play an essential role in protecting the vessel wall from atherosclerosis. RECENT DEVELOPMENTS: In this review, we will discuss the different vasculoprotective effects exerted by the endothelial glycocalyx, the factors that damage it, and the first preliminary data on the glycocalyx dimension in humans. Whereas most glycocalyx research has traditionally focused on the microvasculature, more recent data have underscored the importance of the glycocalyx in protecting the macrovasculature against pro-atherogenic insults. It has been shown that glycocalyx loss is accompanied by a wide array of unfavourable changes in both small and larger vessels. Pro-atherogenic stimuli increase the shedding of glycocalyx constituents into the circulation, contributing to the progressive loss of the vasculoprotective properties of the vessel wall. Novel techniques have facilitated reproducible measurements of systemic glycocalyx volume in humans. Consistent with experimental data, the volume of the human glycocalyx is also severely perturbed by exposure to atherogenic risk factors. SUMMARY: Cumulating evidence suggests that an intact glycocalyx protects the vessel wall, whereas disruption of the glycocalyx upon atherogenic stimuli increases vascular vulnerability for atherogenesis.  相似文献   

4.
Relationship between microvascular permeability and ultrastructure   总被引:4,自引:0,他引:4  
This article attempts to review some of the advances made during the past few years in our understanding of the nature of the barrier presented by the endothelial cell wall and how it may contribute to the regulation of exchange between blood and tissues. It has concentrated on a small number of experimental techniques which have yielded information on the correlation between structure and function of the endothelial cell wall and which have emphasized the potentially dynamic characteristics of the barrier. Whilst there now seems to be little dispute as to the location of the fluid conducting channels across the endothelial cell wall, within the clefts, fenestrae and in inflammation the open cell junctions, it has proved difficult to identify the molecular filter which limits macromolecular exchange across these pathways. In fenestrated endothelium it has been suggested that the filter resides at the fenestral diaphragms or in the underlying basement membrane, while in continuous endothelium there is strong support in the literature that the filter is located within the intercellular cleft, at regions of closely apposed cell membranes, or in the case of a vesicular pathway, at the necks or diaphragms of the vesicle openings. Alternatively, there is a considerable and increasing body of experimental evidence that macromolecular movement is retarded by the endothelial cell coat which lines the whole of the endothelial cell surface and covers the openings of interendothelial cell clefts, fenestral diaphragms and vesicle openings. It is believed to comprise glycoproteins secreted and regulated by the endothelial cells themselves and to have associated with it plasma proteins, particularly serum albumin. Expression of this glycocalyx and its modification have been demonstrated in vivo and in cultures of isolated endothelial cells, in vitro. Experiments using single microvessels in which a correlation between structure and function can be most readily made, offer further evidence that the clefts between endothelial cells are quantitively more than sufficient in extent to accommodate the fluid fluxes measured in even the most highly permeable vessels. They further demonstrate that the dramatic increases in fluid flux seen in inflammation result from a modulation of endothelial cell shape to form interendothelial cell gaps by activation of intracellular contractile mechanisms, mediated by changes in intracellular calcium. Increases in macromolecular leakage may only be seen when gap formation is accompanied by extensive modulation of the intercellular cement substance, or glycocalyx filling those gaps.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The surface of vascular endothelium bears a glycocalyx comprised, in part, of a complex mixture of oligosaccharide chains attached to cell-surface proteins and membrane lipids. Importantly, understanding of the structure and function of the endothelial glycocalyx is poorly understood. Preliminary studies have demonstrated structural differences in the glycocalyx of pulmonary artery endothelial cells compared with pulmonary microvascular endothelial cells. Herein we begin to probe in more detail structural and functional attributes of endothelial cell-surface carbohydrates. In this study we focus on the expression and function of sialic acids in pulmonary endothelium. We observed that, although pulmonary microvascular endothelial cells express similar amounts of total sialic acids as pulmonary artery endothelial cells, the nature of the sialic acid linkages differs between the two cell types such that pulmonary artery endothelial cells express both α(2,3)- and α(2,6)-linked sialic acids on the surface (i.e., surficially), whereas microvascular endothelial cells principally express α(2,3)-linked sialic acids. To determine whether sialic acids play a role in endothelial barrier function, cells were treated with neuraminidases to hydrolyze sialic acid moieties. Disruption of cell-cell and cell-matrix adhesions was observed following neuraminidase treatment, suggesting that terminal sialic acids promote endothelial barrier integrity. When we measured transendothelial resistance, differential responses of pulmonary artery and microvascular endothelial cells to neuraminidase from Clostridium perfringens suggest that the molecular architecture of the sialic acid glycomes differs between these two cell types. Collectively our observations reveal critical structural and functional differences of terminally linked sialic acids on the pulmonary endothelium.  相似文献   

