首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ganglioside-induced apoptosis in the cells of IL-2–dependent cytotoxic murine cell line CTLL-2 was shown to be caspase dependent: GM1-, GM2-, and GD3-induced suppression of cell proliferation was cancelled by a general caspase inhibitor Z-VAD-FMK. Ganglioside-induced apoptosis pathways are different for different individual glycolipids; the differences exist both at the initiation and effector stages of the caspase cascade. Only for GM1-induced process, molecular mechanisms of signal transduction coincide with the ones for CD95 and TNF: the participation of both the main initiation caspases 8, 1, and 4, and caspases 3 and 9 as well, has been shown. Caspase 3 participates in the pathway induced by GM3, GD1a, GD1b, and GT1b, but not by GM2. As morphological features show, tumor-associated ganglioside GM2 is also a stimulus of programmed cell death (PCD) for CTLL-2 cell line: addition of GM2 into cell culture has resulted in appearance of annexin V-positive cells and in accumulation of DNA breaks (shown by the TUNEL direct dyeing of the open ends). But a caspase 3 inhibitor Z-DEVD-FMK did not restore the cell proliferation suppressed by GM2, and addition of a fluorescent substrate of caspase 3 Ac-DEVD-AFC did not result in the fluorescence development. So caspase 3 does not participate in downstream pathways of GM2-induced cell apoptosis, and a PCD-effector system other than the apoptosome-mediated one is involved here.  相似文献   

2.
The GD2 ganglioside expressed on neuroectodermal tumor cells has been used as a target for passive and active immunotherapy in patients with malignant melanoma and neuroblastoma. We have reported that immunization of mice with a 47-LDA mimotope of GD2, isolated from a phage display peptide library with anti-GD2 mAb 14G2a, induces MHC class I-restricted CD8(+) T cell responses to syngeneic neuroblastoma tumor cells. The cytotoxic activity of the vaccine-induced CTLs was independent of GD2 expression, suggesting recognition of a novel tumor-associated Ag cross-reacting with 47-LDA. Glycan microarray and immunoblotting studies using 14G2a mAb demonstrated that this Ab is highly specific for the entire carbohydrate motif of GD2 but also cross-reacts with a 105 kDa glycoprotein expressed by GD2(+) and GD2(-) neuroblastoma and melanoma cells. Functional studies of tumor cells grown in three-dimensional collagen cultures with 14G2a mAb showed decreases in matrix metalloproteinase-2 activation, a process regulated by the 105 kDa-activated leukocyte cell adhesion molecule (ALCAM/CD166). A recombinant CD166 glycoprotein was shown to be recognized by 14G2a Ab and inhibition of CD166 expression by RNA interference ablated the cell sensitivity to lysis by 47-LDA-induced CD8(+) T cells in vitro and in vivo. The binding of 14G2a to CD166 was not disruptable by a variety of exo- and endo-glycosidases, implying recognition of a non-glycan epitope on CD166. These results suggest that the vaccine-induced CTLs recognize a 47-LDA cross-reactive epitope expressed by CD166, and reveal a novel mechanism of induction of potent tumor-specific cellular responses by mimotopes of tumor-associated carbohydrate Ags.  相似文献   

3.
Caspase-8 is a member of the cysteine proteases, which are implicated in apoptosis and cytokine processing. Like all caspases, caspase-8 is synthesized as an inactive single polypeptide chain zymogen procaspase and is activated by proteolytic cleavage, through either autoactivation after recruitment into a multimeric complex or trans-cleavage by other caspases. Thus, ligand binding-induced trimerization of death receptors results in recruitment of the receptor-specific adapter protein Fas-associated death domain (FADD), which then recruits caspase-8. Activated caspase-8 is known to propagate the apoptotic signal either by directly cleaving and activating downstream caspases or by cleaving the BH3 Bcl2-interacting protein, which leads to the release of cytochrome c from mitochondria, triggering activation of caspase-9 in a complex with dATP and Apaf-1. Activated caspase-9 then activates further "downstream caspases," including caspase-8. Knockout data indicate that caspase-8 is required for killing induced by the death receptors Fas, tumor necrosis factor receptor 1, and death receptor 3. Moreover, caspase-8-/- mice die in utero as a result of defective development of heart muscle and display fewer hematopoietic progenitor cells, suggesting that the FADD/caspase-8 pathway is absolutely required for growth and development of specific cell types.  相似文献   

