首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
唐子执  刘聪  曾鸣 《生命科学》2014,(11):1172-1175
在各种DNA损伤中,DNA双链断裂(double-strand break,DSB)是最为严重的一种,快速准确地修复DSB对维持基因组稳定性起着至关重要的作用。真核生物细胞通过一系列复杂的信号转导途径激活对DSB的修复,其中最为重要的是同源重组和非同源末端连接机制。最近的研究表明,这两种方式在DSB修复的早期是相互竞争的关系,其选择在很大程度上受到53BP1及同源蛋白质的调控。将讨论53BP1作为DSB修复途径的核心因子,在染色质水平整合BRCA1、Ct IP等修复因子和多种组蛋白修饰构成的信号途径,介导同源重组和非同源末端连接通路选择的分子机制。  相似文献   

2.
基因组编辑技术可以对DNA或RNA进行精准改造,极大地促进了生命科学的发展。CRISPR/Cas9系统在靶位点诱导DNA发生双链或单链损伤,细胞对损伤部位采用无供体模板的非同源末端连接(non-homologous end joining,NHEJ)或有供体模板的同源重组(homologous recombination,HR)修复。基于HR的基因组编辑策略通常被用于获得DNA的精准改造,而NHEJ在动物DNA损伤修复中起主导作用。为了提升HR效率,研究人员设计了多种方案,包括CRISPR/Cas9系统优化和DNA修复通路调控等。从DNA损伤修复途径、Cas9变体选择、sgRNA设计、供体模板设计、DNA修复途径相关蛋白功能调控、供体模板募集效率提升、细胞周期调控及编辑细胞生存效率提升等方面详细综述了相关研究成果,发现尚未开发出放之四海而皆准的HR提升策略,基于HR的基因组编辑需要针对具体案例制定个体化策略。旨在为动物基因组编辑中提升CRISPR/Cas9介导的HR效率研究提供理论参考,为动物基因功能分析、基因治疗和经济动物基因编辑育种提供帮助。  相似文献   

3.
DNA损伤反应在维持细胞基因组稳定性和机体存活发挥重要作用。DNA双链断裂(Double strand breaks,DSBs)是DNA损伤最严重的形式。同源重组修复是体内参与DSBs损伤修复的重要机制之一,其中Rad51是体内参与同源重组性DNA修复的关键因子。Rad51在人类的多种肿瘤组织中高表达,如乳腺癌、非小细胞肺癌、前列腺癌等,与肿瘤的转移和恶化相关。如何有效下调肿瘤组织中的Rad51的水平,降低肿瘤细胞的DNA损伤修复能力,从而提高肿瘤治疗的疗效具有潜在的临床应用价值。本文对近年来的一个研究热点靶向Rad51在肿瘤治疗研究中的应用进行综述。  相似文献   

4.
DNA双链断裂(double strand break,DSB)是一种导致基因组不稳定性的高毒性损伤,可引起染色质畸变诱发癌症.真核生物中演化出多条保守的DSB损伤修复途径,其中最重要的修复途径是典型的非同源末端连接(clas-sical non-homologous end joining,cNHEJ)和同源重组(h...  相似文献   

5.
DNA双链断裂修复与重症联合免疫缺陷   总被引:1,自引:0,他引:1  
Wang KY  Zhao YH  Li WG 《生理科学进展》2008,39(2):182-184
DNA双链断裂(double-strand breaks, DSBs)是细胞DNA损伤的主要类型,它的修复通过同源重组(HR)和非同源末端连接(NHEJ)两种机制实现.NHEJ是人和哺乳动物细胞DSBs修复的重要通路,主要由DNA依赖性蛋白激酶(DNA-PK)、X射线修复交叉互补蛋白4(XRCC4)、DNA连接酶Ⅳ、Artemis、XLF/Cernunnos和其它DNA损伤修复辅助因子组成.本文重点介绍了NHEJ机制主要成分的特性及其功能,以及这些组分的基因发生突变或缺失所引起的DSBs修复缺陷与辐射敏感性重症联合免疫缺陷(radiosensitive severe combined immunodeficiencies, RS-SCIDs).  相似文献   