6.
Rate of endothelial expansion is controlled by cell:cell adhesion.   总被引:3,自引:0,他引:3  
Procedures used to alleviate blood vessel occlusion result in varying degrees of damage to the vascular wall and endothelial denudation. The presence of intact, functioning endothelium is thought to be important in controlling smooth muscle cell growth, and limiting the intimal thickening which results from damage to the vessel wall. Recovery of the endothelium is commonly slow and incomplete, due in part to endothelial lateral cell:cell adhesion, which limits cell migration and proliferation. We have investigated the effect of fibroblast growth factor 2 and vascular/endothelial growth factor on the relationship between the temporal distribution of the junctional adhesion proteins, platelet/endothelial cell adhesion molecule, vascular/endothelial cadherin and plakoglobin, and cellular migration and proliferation in an in vitro model of endothelial expansion. We found that whereas cell:cell junctions were initially disturbed to similar extents by single applications of the growth factors, outward cell migration and proliferation rates were inversely correlated with the speed at which cell:cell junctions were re-established. This occurred very rapidly with vascular/endothelial growth factor treatment and more slowly with fibroblast growth factor-2, resulting in more extensive outward migration and proliferation in response to the latter. Platelet/endothelial cell adhesion molecule and vascular/endothelial cadherin appeared to be associated with cell:cell junctional control of migration and proliferation, while plakoglobin did not contribute. It was concluded that the rate of endothelial expansion in response to growth factors, is limited by the rate of re-association of junctional complexes following initial disruption.  相似文献   

7.
Endotoxin-mediated pulmonary endothelial cell injury   总被引:10,自引:0,他引:10  
Infusion of endotoxin into sheep results in physiological and structural damage to the pulmonary endothelium. It is uncertain whether complement activation and granulocyte sequestration in the pulmonary microcirculation and the ensuing granulocyte migration into the interstitium seen with endotoxemia contribute to the endothelial damage. We have shown that infusion of complement-activated plasma into sheep, although causing the same degree of granulocyte sequestration in the lungs, results in only modest and transient endothelial damage. In addition, migration or chemotaxis of granulocytes across the endothelial layer of intimal explants is not accompanied by either structural evidence of endothelial damage or a detectable increase in vascular permeability. Such studies indicate that neither complement/granulocyte activation nor granulocyte migration across a vessel wall is entirely responsible for the severe endothelial damage seen with endotoxin. In vitro studies of bovine pulmonary endothelial monolayers indicate that endotoxin can cause direct damage to the endothelium; the damage is dose-dependent and more severe in the presence of serum. Structural studies show endothelial cell retraction, pyknosis, and sloughing. Prostacyclin production and lactic dehydrogenase release are increased, as are permeability to small solutes and hydraulic conductance across the endothelium. It seems that endotoxin can cause a direct injury to pulmonary endothelium but complement and granulocyte activation may enhance the damage.  相似文献   