4.
An acetylated modification of a tumor-associated ganglioside GD3 (9-O-AcGD3) is expressed in certain tumors and present during early stages of development in different tissues. However, the status and the role of 9-O-AcGD3 in the erythroid progenitor cells remain unexplored. Here, we report the level of 9-O-AcGD3 during erythropoiesis in bone marrow is down regulated during maturation. Signaling via 9-O-AcGD3 induces alteration of morphology and membrane characteristics of mature erythrocytes. This process also induces, a cell death program in these erythrocytes even in the absence of nucleus, mitochondria and other cell organelles sharing features of apoptosis in nucleated cells like membrane alterations, vesicularization, phosphatidyl serine exposure, activation of cysteine proteases like caspase-3. This is the first report of a programmed cell death pathway in mature erythrocytes, triggered by 9-O-AcGD3 contrary to their anti-apoptotic role in lymphoblasts, which suggests a cell specific role of this O-acetyl ester of GD3.  相似文献   

5.
BACKGROUND: Previous work has shown that teratogens such as hyperthermia (HS), 4-hydroperoxycyclophosphamide (4CP), and staurosporine (ST) induce cell death in day 9 mouse embryos by activating the mitochondrial apoptotic pathway. Key to the activation of this pathway is the activation of a caspase cascade involving the cleavage-induced activation of an initiator procaspase, caspase-9, and the downstream effector procaspase, caspase-3. For example, procaspase-3, an inactive proenzyme of 32 kDa is cleaved by activated caspase-9 to generate a large subunit of approximately 17 kDa and a small subunit of approximately 10 kDa. In turn, caspase-3 is known to target a variety of cellular proteins for proteolytic cleavage as part of the process by which dying cells are eliminated. Previous work has also shown that neuroepithelial cells are sensitive to teratogen-induced activation of this pathway and subsequent cell death whereas cells of the heart are resistant. Although caspase-3 is a key effector caspase activated by teratogens, two other effector caspases, caspase-6 and caspase-7, are known; however, their role in teratogen-induced cell death is unknown. METHODS: Because cleavage-induced generation of specific subunits is the most specific assay for activation of caspases, we have used antibodies that recognize the procaspase and one of its active subunits and a Western blot approach to assess the activation of caspase-6 and caspase-7 in day 9 mouse embryos (or heads, hearts and trunks isolated from whole embryos) exposed to HS, 4CP, and ST. To probe the relationship between teratogen-induced activation of caspase-9/caspase-3 and the activation of caspase-6/caspase-7, we used a mitochondrial-free embryo lysate with or without the addition of cytochrome c, recombinant active caspase-3, or recombinant active caspase-9. RESULTS: Western blot analyses show that these three teratogens, HS, 4CP, and ST, induce the activation of procaspase-6 (appearance of the 13 kDa subunit, p13) and caspase-7 (appearance of the 19 kDa subunit, p19) in day 9 mouse embryos. In vitro studies showed that both caspase-6 and caspase-7 could be activated by the addition of cytochrome c to a lysate prepared from untreated embryos. In addition, caspase-6 could be activated by the addition of either recombinant caspase-3 or caspase-9 to a lysate prepared from untreated embryos. In contrast, caspase-7 could be activated by addition of recombinant caspase-3 but only minimally by recombinant caspase-9. Like caspase-9/caspase-3, caspase-6 and caspase-7 were not activated in hearts isolated from embryos exposed to these three teratogens. CONCLUSIONS: HS, 4CP and ST induce the cleavage-dependent activation of caspase-6 and caspase-7 in day 9 mouse embryos. Results using DEVD-CHO, a caspase-3 inhibitor, suggest that teratogen-induced activation of caspase-6 is mediated by caspase-3. In addition, our data suggest that caspase-7 is activated primarily by caspase-3; however, we cannot rule out the possibility that this caspase is also activated by caspase-9. Finally, we also show that teratogen-induced activation of caspase-6 and caspase-7 are blocked in the heart, a tissue resistant to teratogen-induced cell death.  相似文献   