6.
聚腺苷二磷酸-核糖聚合酶1(poly ADP-ribose polymerase-1,PARP1)是细胞中重要的修饰酶,其最广为人知的作用是通过自身PAR修饰,募集以XRCC1为首的多种DNA损伤修复效应蛋白质,参与DNA单、双链损伤修复。PARP1还能通过促进复制叉停滞与核小体解聚,为DNA损伤修复提供有利条件,维持基因组稳定性。近年来,除DNA损伤修复方面的作用,还发现PARP1能影响细胞凋亡、自噬与炎症通路,与神经退行性疾病的发生发展密切相关。而PARP抑制剂(PARP inhibitor,PARPi)是一种靶向PARP1,与细胞同源重组(homologous recombination,HR)缺陷表型共同作用,产生合成致死效应的抗肿瘤药物。该药物可捕获PARP1并抑制其活性,一方面直接干扰PARP1参与的DNA损伤修复通路,另一方面也抑制了PARP1介导的DNA损伤修复通路选择和复制叉停滞,使细胞基因组不稳定。然而,在临床治疗中常发现肿瘤细胞对PARPi不敏感。肿瘤细胞对PARPi耐药与自身基因突变高度相关,这些基因分别作用于细胞HR修复途径、PARP1循环途径、复制叉稳定性和药物主动外排等方面,在耐药肿瘤患者中确定具体的突变位点,将为临床治疗提供帮助。本文旨在对PARP1的功能作一综述,并重点介绍PARPi的作用机制和与肿瘤耐药相关的突变基因及其耐药机制,以期加深对细胞中PARP1介导的DNA损伤修复通路的认识,并为将来的临床治疗提供新思路。  相似文献   

7.
DNA双链断裂(double strand breaks, DSBs)对细胞生存是致命的.细胞内非同源末端连接(NHEJ)、重组修复(HDR)、单链退火修复(SSA)和微同源序列末端连接(MMEJ)等通路可竞争性修复DNA双链断裂损伤.在肿瘤细胞DNA中制造难以修复的基因损伤,诱导肿瘤细胞周期中止、坏死和凋亡是临床放、化疗的主要策略.组蛋白去乙酰化酶(histone deacetylase)作为抗肿瘤治疗的新靶标,其抑制剂(histonedeacetylase inhibitors, HDACi)可显著降低肿瘤细胞DSBs修复能力,增强肿瘤细胞的放、化疗敏感性.研究显示,HDACi抑制了肿瘤细胞中具有正确修复倾向的HDR和经典NHEJ通路,具有错误修复倾向的SSA和MMEJ路径也可能牵涉其中.目前,HDACi作用于DSBs修复通路的分子机制已取得较大进展,但仍有许多问题有待阐明.  相似文献   

8.
乳腺癌易感蛋白1在DNA损伤修复中的作用   总被引:1,自引:0,他引:1  
人类乳腺癌易感基因1(breast cancer susceptibility gene 1,BRCA1)首先是在乳腺癌家族中发现的,是具有遗传倾向的乳腺癌和卵巢癌易感基因,其基因的突变与家族性乳腺癌及卵巢癌的发生有密切联系。BRCA1是一种抑癌基因,其基因产物可以参与维持基因组稳定性的多条细胞信号通路,例如DNA损伤诱导的细胞周期调控、DNA损伤修复、基因转录调节、细胞凋亡、泛素化等重要的细胞活动。本文就近几年来BRCA1在DNA损伤修复中的作用的研究进展作一综述,包括DNA损伤诱导的细胞周期检查点的激活和DNA损伤修复两方面。  相似文献   

9.
Rad9是一种重要的细胞周期监控点调控蛋白.越来越多的证据显示,Rad9也可与多种DNA损伤修复通路中的蛋白质相互作用,并调节其功能,在DNA损伤修复中发挥重要作用.非同源末端连接修复是DNA双链断裂的一条重要修复途径.Ku70、Ku80和DNA依赖的蛋白激酶催化亚基(DNA-PKcs)共同组成DNA依赖的蛋白激酶复合物(DNA-PK),在非同源末端修复连接中起重要作用.本研究中,检测到Rad9与Ku70有直接的物理相互作用和功能相互作用.我们在不同的细胞模型中发现,Rad9基因敲除、Rad9蛋白去除或Rad9表达降低会导致非同源末端连接效率明显下降.已有的研究表明,DNA损伤可导致细胞中Ku70与染色质结合增加及DNA-PKcs激酶活性增强.我们的结果显示,与野生小鼠细胞相比,Rad9基因敲除的小鼠细胞中, DNA损伤诱导的上述效应均减弱.综上所述,我们的研究首次报道了Rad9与非同源末端连接修复蛋白Ku70间有相互作用,并提示Rad9可通过调节Ku70/Ku80/DNA-PKcs复合物功能参与非同源末端连接修复.  相似文献   