8.
Flow-induced mechanotransduction in vascular endothelial cells has been studied over the years with a major focus on putative connections between disturbed flow and atherosclerosis. Recent studies have brought in a new perspective that the glycocalyx, a structure decorating the luminal surface of vascular endothelium, may play an important role in the mechanotransduction. This study reports that modifying the amount of the glycocalyx affects both short-term and long-term shear responses significantly. It is well established that after 24 h of laminar flow, endothelial cells align in the direction of flow and their proliferation is suppressed. We report here that by removing the glycocalyx by using the specific enzyme heparinase III, endothelial cells no longer align under flow after 24 h and they proliferate as if there were no flow present. In addition, confluent endothelial cells respond rapidly to flow by decreasing their migration speed by 40% and increasing the amount of vascular endothelial cadherin in the cell-cell junctions. These responses are not observed in the cells treated with heparinase III. Heparan sulfate proteoglycans (a major component of the glycocalyx) redistribute after 24 h of flow application from a uniform surface profile to a distinct peripheral pattern with most molecules detected above cell-cell junctions. We conclude that the presence of the glycocalyx is necessary for the endothelial cells to respond to fluid shear, and the glycocalyx itself is modulated by the flow. The redistribution of the glycocalyx also appears to serve as a cell-adaptive mechanism by reducing the shear gradients that the cell surface experiences.  相似文献   

9.
The endothelial surface and responses to injury   总被引:5,自引:0,他引:5  
Pulmonary microvascular endothelial cells are known to play an active role in the events that lead to vascular damage in the inflammatory response. The endothelial surface, normally immunologically privileged and very actively antithrombogenic, can respond to certain stimuli, generally injurious, by becoming strongly procoagulant and by expressing Fc and C3b receptors. Like macrophages, activated endothelial cells can provide a common source and substratum for combined hemostatic and complement-linked reactions. Such transformations of endothelial functions may involve alterations in the endothelial glycocalyx and, in addition, may be important for the entrapment and disposal of phagocytosed particulates. What is clear is that it is not simply absence of endothelium that has a bearing on the outcome of inflammatory stimuli but that structural and functional responses of the endothelial surface to injury, resulting in altered expression of hemostatic and immunologic potential, may have an important bearing on the role of the endothelium in the regulation of microvascular permeability.  相似文献   

10.
Maintenance of the endothelial cell (EC) layer of the vessel wall is essential for proper functioning of the vessel and prevention of vascular disorders. Replacement of damaged ECs could occur through division of surrounding ECs. Furthermore, EC progenitor cells (EPCs), derived from the bone marrow and circulating in the bloodstream, can differentiate into ECs. Therefore, these cells might also play a role in maintenance of the endothelial layer in the vascular system. The proliferative potential of both cell types is limited by shortening of telomeric DNA. Accelerated telomere shortening might lead to senescent vascular wall cells and eventually to the inability of the endothelium to maintain a continuous monolayer. The aim of this study was to describe the dynamics of EC damage and repair and telomere shortening by a mathematical model. In the model, ECs were integrated in a two-dimensional structure resembling the endothelium in a large artery. Telomere shortening was described as a stochastic process with oxidative damage as the main cause of attrition. Simulating the model illustrated that increased cellular turnover or elevated levels of oxidative stress could lead to critical telomere shortening and senescence at an age of 65 yr. The model predicted that under those conditions the EC layer could display defects, which could initiate severe vascular wall damage in reality. Furthermore, simulations showed that 5% progenitor cell homing/yr can significantly delay the EC layer defects. This stresses the potential importance of EPC number and function to the maintenance of vascular wall integrity during the human life span.  相似文献   

11.
A healthy vascular endothelium is coated by the endothelial glycocalyx. Its main constituents are transmembrane syndecans and bound heparan sulphates. This structure maintains the physiological endothelial permeability barrier and prevents leukocyte and platelet adhesion, thereby mitigating inflammation and tissue oedema. Heparinase, a bacterial analogue to heparanase, is known to attack the glycocalyx. However, the exact extent and specificity of degradation is unresolved. We show by electron microscopy, immunohistological staining and quantitative measurements of the constituent parts, that heparinase selectively sheds heparan sulphate from the glycocalyx, but not the syndecans.  相似文献   