6.
Polyphenol phytoalexin (resveratrol), found in grapes and red wine is a strong chemopreventive agent with promising safety records with human consumption and unique forms of cell death induction in a variety of tumor cells. However, the mechanism of resveratrol-induced apoptosis upstream of mitochondria is still not defined. The results from this study suggest that caspase-2 activation occurs upstream of mitochondria in resveratrol-treated cells. The upstream activation of caspase-2 is not dependent on its antioxidant property or NF-kappaB inhibition. The activated caspase-2 triggers mitochondrial apoptotic events by inducing conformational changes in Bax/Bak with subsequent release of cytochrome c, apoptosis-inducing factor, and endonuclease G. Caspase-8 activation seems to be independent of these events and does not appear to be mediated by classical death receptor processing or downstream caspases. Both caspase-2 and caspase-8 contribute toward the mitochondrial translocation of Bid, since neither caspase-8 inhibition nor caspase-2 inhibition could prevent translocation of Bid DsRed into mitochondria. Caspase-2 inhibitors or antisense silencing of caspase-2 prevented cell death induced by resveratrol and partially prevented processing of downstream caspases, including caspase-9, caspase-3, and caspase-8. Studies using mouse embryonic fibroblasts deficient for both Bax and Bak indicate the contribution of both Bax and Bak in mediating cell death induced by resveratrol and the existence of Bax/Bak-independent cell death possibly through caspase-8- or caspase-2-mediated mitochondria-independent downstream caspase processing.  相似文献   

7.
Tumor necrosis factor alpha (TNF) or cytotoxic anti-Fas antibodies lead to the activation of apoptotic proteases (caspases) and to sphingomyelinase-mediated ceramide generation. Caspases and ceramide are both known to induce apoptosis on its own, but their relative contribution to Fas- and TNF-induced cell death is not well established. We report here that rapid apoptosis induced by TNF in U937 cells or anti-Fas in Jurkat cells, in the presence of cycloheximide, induced only a very low increase (<20%) in the cell ceramide content. Neither treatment with inhibitors of sphingomyelinases nor incubation of cells with fumonisin B1, which inhibits de novo ceramide synthesis, prevented TNF and Fas-mediated apoptosis. Increasing or depleting the cell ceramide content by prolonged culture in the presence of monensin or fumonisin B1, respectively, did not prevent TNF and Fas-mediated apoptosis. Treatment of cells with sphingomyelinase inhibitors did not affect to the activation of CPP32 (caspase-3) induced by TNF or anti-Fas antibodies. Chromatin condensation and fragmentation in cells treated with anti-Fas or TNF was abrogated by peptide inhibitors of caspases, which also inhibited Fas-, but not TNF-induced cell death. These results indicate that while ceramide does not seem to act as a critical mediator of TNF and Fas-induced apoptosis, it is generated as a consequence of CPP32 activation and could contribute to the spread of the intracellular death signal.  相似文献   

8.
In the intrinsic apoptosis pathway, mitochondrial disruption leads to the release of multiple apoptosis signaling molecules, triggering both caspase-dependent and -independent cell death. The release of cytochrome c induces the formation of the apoptosome, resulting in caspase-9 activation. Multiple caspases are activated downstream of caspase-9, however, the precise order of caspase activation downstream of caspase-9 in intact cells has not been completely resolved. To characterize the caspase-9 signaling cascade in intact cells, we employed chemically induced dimerization to activate caspase-9 specifically. Dimerization of caspase-9 led to rapid activation of effector caspases, including caspases-3, -6 and -7, as well as initiator caspases, including caspases-2, -8 and -10, in H9 and Jurkat cells. Knockdown of caspase-3 suppressed caspase-9-induced processing of the other caspases downstream of caspase-9. Silencing of caspase-6 partially inhibited caspase-9-mediated processing of caspases-2, -3 and -10, while silencing of caspase-7 partially inhibited caspase-9-induced processing of caspase-2, -3, -6 and -10. In contrast, deficiency in caspase-2, -8 or -10 did not significantly affect the caspase-9-induced caspase cascade. Our data provide novel insights into the ordering of a caspase signaling network downstream of caspase-9 in intact cells during apoptosis.  相似文献   