10.
DNA损伤修复是维持细胞基因组稳定性和完整性的基础,越来越多的研究发现,E3泛素连接酶在DNA损伤修复中起着重要的作用.该文将介绍DNA损伤修复的机制、DNA损伤修复与疾病的关系、及E3泛素连接酶接头蛋白MDM2和SPOP在DNA损伤修复中的作用.重点围绕DNA损伤修复的两条通路:E3泛素连接酶接头蛋白SPOP与ATM...  相似文献   

11.
Regulation of DNA double-strand break repair pathway choice   总被引:31,自引:0,他引:31  
DNA double-strand breaks (DSBs) are critical lesions that can result in cell death or a wide variety of genetic alterations including largeor small-scale deletions, loss of heterozygosity, translocations, and chromosome loss. DSBs are repaired by non-homologous end-joining (NHEJ) and homologous recombination (HR), and defects in these pathways cause genome instability and promote tumorigenesis. DSBs arise from endogenous sources including reactive oxygen species generated during cellular metabolism, collapsed replication forks, and nucleases, and from exogenous sources including ionizing radiation and chemicals that directly or indirectly damage DNA and are commonly used in cancer therapy. The DSB repair pathways appear to compete for DSBs, but the balance between them differs widely among species, between different cell types of a single species, and during different cell cycle phases of a single cell type. Here we review the regulatory factors that regulate DSB repair by NHEJ and HR in yeast and higher eukaryotes. These factors include regulated expression and phosphorylation of repair proteins, chromatin modulation of repair factor accessibility, and the availability of homologous repair templates. While most DSB repair proteins appear to function exclusively in NHEJ or HR, a number of proteins influence both pathways, including the MRE11/RAD50/NBS1(XRS2) complex, BRCA1, histone H2AX, PARP-1, RAD18, DNA-dependent protein kinase catalytic subunit (DNA-PKcs), and ATM. DNA-PKcs plays a role in mammalian NHEJ, but it also influences HR through a complex regulatory network that may involve crosstalk with ATM, and the regulation of at least 12 proteins involved in HR that are phosphorylated by DNA-PKcs and/or ATM.  相似文献   

12.
High linear energy transfer (LET) ionising radiation (IR) such as radon-derived alpha particles and high mass, high energy (HZE) particles of cosmic radiation are the predominant forms of IR to which humanity is exposed throughout life. High-LET forms of IR are established carcinogens relevant to human cancer, and their potent mutagenicity is believed, in part, to be due to a greater incidence of clustered DNA double strand breaks (DSBs) and associated lesions, as ionization events occur within a more confined genomic space. The repair of such DNA damage is now well-documented to occur with slower kinetics relative to that induced by low-LET IR, and to be more reliant upon homology-directed repair pathways. Underlying these phenomena is the relative inability of non-homologous end-joining (NHEJ) to adequately resolve high-LET IR-induced DSBs. Current findings suggest that the functionality of the DNA-dependent protein kinase (DNA-PK), comprised of the Ku70-Ku80 heterodimer and the DNA-PK catalytic subunit (DNA-PKcs), is particularly perturbed by high-LET IR-induced clustered DSBs, rendering DNA-PK dependent NHEJ less relevant to resolving these lesions. By contrast, the NHEJ-associated DNA processing endonuclease Artemis shows a greater relevance to high-LET IR-induced DSB repair. Here, we will review the cellular response to high-LET irradiation, the implications of the chronic, low-dose modality of this exposure and molecular pathways that respond to high-LET irradiation induced DSBs, with particular emphasis on NHEJ factors.  相似文献   

13.
The cellular response to ionizing radiation (IR)-induced DNA double-strand breaks (DSBs) in native chromatin requires a tight coordination between the activities of DNA repair machineries and factors that modulate chromatin structure. SMARCA5 is an ATPase of the SNF2 family of chromatin remodeling factors that has recently been implicated in the DSB response. It forms distinct chromatin remodeling complexes with several non-canonical subunits, including the remodeling and spacing factor 1 (RSF1) protein. Despite the fact that RSF1 is often overexpressed in tumors and linked to tumorigenesis and genome instability, its role in the DSB response remains largely unclear. Here we show that RSF1 accumulates at DSB sites and protects human cells against IR-induced DSBs by promoting repair of these lesions through homologous recombination (HR) and non-homologous end-joining (NHEJ). Although SMARCA5 regulates the RNF168-dependent ubiquitin response that targets BRCA1 to DSBs, we found RSF1 to be dispensable for this process. Conversely, we found that RSF1 facilitates the assembly of centromere proteins CENP-S and CENP-X at sites of DNA damage, while SMARCA5 was not required for these events. Mechanistically, we uncovered that CENP-S and CENP-X, upon their incorporation by RSF1, promote assembly of the NHEJ factor XRCC4 at damaged chromatin. In contrast, CENP-S and CENP-X were dispensable for HR, suggesting that RSF1 regulates HR independently of these centromere proteins. Our findings reveal distinct functions of RSF1 in the 2 major pathways of DSB repair and explain how RSF1, through the loading of centromere proteins and XRCC4 at DSBs, promotes repair by non-homologous end-joining.  相似文献   

