首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tn10 tet operator mutations affecting Tet repressor recognition.   总被引:4,自引:1,他引:4       下载免费PDF全文
The effect of single base pair alterations of the Tn10 encoded tet operator on recognition of Tet repressor was studied in vivo using a repressor titration system and in vitro by dissociation rate determinations of the respective complexes. Both methods reveal that the two operators, O1 and O2, which are in a tandem arrangement in the wild type, are recognized with a two-fold different affinity when separated. Studies on synthetic operator sequences indicate that the Tet repressor binds with higher affinity to the non-palindromic O2 wildtype than to the respective palindromic sequences. The in vivo repressor titration system links the expression of lacZ to the affinity of tet operator to Tet repressor. It was used to isolate tet operator mutations with reduced affinity to the repressor. The in vivo and in vitro obtained results with these mutants agree quantitatively and indicate, that the GC base pairs at positions 2, 6, and 8 are involved in interaction with the Tet repressor. Their importance for recognition decreases in that order. Transitions at position 7 of the tet operator show smaller effects on recognition than transversions.  相似文献   

2.
The Tn10 derived Tet repressor contains an amino acid segment with high homology to the alpha-helix-turn-alpha-helix motif (HTH) of other DNA binding proteins. The five most conserved amino acids in HTH are probably involved in structural formation of the motif. Their functional role was probed by saturation mutagenesis yielding 95 single amino acid replacement mutants of Tet repressor. Their binding efficiencies to tet operator were quantitatively determined in vivo. All functional mutants contain amino acid substitutions consistent with their proposed role in a HTH. In particular, only the two smallest amino acids (serine, glycine) can substitute a conserved alanine in the proposed first alpha-helix without loss of activity. The last position of the first alpha-helix, the second position in the turn, and the fourth position in the second alpha-helix require mostly hydrophobic residues. The proposed C-terminus of the first alpha-helix is supported by a more active asparagine compared to glutamine replacement mutant of the wt leucine residue. The turn is located close to the protein surface as indicated by functional lysine and arginine replacements for valine. A glycine residue at the first position in the turn can be replaced by any amino acid yielding mutants with at least residual tet operator affinity. A structural model of the HTH of Tet repressor is presented.  相似文献   

3.
A saturating oligonucleotide-directed mutagenesis of both tet operators in the tet regulatory sequence was performed yielding mutants with four identical base pair exchanges at equivalent positions in the four tet operator half sides. The mutants were cloned between bipolar lacZ and galK indicator genes on a multicopy plasmid allowing the quantitative analysis of their effects in vivo. In the absence of Tet repressor the mutations lead to considerably different expression levels of both genes. They are discussed with respect to the promoter consensus sequences. In particular, the -10 region of the in vivo active tetPR2 promoter is unambiguously defined by these results. In the presence of Tet repressor most of the mutants exhibit a lower affinity for that protein as determined quantitatively by their reduced expression levels. In general, tet operator recognition is most strongly affected by alterations of base pairs near the center of the palindromic sequence. The most important position is the third base pair, followed by base pairs two, four, five and six, the latter showing similar effects as base pair one. At each position, the four possible base pairs show different affinities for Tet repressor. They are discussed according to their exposure of H-bond donors and -acceptors in the major and minor grooves of the B-DNA. The results are in agreement with major groove contacts at positions two, three and five. At position four a low potential correlation of efficiencies with the H-bonding in the minor groove is found, while mutations at position six seem to influence repressor binding by other mechanisms.  相似文献   

4.
B Hecht  G Müller    W Hillen 《Journal of bacteriology》1993,175(4):1206-1210
We have developed a new genetic selection system for Tet repressor mutations with a noninducible phenotype for tetracycline (TetRs). Extensive chemical mutagenesis of tetR yielded 93 single-site Tet repressor mutations. They map from residue 23 preceding the alpha-helix-turn-alpha-helix operator binding motif to residue 196 close to the C terminus of the repressor. Thirty-three of the mutations are clustered between residues 95 and 117, and another 27 are clustered between residues 131 to 158. Several of the mutants were characterized quantitatively in vivo for induction by tetracycline and anhydrotetracycline. While all of these are severely reduced in tetracycline-mediated induction, only some of them are affected for anhydrotetracycline-mediated induction.  相似文献   