9.
The caspase family of proteases represents the main machinery by which apoptosis occurs. In vitro studies have revealed that upstream caspases are activated in response to apoptotic stimuli, and the active caspases in turn process downstream effector caspases that are involved in the destruction of cellular structure. Caspase-9 is an upstream caspase that can become active in response to cellular damage, including deprivation of growth factors and exposure to oxidative stress in vitro. Little is known, however, about how activation of caspase-9 is temporally and spatially regulated in vivo, e.g. during development. We have identified vimentin as the first example of a caspase-9 substrate that is not a downstream procaspase. Immunohistochemical analysis, using a specific antibody against the vimentin fragments generated by caspase-9, showed that caspase-9 cleaves vimentin in apoptotic cells in the embryonic nervous system and the interdigital regions. This result is consistent with observations that gene knockouts of caspase-9 and its activator, Apaf-1, result in developmental defects in these tissues. Our results show that the specific antibody is useful for in situ detection of caspase-9 activation in programmed cell death.  相似文献   

10.
Anti-GD2 ganglioside antibodies could be a promising, novel therapeutic approach to the eradication of human small cell lung cancers, as anti-GD2 monoclonal antibodies (mAbs) induced apoptosis of small cell lung cancer cells in culture. In this study, we analyzed the mechanisms for the apoptosis of these cells by anti-GD2 mAbs and elucidated the mechanisms by which apoptosis signals were transduced via reduction in the phosphorylation levels of focal adhesion kinase (FAK) and the activation of a MAPK family member, p38, upon the antibody binding. Knock down of FAK resulted in apoptosis and p38 activation. The inhibition of p38 activity blocked antibody-induced apoptosis, indicating that p38 is involved in this process. Immunoprecipitation-immunoblotting analysis of immune precipitates with anti-FAK or anti-integrin antibodies using an anti-GD2 mAb revealed that GD2 could be precipitated with integrin and/or FAK. These results suggested that GD2, integrin, and FAK form a huge molecular complex across the plasma membrane. Taken together with the fact that GD2+ cells showed marked detachment from the plate during apoptosis, GD2+ small cell lung cancer cells seemed to undergo anoikis through the conformational changes of integrin molecules and subsequent FAK dephosphorylation.  相似文献   

11.
Exposure of MDA-MB-231 and MCF-7/VP human breast carcinoma cells to theanthracyclines doxorubicin and WP631 induced polyploidy, formation of multinucleated cellsand cell death by mitotic catastrophe through caspase-dependent and caspase-independentmechanisms. In both cell lines, the antiproliferative effect of WP631 was higher than that ofdoxorubicin and a transient halt in G2/M was observed without cell senescence, while p53-dependent apoptosis did not occur in these cells. Mitotic catastrophe was linked to necrosis, butalso to apoptosis-like death, estimated by differential cell staining with Annexin-V-fluoresceinand propidium iodide. Drug-induced changes in the expression of c-myc and p21WAF1, and in theirrespective protein levels, were observed. They depended on the cell line, the anthracycline usedand its concentration, and they were consistent with the cell cycle progression through G2 tomitosis. Significant activation of caspase-2 and caspase-3 was only observed in MDA-MB-231cells treated with doxorubicin but not with WP631, indicating that caspases may be notmandatory for the occurrence of cell death through mitotic catastrophe. In MCF-7/VP cells,which do not express functional caspase-3, mitotic catastrophe was also induced.  相似文献   