12.
The glomerular capillary endothelium is highly specialized to support the selective filtration of massive volumes of plasma. Filtration is driven by Starling forces acting across the glomerular capillary wall, and depends on its large surface area and extremely high water permeability. Glomerular endothelial cells are extremely flat and perforated by dense arrays of trans-cellular pores, the fenestrae. This phenotype is critical for the high glomerular water permeability and depends on podocyte-derived VEGF, as well as TGF-beta. Endothelial cell-derived PDGFB, in turn, is necessary for the establishment of mesangial cells, which sculpt the glomerular loop structure that underlies the large filtration surface area. In pre-eclampsia, inhibition of the VEGF- and TGF-beta signaling pathways leads to endothelial swelling and loss of fenestrae, reducing the glomerular filtration rate. Similarly, in the thrombotic microangiopathies, glomerular endothelial cell injury coupled with inappropriate VWF activation leads to intracapillary platelet aggregation and loss of the flat, fenestrated phenotype, thus reducing the glomerular filtration rate. Normally, a remarkably small fraction of albumin and other large plasma proteins passes across the glomerular capillary wall despite the massive filtration of water and small solutes. An elaborate glycocalyx, which covers glomerular endothelial cells and their fenestrae forms an impressive barrier that, together with other components of the glomerular capillary wall, prevents loss of plasma proteins into the urine. Indeed, microalbuminuria is a marker for endothelial glycocalyx disruption, and most forms of glomerular endothelial cell injury including pre-eclampsia and thrombotic microangiopaties can cause proteinuria.  相似文献   

13.
The endothelial glycocalyx is a gel-like layer which covers the luminal side of blood vessels. The glomerular endothelial cell (GEnC) glycocalyx is composed of proteoglycan core proteins, glycosaminoglycan (GAG) chains, and sialoglycoproteins and has been shown to contribute to the selective sieving action of the glomerular capillary wall. Damage to the systemic endothelial glycocalyx has recently been associated with the onset of albuminuria in diabetics. In this study, we analyze the effects of high glucose on the biochemical structure of the GEnC glycocalyx and quantify functional changes in its protein-restrictive action. We used conditionally immortalized human GEnC. Proteoglycans were analyzed by Western blotting and indirect immunofluorescence. Biosynthesis of GAG was analyzed by radiolabeling and quantified by anion exchange chromatography. FITC-albumin was used to analyze macromolecular passage across GEnC monolayers using an established in vitro model. We observed a marked reduction in the biosynthesis of GAG by the GEnC under high-glucose conditions. Further analysis confirmed specific reduction in heparan sulfate GAG. Expression of proteoglycan core proteins remained unchanged. There was also a significant increase in the passage of albumin across GEnC monolayers under high-glucose conditions without affecting interendothelial junctions. These results reproduce changes in GEnC barrier properties caused by enzymatic removal of heparan sulfate from the GEnC glycocalyx. They provide direct evidence of high glucose-induced alterations in the GEnC glycocalyx and demonstrate changes to its function as a protein-restrictive layer, thus implicating glycocalyx damage in the pathogenesis of proteinuria in diabetes.  相似文献   

14.
We have attempted to determine the chronic effects of doxorubicin, a commonly used anticancer agent, on vascular endothelium using an organ culture system. In rabbit mesenteric arteries treated with 0.3 microM doxorubicin for 7 days, rounding and concentrated nuclei and TUNEL-positive staining were observed in endothelial cells, indicating DNA damage and the induction of apoptosis. However, the endothelium-dependent relaxation induced by substance P and the expression of mRNA encoding endothelial NO synthase (eNOS) did not differ from those in control arteries. In arteries treated with a higher concentration (1 microM) of doxorubicin, apoptosis and damage to nuclei occurred in the endothelial cells at the third day of treatment, and the detachment and excoriation of endothelium from the tunica interna of the vascular wall were also observed. The impairment of endothelium-dependent relaxation was observed at the fifth day of the treatment with 1 microM doxorubicin. Additionally, apoptotic change in the smooth muscle layer was observed at this concentration of doxorubicin. Apoptotic phenomena were further confirmed by DNA fragmentation using isolated bovine aortic endothelial cells (BAECs) and A7r5 vascular smooth muscle cells, and it was revealed that BAECs are more sensitive than A7r5 to the apoptotic effect of doxorubicin. These results suggest that chronic treatment with doxorubicin at therapeutic concentrations induces apoptosis and excoriation of endothelial cells, which diminishes endothelium-dependent relaxation.  相似文献   