5.
6.
An engineered Tn10-encoded Tet repressor, bearing a single Trp residue at position 43, in the putative alpha-helix-turn-alpha-helix motif of the operator binding domain, was studied by time-resolved fluorescence and anisotropy. Fluorescence intensity decay data suggested the existence of two classes of Trp-43, defined by different lifetimes. Analysis of anisotropy data were consistent with a model in which each class was defined by a different lifetime, rotational correlation time, and fluorescence emission maximum. The long-lifetime class had a red-shifted spectrum, similar to that of tryptophan zwitterion in water, and a short rotational correlation time. In contrast, the spectrum of the short-lifetime class was blue-shifted 10 nm compared to that of the long-lifetime class. Its correlation time was similar to that of the protein, which showed that Trp in this class was entirely constrained. Trp in this latter class could not be quenched by iodide, whereas most of the long-lifetime class was easily accessible. Presence of disruptive agents, such as 1 M GuCl or 3 M KCl, did not alter markedly the lifetimes but increased the weight of the short-lifetime component. In the same time, the rotational correlation time of this component was dramatically reduced. Taken together, our data suggest that the long-lifetime class could correspond to the tryptophan residues exposed to solvent whereas the short-lifetime class would correspond to the tryptophan residues embedded inside the hydrophobic core holding the helix-turn-helix motif. Destabilization of hydrophobic interactions would lead to an increase in the weight of the latter class for entropic reasons. Analysis of the fluorescence parameters of Trp-43 could provide structural information on the operator binding domain of Tet repressor.  相似文献   

7.
Tet repressor binding induced curvature of tet operator DNA.   总被引:1,自引:1,他引:1       下载免费PDF全文
Tet repressor dimer binds to two tet operator sites spaced by 30 bp in the Tn10 encoded tet regulatory DNA. The effect of repressor binding on the gel mobility of circular permutated DNA fragments containing either one or both operator sequences is reported. The EcoRI induced bending of DNA is used to compare the results with other protein binding induced structural perturbations of DNA. Tet repressor bends a DNA fragment with a single tet operator to an angle of 42 degrees +/- 7 degrees. The apparent bend angle of DNA fragments containing the tandem tet operator arrangement occupied by two Tet repressor dimers turns out to be 52 degrees +/- 9 degrees. These results are interpreted with respect to the end to end distances of the bent DNA fragments. They indicate that either the intervening tet regulatory DNA between the operators or the bound operator sequences themselves contain additional perturbations from the canonical B-DNA structure. This finding is discussed in the light of previously obtained results from CD, neutron scattering, and electrooptical studies.  相似文献   

8.
Lac repressor, lambda cro protein and their operator complexes are structurally, biochemically and genetically well analysed. Both proteins contain a helix-turn-helix (HTH) motif which they use to bind specifically to their operators. The DNA sequences 5'-GTGA-3' and 5'-TCAC-3' recognized in palindromic lac operator are the same as in lambda operator but their order is inverted form head to head to tail to tail. Different modes of aggregation of the monomers of the two proteins determine the different arrangements of the HTH motifs. Here we show that the HTH motif of lambda cro protein can replace the HTH motif of Lac repressor without changing its specificity. Such hybrid Lac repressor is unstable. It binds in vitro more weakly than Lac repressor but with the same specificity to ideal lac operator. It does not bind to consensus lambda operator.  相似文献   