12.
XIAP is member of the IAP family of anti-apoptotic proteins and is known for its ability to bind and suppress caspase family cell death proteases. A phenylurea series of chemical inhibitors of XIAP was recently generated by our laboratories (Schimmer, A. D., Welsh, K., Pinilla, C., Bonneau, M., Wang, Z., Pedersen, I. M., Scott, F. L., Glinsky, G. V., Scudiero, D. A., Sausville, E., Salvesen, G., Nefzi, A., Ostresh, J. M., Houghten, R. A., and Reed, J. C. (2004) Cancer Cell 5, 25-35). We examined the mechanisms of action of these chemical compounds using biochemical, molecular biological, and genetic methods. Active phenylurea-based compounds dissociated effector protease caspase-3 but not initiator protease caspase-9 from XIAP in vitro and restored caspase-3 but not caspase-9 enzymatic activity. When applied to tumor cell lines in culture, active phenylurea-based compounds induced apoptosis in a rapid, concentration-dependent manner, associated with activation of cellular caspases. Apoptosis induced by active phenylurea-based compounds was blocked by chemical inhibitors of caspases, with inhibitors of downstream effector caspases displaying more effective suppression than inhibitors of upstream initiator caspases. Phenylurea-based XIAP antagonists induced apoptosis (defined by annexin V staining) prior to mitochondrial membrane depolarization, in contrast to cytotoxic anticancer drugs. Consistent with these findings, apoptosis induced by phenylurea-based compounds was not altered by genetic alterations in the expression of Bcl-2 family proteins that control mitochondria-dependent cell death pathways, including over-expression of anti-apoptotic proteins Bcl-2 or Bcl-X(L) and genetic ablation of pro-apoptotic proteins Bax and Bak. Conversely, conditional over-expression of an active fragment of XIAP or genetic ablation of XIAP expression altered the apoptosis dose-response of the compounds. Altogether, these findings indicate that phenylurea-based XIAP antagonists block interaction of downstream effector caspases with XIAP, thus inducing apoptosis of tumor cell lines through a caspase-dependent, Bcl-2/Bax-independent mechanism.  相似文献   

13.
Apoptosis, or programmed cell death, plays an important role in many physiological and diseased conditions. Induction of apoptosis in cancer cells has been monitored during the cells' progression to apoptosis by anti-cancer drugs and inhibitors of the cell surface glycolipids, gangliosides and SA-Le(x) biosyntheses [Basu, S (1991) Glycobiology, 1, 469-475; and ibid, 427-435] in animal tissues and human carcinoma cells, respectively. Induction of apoptosis in cancer cells by cell surface glycolipids in the human breast cancer (SKBR3) cells is the aim in this study. We have employed the disialosyl gangliosides (GD3 and GD1b) to initiate apoptosis in SKBR3 cells grown in culture in the presence of (14)C-L-Serine. At lower concentrations (0-20 microM) of exogenously added non-radioactive GD3, GD1b, or bovine ganglioside mixture (GM1:GD1a:GD1b:GT1a 2:4:4:2), the incorporation of radioactivity in both (14)C-sphingolipid and (14)C-ceramide was higher. However, at higher concentrations (20-100 microM), wherein apoptosis occurred in high frequency, the (14)C-incorporation decreased in both GSLs and ceramide. Apoptosis induction was monitored by the concomitant appearance of caspase-3 activation and the binding of a fluorescent dye PSS-380 to the outer leaflet of phosphatidyl-serine. These results indicated that, in addition to many unknown cell surface glycoconjugates GD3 or GD1b (disialosyl ganglioside) could play an important role in the regulation of breast carcinoma cell death.  相似文献   

14.
Role of tumor-associated gangliosides in cancer progression   总被引:11,自引:0,他引:11  
Birklé S  Zeng G  Gao L  Yu RK  Aubry J 《Biochimie》2003,85(3-4):455-463
Neuroectodermic tumors can mostly be characterized by the presence of tumor-associated glycosphingolipid antigens, such as gangliosides, defined by monoclonal antibodies. Recently, cumulative evidence indicates that gangliosides modify the biological effects of several trophic factors, in vitro and in vivo, as well as the mitogenic signaling cascade that these factors generate. The functional roles of gangliosides in tumor progression can be revisited: (i) ganglioside antigens on the cell surface, or shed from the cells, act as immunosuppressors, as typically observed for the suppression of cytotoxic T cells and dendritic cells, (ii) certain gangliosides, such as GD3 or GM2, promote tumor-associated angiogenesis, (iii) gangliosides strongly regulate cell adhesion/motility and thus initiate tumor metastasis, (iv) ganglioside antigens are directly connected with transducer molecules in microdomains to initiate adhesion coupled with signaling, and (v) ganglioside antigens and their catabolites are modulators of signal transduction through interaction with tyrosine kinases associated with growth factor receptors or other protein kinases. Given the potential importance of these sialylated gangliosides and their modulating biological behavior in vivo, further studies on the role of gangliosides are warranted.  相似文献   