15.
Pial microvessels have commonly been used in studies of the blood-brain barrier because of their relative accessibility. To determine the validity of using the pial microvessel as a model system for the blood-brain barrier, we have extended the comparison of pial and cerebral microvessels at the molecular level by a partial characterization of the glycocalyx of pial endothelial cells, in view of the functional importance of anionic sites within the glycocalyx. Rat optic nerves were fixed by vascular perfusion. Anionic sites on the endothelium were labelled with cationic colloidal gold by means of post- and pre-embedding techniques. The effects of digestion of ultrathin sections on subsequent gold labelling was quantified following their treatment with a battery of enzymes. Biotinylated lectins, viz. wheat germ agglutinin and concanavalin A with streptavidin gold, were employed to identify specific saccharide residues. The results demonstrate that the luminal glycocalyx of pial microvessels is rich in sialic-acid-containing glycoproteins. Neuraminidase, which is specific for N-acetylneuraminic (sialic) acid, and papain (a protease with a wide specificity) significantly reduce cationic colloidal gold binding to the luminal endothelial cell plasma membrane. Wheat germ agglutinin (with an affinity for sialic acid) binds more to the luminal than abluminal plasma membrane, whereas concanavalin A, which binds mannose, binds more to the abluminal surface. Similar results have been obtained for cerebral cortical endothelial cells. With respect to these molecular characteristics, therefore, the pial and cortical microvessels appear to be the same. However, since the two vessel types differ in other respects, caution is urged regarding the use of pial microvessels to investigate the blood-brain barrier. Received: 22 July 1996 / Accepted: 11 October 1996  相似文献   

16.
The endothelial glycocalyx mediates interactions between the blood flow and the endothelium. This study aims to evaluate, quantitatively, effects of structural change of the glycocalyx on stress distribution and shear rate on endothelial cells. In the study, the endothelial glycocalyx is modeled as a surface layer of fiber matrix and when exposed to laminar shear flow, the matrix deforms. Fluid velocity and stress distribution inside the matrix and on cell membranes are studied based on a binary mixture theory. Parameters, such as the height and porosity of the matrix and the drag coefficient between fluid and matrix fibrils, are based on available data and estimation from experiments. Simple theoretical solutions are achieved for fluid velocity and stress distribution in the surface matrix. Degradation of the matrix, e.g., by enzyme digestion, is represented by reductions in the volume fraction of fibrils, height, and drag coefficient. From a force balance, total stress on endothelial surface remains constant regardless of structural alteration of the glycocalyx. However, the stress that is transmitted to endothelial cells by direct "pulling" of fiber branches of the glycocalyx is reduced significantly. Fluid shear rate at the cell membrane, on the other hand, increases. The study gives quantitative insight into the effect of the structural change of the glycocalyx on the shear rate and pulling stress on the endothelium. Results can be used to interpret experiments on effects of the glycocalyx in shear induced endothelial responses.  相似文献   

17.
Microparticles (MPs) are released constitutively and from activated cells. MPs play significant roles in vascular homeostasis, injury, and as biomarkers. The unique glycocalyx on the membrane of cells has frequently been exploited to identify specific cell types, however the glycocalyx of the MPs has yet to be defined. Thus, we sought to determine whether MPs, released both constitutively and during injury, from vascular cells have a glycocalyx matching those of the parental cell type to provide information on MP origin. For these studies we used rat pulmonary microvascular and artery endothelium, pulmonary smooth muscle, and aortic endothelial cells. MPs were collected from healthy or cigarette smoke injured cells and analyzed with a panel of lectins for specific glycocalyx linkages. Intriguingly, we determined that the MPs released either constitutively or stimulated by CSE injury did not express the same glycocalyx of the parent cells. Further, the glycocalyx was not unique to any of the specific cell types studied. These data suggest that MPs from both normal and healthy vascular cells do not share the parental cell glycocalyx makeup.  相似文献   