9.
Steady-state fluorescence quenching and time-resolved measurements have been performed to resolve the fluorescence contributions of the two tryptophan residues, W43 and W75, in the subunit of the homodimer of the Tet repressor fromEscherichia coli. The W43 residue is localized within the helix-turn-helix structural domain, which is responsible for sequence-specific binding of the Tet repressor to thetet operator. The W75 residue is in the protein matrix near the tetracycline-binding site. The assignment of the two residues has been confirmed by use of single-tryptophan mutants carrying either W43 or W75. The FQRS (fluorescence-quenching-resolved-spectra) method has been used to decompose the total emission spectrum of the wild-type protein into spectral components. The resolved spectra have maxima of fluorescence at 349 and 324 nm for the W43 and W75 residues, respectively. The maxima of the resolved spectra are in excellent agreement with those found using single-tryptophan-containing mutants. The fluorescence decay properties of the wild type as well as of both mutants of Tet repressor have been characterized by carrying out a multitemperature study. The decays of the wild-type Tet repressor and W43-containing mutant can be described as being of double-exponential type. The W75 mutant decay can be described by a Gaussian continuous distribution centered at 5.0 nsec with a bandwidth equal to 1.34 nsec. The quenching experiments have shown the presence of two classes of W43 emission. One of the components, exposed to solvent, has a maximum of fluorescence emission at 355 nm, with the second one at about 334 nm. The red-emitting component can be characterized by bimolecular-quenching rate constant,k q equal to 2.6×109, 2.8×109, and 2.0×109 M?1 sec?1 for acrylamide, iodide, and succinimide, respectively. The bluer component is unquenchable by any of the quenchers used. The W75 residue of the Tet repressor has quenching rate constant equal to 0.85×109 and 0.28 × 109 M?1 sec?1 for acrylamide and succinimide, respectively. These values indicate that the W75 is not deeply buried within the protein matrix. Our results indicate that the Tet repressor can exist in its ground state in two distinct conformational states which differ in the microenvironment of the W43 residue.  相似文献   

10.
Saturation mutagenesis of Tn10-encoded tet operator O1 was performed by chemical synthesis of 30 sequence variants yielding all possible point mutations of an operator half side. Their effect on Tet repressor binding was scored by an in-vivo repressor titration system. Tet repressor affinities of selected operator mutants were further characterized in vitro by dissociation rate measurements. The O1 sequence spans 19 base-pairs. Out of these, all 18 palindromic base-pairs are involved in Tet repressor recognition. The central base-pair does not contribute to sequence-specific binding of Tet repressor. At position 1 a pyrimidine residue is sufficient for maximal affinity to the repressor. At positions 2, 3 and 4, each mutation reduces repressor binding at least tenfold. Mutations at positions 5, 6, 7, 8 and 9 result in less drastic reductions of Tet repressor binding. Differential effects of mutations at a given position are used to deduce the chemical functions contacted by Tet repressor. The T.A to A.T transversion at position 9 increases Tet repressor affinity slightly, while all other mutations decrease repressor binding. The increased affinity of the wild-type tet operator O2 compared to wild-type O1 results from the addition of two favorable transversions at positions +/- 9 and an unfavorable T.A to C.G transition at position -7. Deletion or palindromic doubling of the central base-pair of the O1 palindrome reveals that the wild-type spacing of both operator half sides is crucial for efficient Tet repressor binding.  相似文献   

11.
Redesign of the bacteriophage 434 Cro repressor was accomplished by using an in vivo genetic screening system to identify new variants that specifically bound previously unrecognized DNA sequences. Site-directed, combinatorial mutagenesis of the 434 Cro helix-turn-helix (HTH) motif generated libraries of new variants which were screened for binding to new target sequences. Multiple mutations of 434 Cro that functionally converted wild-type (wt) 434 Cro DNA binding-sequence specificity to that of a lambda bacteriophage-specific repressor were identified. The libraries contained variations within the HTH sequence at only three positions. In vivo and in vitro analysis of several of the identified 434 Cro variants showed that the relatively few changes in the recognition helix of the HTH motif of 434 Cro resulted in specific and tight binding of the target DNA sequences. For the best 434 Cro variant identified, an apparent K(d) for lambda O(R)3 of 1 nM was observed. In competition experiments, this Cro variant was observed to be highly selective. We conclude that functional 434 Cro repressor variants with new DNA binding specificities can be generated from wt 434 Cro by mutating just the recognition helix. Important characteristics of the screening system responsible for the successful identifications are discussed. Application of the techniques presented here may allow the identification of DNA binding protein variants that functionally affect DNA regulatory sequences important in disease and industrial and biotechnological processes.  相似文献   