15.
To define the role of caspase-3 in H2O2-induced apoptosis, we introduced caspase-3 cDNA into MCF-7 breast carcinoma cells that otherwise lack caspase-3 expression. H2O2 treatment induced DNA fragmentation and nuclear condensation in the caspase-3-expressing cells, but not in the caspase-3-deficient cells. This indicated that caspase-3 is essential for nuclear events. However, H2O2 induced an externalization of membrane phosphatidylserine (PS) and cell death regardless of caspase-3 expression. These events were not suppressed by Ac-DEVD-CHO and Z-VAD-fmk, which inhibit DEVD-specific caspases and a broad spectrum of caspases, respectively. In Jurkat T cells, these inhibitors abolished H2O2-induced PS relocalization, but not cell death. Therefore, caspases appear to be dispensable for lethality by H2O2, but required for PS redistribution in a cell-type-specific manner.  相似文献   

16.
Glycosphingolipids, including gangliosides, are emerging as signaling intermediates of extracellular stimuli. Because mitochondria play a key role in the orchestration of death signals, we assessed the interaction of GD3 ganglioside (GD3) with mitochondria and the subsequent cascade of events that culminate in cell death. In vitro studies with isolated mitochondria from rat liver demonstrate that GD3 elicited a burst of peroxide production within 15-30 min, which preceded the opening of the mitochondrial permeability transition, followed by cytochrome c (cyt c) release. These effects were mimicked by lactosylceramide and N-acetyl-sphingosine but not by sphinganine or sphingosine and were prevented by cyclosporin A and butylated hydroxytoluene (BHT). Reconstitution of mitochondria pre-exposed to GD3 with cytosol from rat liver in a cell-free system resulted in the proteolytic processing of procaspase 3 and subsequent caspase 3 activation. Intact hepatocytes or U937 cells selectively depleted of glutathione in mitochondria by 3-hydroxyl-4-pentenoate (HP) with the sparing of cytosol reduced glutathione (GSH) were sensitized to GD3, manifested as an apoptotic death. Inhibition of caspase 3 prevented the apoptotic phenotype of HP-treated cells caused by GD3 without affecting cell survival; in contrast, BHT fully protected HP-treated cells to GD3 treatment. Treatment of cells with tumor necrosis factor increased the level of GD3, whereas blockers of mitochondrial respiration at complex I and II protected sensitized cells to GD3 treatment. Thus, the effect of GD3 as a lipid death effector is determined by its interaction with mitochondria leading to oxidant-dependent caspase activation. Mitochondrial glutathione plays a key role in controlling cell survival through modulation of the oxidative stress induced by glycosphingolipids.  相似文献   

17.
Apoptosis plays important roles in host defense, including the elimination of virus-infected cells. The executioners of apoptosis are caspase family proteases. We report that vaccinia virus-encoded F1L protein, previously recognized as anti-apoptotic viral Bcl-2 family protein, is a caspase-9 inhibitor. F1L binds to and specifically inhibits caspase-9, the apical protease in the mitochondrial cell death pathway while failing to inhibit other caspases. In cells, F1L inhibits apoptosis and proteolytic processing of caspases induced by overexpression of caspase-9 but not caspase-8. An N-terminal region of F1L preceding the Bcl-2-like fold accounts for caspase-9 inhibition and significantly contributes to the anti-apoptotic activity of F1L. Viral F1L thus provides the first example of caspase inhibition by a Bcl-2 family member; it functions both as a suppressor of proapoptotic Bcl-2 family proteins and as an inhibitor of caspase-9, thereby neutralizing two sequential steps in the mitochondrial cell death pathway.  相似文献   