18.
《Biophysical journal》2020,118(7):1564-1575
The endothelial glycocalyx layer (EGL), which consists of long proteoglycans protruding from the endothelium, acts as a regulator of inflammation by preventing leukocyte engagement with adhesion molecules on the endothelial surface. The amount of resistance to adhesive events the EGL provides is the result of two properties: EGL thickness and stiffness. To determine these, we used an atomic force microscope to indent the surfaces of cultured endothelial cells with a glass bead and evaluated two different approaches for interpreting the resulting force-indentation curves. In one, we treat the EGL as a molecular brush, and in the other, we treat it as a thin elastic layer on an elastic half-space. The latter approach proved more robust in our hands and yielded a thickness of 110 nm and a modulus of 0.025 kPa. Neither value showed significant dependence on indentation rate. The brush model indicated a larger layer thickness (∼350 nm) but tended to result in larger uncertainties in the fitted parameters. The modulus of the endothelial cell was determined to be 3.0–6.5 kPa (1.5–2.5 kPa for the brush model), with a significant increase in modulus with increasing indentation rates. For forces and leukocyte properties in the physiological range, a model of a leukocyte interacting with the endothelium predicts that the number of molecules within bonding range should decrease by an order of magnitude because of the presence of a 110-nm-thick layer and even further for a glycocalyx with larger thickness. Consistent with these predictions, neutrophil adhesion increased for endothelial cells with reduced EGL thickness because they were grown in the absence of fluid shear stress. These studies establish a framework for understanding how glycocalyx layers with different thickness and stiffness limit adhesive events under homeostatic conditions and how glycocalyx damage or removal will increase leukocyte adhesion potential during inflammation.  相似文献   

19.
The endothelial glycocalyx (eGC), a carbohydrate-rich layer lining the luminal side of the endothelium, regulates vascular adhesiveness and permeability. Although central to the pathophysiology of vascular barrier dysfunction in sepsis, glycocalyx damage has been generally understudied, in part because of the aberrancy of in vitro preparations and its degradation during tissue handling. The aim of this study was to analyze inflammation-induced damage of the eGC on living endothelial cells by atomic-force microscopy (AFM) nanoindentation technique. AFM revealed the existence of a mature eGC on the luminal endothelial surface of freshly isolated rodent aorta preparations ex vivo, as well as on cultured human pulmonary microvascular endothelial cells (HPMEC) in vitro. AFM detected a marked reduction in glycocalyx thickness (266 ± 12 vs. 137 ± 17 nm, P<0.0001) and stiffness (0.34 ± 0.03 vs. 0.21 ± 0.01 pN/mn, P<0.0001) in septic mice (1 mg E. coli lipopolysaccharides (LPS)/kg BW i.p.) compared to controls. Corresponding in vitro experiments revealed that sepsis-associated mediators, such as thrombin, LPS or Tumor Necrosis Factor-α alone were sufficient to rapidly decrease eGC thickness (-50%, all P<0.0001) and stiffness (-20% P<0.0001) on HPMEC. In summary, AFM nanoindentation is a promising novel approach to uncover mechanisms involved in deterioration and refurbishment of the eGC in sepsis.  相似文献   

20.
The vascular endothelium is a well-recognized target of damage for factors leading to increased cardiovascular risk. Among the agents playing an important role in cardiovascular homeostasis, nitric oxide and prostacyclin represent key markers of endothelial integrity. In the present work, we report for the first time the reduced expression of both endothelial nitric oxide synthase and cyclooxygenase-2 (COX-2) proteins, as well as decreased prostacyclin production, in unstimulated human endothelial cells from insulin-dependent diabetic mothers when compared to cells from non-diabetic, control subjects. According to a major role of COX-2 as a source of prostacyclin production even in unstimulated endothelial cells, prostacyclin production was concentration-dependently inhibited by the selective COX-2 inhibitor SC236. Overall, our results suggest a possible link between reduced endothelial COX-2 and NO-synthase expression and the increased risk of cardiovascular diseases affecting diabetic patients, and point to the use of endothelial cells from diabetic patients as a tool for investigating early dysfunction in pathological endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号