12.
We analysed the conformational states of free, tet operator-bound and anhydrotetracycline-bound Tet repressor employing a Trp-scanning approach. The two wild-type Trp residues in Tet repressor were replaced by Tyr or Phe and single Trp residues were introduced at each of the positions 162-173, representing part of an unstructured loop and the N-terminal six residues of alpha-helix 9. All mutants retained in vivo inducibility, but anhydrotetracycline-binding constants were decreased up to 7.5-fold when Trp was in positions 169, 170 and 173. Helical positions (168-173) differed from those in the loop (162-167) in terms of their fluorescence emission maxima, quenching rate constants with acrylamide and anisotropies in the free and tet operator-complexed proteins. Trp fluorescence emission decreased drastically upon atc binding, mainly due to energy transfer. For all proteins, either free, tet operator bound or anhydrtetracycline-bound, mean fluorescence lifetimes were determined to derive quenching rate constants. Solvent-accessible surfaces of the respective Trp side chains were calculated and compared with the quenching rate constants in the anhydrotetracycline-bound complexes. The results support a model, in which residues in the loop become more exposed, whereas residues in alpha-helix 9 become more buried upon the induction of TetR by anhydrotetracycline.  相似文献   

13.
The N-terminal residues preceding the alpha-helix-turn-alpha-helix motif on the Tn10 Tet repressor protein were probed by oligonucleotide-directed deletion mutagenesis for their role in protein activity. All deletion mutants showed decreased repression in vivo, emphasizing the importance of the N terminus for tet operator binding. Only two of the mutants, TetR delta 2-23 and TetR delta 3-8 displayed a reduced intracellular protein level. The remaining deletion mutants showed either reduced binding to tet operator and inducibility by tetracycline or transdominance. We conclude that these deletions do not affect stability and overall protein structure. DNA binding activities of residue-wise increasing deletions, TetR delta 9 through TetR delta 9-13, reveal a pattern consistent with an alpha-helical structure of the affected residues. This conclusion is supported by the helical wheel projection and the hydrophobic moment profile calculated for the protein segment ranging from residues S7-V20. We propose that these residues form an amphipathic alpha-helix which packs closely against the alpha-helix-turn-alpha-helix motif and is essential for Tet repressor activity. The residues preceding this putative alpha-helix contribute to DNA binding, but no direct interactions with base pairs of tet operator were revealed in a loss of contact analysis. Individual mutation of the 4 charged residues to alanine at the N terminus shows that no single residue can account for the reduction in repression observed for the deletion mutants.  相似文献   

14.
H C Nelson  R T Sauer 《Cell》1985,42(2):549-558
Intragenic, second-site reversion has been used to identify amino acid substitutions that increase the affinity and specificity of the binding of lambda repressor to its operator sites. Purified repressors bearing the second-site substitutions bind operator DNA from 3 to 600 fold more strongly than wild type; these affinity changes result from both increased rates of operator association and decreased rates of operator dissociation. Three of the revertant substitutions occur in the alpha 2 and alpha 3 DNA binding helices of repressor and seem to increase affinity by introducing new salt-bridges or hydrogen bonds with the sugar-phosphate backbone of the operator site. The fourth substitution alters the alpha 5 dimerization helix of repressor and appears to increase operator affinity indirectly.  相似文献   

15.
A thorough investigation of the acrylamide fluorescence quenching of F75TetR, a mutant of the Tn10-encoded TetR repressor containing a single Trp residue at position 43, was carried out. The Trp-43 residue is located in a helix-turn-helix (H-t-H) motif involved in the specific binding of F75TetR to the operator site in specific DNA. Distinct Ranges of acrylamide concentration have been assumed. At acrylamide concentrations below 0.15–0.2 M (a usual range of values in fluorescence quenching studies) the observed limited tertiary structure change induced by acrylamide is consistent with a noncooperative local unfolding of the DNA-binding domain. It is suggested that penetration of the neutral quencher could cause the deletion of a hydrophobic tertiary structure contact, partly involving TrP-43, responsible for the anchoring of the H-t-H motif inside the three-helix protein bundle, characterizing the N-terminal part. Correspondingly, the affinity of the mutant repressor for the operator was shown to decrease substantially (about five orders of magnitude), seemingly losing its specificity. A subsequent phase, up to 0.8 M acrylamide, was observed in which the involved intermediate protein structure is not further perturbed, nor is DNA binding.Abbreviations Tris tris(hydroxymethyl)aminomethane - DTT dithiothreitol - FVSTetR engineered tetracycline repressor in which the Trp residue at the position 75 in the wild-type repressor TetR is replaced by a Phe residue - H-t-H helix-turn-helix super-secondary structure  相似文献   