18.
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder resulting in selective neuronal loss and dysfunction in the striatum and cortex. The molecular pathways leading to the selectivity of neuronal cell death in HD are poorly understood. Proteolytic processing of full-length mutant huntingtin (Htt) and subsequent events may play an important role in the selective neuronal cell death found in this disease. Despite the identification of Htt as a substrate for caspases, it is not known which caspase(s) cleaves Htt in vivo or whether regional expression of caspases contribute to selective neuronal cells loss. Here, we evaluate whether specific caspases are involved in cell death induced by mutant Htt and if this correlates with our recent finding that Htt is cleaved in vivo at the caspase consensus site 552. We find that caspase-2 cleaves Htt selectively at amino acid 552. Further, Htt recruits caspase-2 into an apoptosome-like complex. Binding of caspase-2 to Htt is polyglutamine repeat-length dependent, and therefore may serve as a critical initiation step in HD cell death. This hypothesis is supported by the requirement of caspase-2 for the death of mouse primary striatal cells derived from HD transgenic mice expressing full-length Htt (YAC72). Expression of catalytically inactive (dominant-negative) forms of caspase-2, caspase-7, and to some extent caspase-6, reduced the cell death of YAC72 primary striatal cells, while the catalytically inactive forms of caspase-3, -8, and -9 did not. Histological analysis of post-mortem human brain tissue and YAC72 mice revealed activation of caspases and enhanced caspase-2 immunoreactivity in medium spiny neurons of the striatum and the cortical projection neurons when compared to controls. Further, upregulation of caspase-2 correlates directly with decreased levels of brain-derived neurotrophic factor in the cortex and striatum of 3-month YAC72 transgenic mice and therefore suggests that these changes are early events in HD pathogenesis. These data support the involvement of caspase-2 in the selective neuronal cell death associated with HD in the striatum and cortex.  相似文献   

19.
In general, apoptotic stimuli lead to activation of caspases. Once activated, a caspase can induce intracellular signaling pathways involving proteolytic activation of other caspase family members. We report the in vitro processing of eight murine procaspases by their enzymatically active counterparts. Caspase-8 processed all procaspases examined. Caspase-1 and -11 processed the effector caspases procaspase-3 and -7, and to a lesser extent procaspase-6. However, vice versa, none of the caspase-1-like procaspases was activated by the effector caspases. This suggests that the caspase-1 subfamily members either act upstream of the apoptosis effector caspases or else are part of a totally separate activation pathway. Procaspase-2 was maturated by caspase-8 and -3, and to a lesser extent by caspase-7, while the active caspase-2 did not process any of the procaspases examined, except its own precursor. Hence, caspase-2 might not be able to initiate a wide proteolytic signaling cascade. Additionally, cleavage data reveal not only proteolytic amplification between caspase-3 and -8, caspase-6 and -3, and caspase-6 and -7, but also positive feedback loops involving multiple activated caspases. Our results suggest the existence of a hierarchic proteolytic procaspase activation network, which would lead to a dramatic increase in multiple caspase activities once key caspases are activated. The proteolytic procaspase activation network might allow that different apoptotic stimuli result in specific cleavage of substrates responsible for typical processes at the cell membrane, the cytosol, the organelles, and the nucleus, which characterize a cell dying by apoptosis.  相似文献   

20.
Excess ER stress induces caspase-12 activation and/or cytochrome c release, causing caspase-9 activation. Little is known about their relationship during ER stress-mediated cell death. Upon ER stress, P19 embryonal carcinoma (EC) cells showed activation of various caspases, including caspase-3, caspase-8, caspase-9, and caspase-12, and extensive DNA fragmentation. We examined the relationship between ER stress-mediated cytochrome c/caspase-9 and caspase-12 activation by using caspase-9- and caspase-8-deficient mouse embryonic fibroblasts and a P19 EC cell clone [P19-36/12 (-) cells] lacking expression of caspase-12. Caspase-9 and caspase-8 deficiency inhibited and delayed the onset of DNA fragmentation but did not inhibit caspase-12 processing induced by ER stress. P19-36/12 (-) cells underwent apoptosis upon ER stress, with cytochrome c release and caspase-8 and caspase-9 activation. The dominant negative form of FADD and z-VAD-fmk inhibited caspase-8, caspase-9, Bid processing, cytochrome c release, and DNA fragmentation induced by ER stress, suggesting that caspase-8 and caspase-9 are the main caspases involved in ER stress-mediated apoptosis of P19-36/12 (-) cells. Caspase-8 deficiency also inhibited the cytochrome c release induced by ER stress. Thus, in parallel with the caspase-12 activation, ER stress triggers caspase-8 activation, resulting in cytochrome c/caspase-9 activation via Bid processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号