16.
The CI protein of coliphage 186 is responsible for maintaining the stable lysogenic state. To do this CI must recognize two distinct DNA sequences, termed A type sites and B type sites. Here we investigate whether CI contains two separate DNA binding motifs or whether CI has one motif that recognizes two different operator sequences. Sequence alignment with 186-like repressors predicts an N-terminal helix-turn-helix (HTH) motif, albeit with poor homology to a large master set of such motifs. The domain structure of CI was investigated by linker insertion mutagenesis and limited proteolysis. CI consists of an N-terminal domain, which weakly dimerizes and binds both A and B type sequences, and a C-terminal domain, which associates to octamers but is unable to bind DNA. A fusion protein consisting of the 186 N-terminal domain and the phage lambda oligomerization domain binds A and B type sequences more efficiently than the isolated 186 CI N-terminal domain, hence the 186 C-terminal domain likely mediates oligomerization and cooperativity. Site-directed mutation of the putative 186 HTH motif eliminates binding to both A and B type sites, supporting the idea that binding to the two distinct DNA sequences is mediated by a variant HTH motif.  相似文献   

17.
The gene for the Tn 10 Tet repressor (TetR) was subjected to deletion mutagenesis. Screening for a transdominant operator-binding negative phenotype yielded 10 mutants with internal deletions. Three deletions extend from residue D5 to residues L41, W75, or Q76, respectively, and two contain deletions of the α-helix-turn-α-helix DNA-binding motif. Five deletions range from residue K84 to residues between R87 and K98. Since residues from the N-terminus up to position 98 are not necessary for dimerization, this must take place in the C-terminal half of the protein. Ability to dimerize was probed by introducing ochre non-sense codons (oc) at residues G138, H151, E159, l174, or K202. Koc202 shows wild-type in vivo operator-binding and inducibility by tetracycline indicating that the six C-terminal residues of TetR are not important for activity. Mutants with longer C-terminal truncations are inactive and not transdominant. They show reduced steady-state protein levels and are probably impaired in folding and degraded in vivo . Two mutants (Δ151–166, Δ164–166) with deletions in a region variable in primary structure and length among Tet repressers from different resistance determinants bind tet operator efficiently, but are not inducibie by tetracycline. This result indicates that these residues are not important for dimer formation in the operator-binding form.  相似文献   

18.
We constructed a mutant of the tetracycline-inducible repressor protein TetR with specificity for the tc analogue 4-de(dimethylamino)anhydrotetracycline (4-ddma-atc), which is neither an antibiotic nor an inducer for the wild-type protein. The previously published relaxed specificity mutant TetR H64K S135L displays reduced induction by tc but full induction by doxycycline (dox), anhydrotetracycline (atc), and 4-de(dimethylamino)-6-demethyl-6-deoxytetracycline (cmt3). To create induction specificity for tc derivatives lacking the 4-dimethylamino grouping such as cmt3 and 4-ddma-atc, the residues at positions 82 and 138, which are located close to that moiety in the crystal structure of the TetR-[tc-Mg](+)(2) complex, were randomized. We anticipated that a residue with increased size may lead to sterical hindrance, and screening for 4-ddma-atc-specific induction indeed revealed the mutant TetR H64K S135L S138I. Out of 24 exchanges only the addition of S138I to TetR H64K S135L yielded a mutant with a pronounced reduction of affinity for atc and dox, while the one for 4-ddma-atc is not affected. The ratio of binding constants revealed a 200-fold specificity increase for 4-ddma-atc over atc. The contributions of each single mutant to specificity indicate that the tc variants bind slightly different positions in the TetR tc binding pocket.  相似文献   

19.
20.
The synthesis of 8-azido-2'-deoxyadenosine-5'-triphosphate is described. The photoreactive dATP analog was characterized by thin layer chromatography, proton resonance spectroscopy, infrared spectroscopy and UV spectroscopy. Its photolysis upon UV irradiation was studied. After incorporation of this dATP analog into DNA containing the tet operator sequence the investigation of the interactions between tet operator DNA and Tet repressor protein by UV photocross-linking becomes possible. Photocross-linking of protein to DNA was demonstrated by the reduced migration of the DNA in SDS polyacrylamide gel electrophoresis. Addition of the inducer tetracycline prior to UV irradiation significantly reduces the DNA-protein cross-linking rate. The long wave UV light applied here does not significantly alter the DNA or the protein under the photocross-linking conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号