14.
Damage recognition by repair/checkpoint factors is the critical first step of the DNA damage response. DNA double strand breaks (DSBs) activate checkpoint signaling and are repaired by nonhomologous end-joining (NHEJ) and homologous recombination (HR) pathways. However, in vivo kinetics of the individual factor responses and the mechanism of pathway choice are not well understood. We report cell cycle and time course analyses of checkpoint activation by ataxia-telangiectasia mutated and damage site recruitment of the repair factors in response to laser-induced DSBs. We found that MRN acts as a DNA damage marker, continuously localizing at unrepaired damage sites. Damage recognition by NHEJ factors precedes that of HR factors. HR factor recruitment is not influenced by NHEJ factor assembly and occurs throughout interphase. Damage site retention of NHEJ factors is transient, whereas HR factors persist at unrepaired lesions, revealing unique roles of the two pathways in mammalian cells.  相似文献   

15.
DNA double strand breaks (DSBs) are highly toxic to the cells and accumulation of DSBs results in several detrimental effects in various cellular processes which can lead to neurological, immunological and developmental disorders. Failure of the repair of DSBs spurs mutagenesis and is a driver of tumorigenesis, thus underscoring the importance of the accurate repair of DSBs. Two major canonical DSB repair pathways are the non-homologous end joining (NHEJ) and homologous recombination (HR) pathways. 53BP1 and BRCA1 are the key mediator proteins which coordinate with other components of the DNA repair machinery in the NHEJ and HR pathways respectively, and their exclusive recruitment to DNA breaks/ends potentially decides the choice of repair by either NHEJ or HR. Recently, Rap1 interacting factor 1 has been identified as an important component of the DNA repair pathway which acts downstream of the ATM/53BP1 to inhibit the 5′–3′ end resection of broken DNA ends, in-turn facilitating NHEJ repair and inhibiting homology directed repair. Rif1 is conserved from yeast to humans but its function has evolved from telomere length regulation in yeast to the maintenance of genome integrity in mammalian cells. Recently its role in the maintenance of genomic integrity has been expanded to include the regulation of chromatin structure, replication timing and intra-S phase checkpoint. We present a summary of these important findings highlighting the various aspects of Rif1 functions and discuss the key implications for genomic integrity.  相似文献   

16.
The main pathways for the repair of DNA double strand breaks (DSBs) are non-homologous end-joining (NHEJ) and homologous recombination directed repair (HDR). These operate mutually exclusive and are activated by 53BP1 and BRCA1, respectively. As HDR can only succeed in the presence of an intact copy of replicated DNA, cells employ several mechanisms to inactivate HDR in the G1 phase of cell cycle. As cells enter S-phase, these inhibitory mechanisms are released and HDR becomes active. However, during DNA replication, NHEJ and HDR pathways are both functional and non-replicated and replicated DNA regions co-exist, with the risk of aberrant HDR activity at DSBs in non-replicated DNA. It has become clear that DNA repair pathway choice depends on inhibition of DNA end-resection by 53BP1 and its downstream factors RIF1 and MAD2L2. However, it is unknown how MAD2L2 accumulates at DSBs to participate in DNA repair pathway control and how the NHEJ and HDR repair pathways are appropriately activated at DSBs with respect to the replication status of the DNA, such that NHEJ acts at DSBs in pre-replicative DNA and HDR acts on DSBs in post-replicative DNA. Here we show that MAD2L2 is recruited to DSBs in H4K20 dimethylated chromatin by forming a protein complex with 53BP1 and RIF1 and that MAD2L2, similar to 53BP1 and RIF1, suppresses DSB accumulation of BRCA1. Furthermore, we show that the replication status of the DNA locally ensures the engagement of the correct DNA repair pathway, through epigenetics. In non-replicated DNA, saturating levels of the 53BP1 binding site, di-methylated lysine 20 of histone 4 (H4K20me2), lead to robust 53BP1-RIF1-MAD2L2 recruitment at DSBs, with consequent exclusion of BRCA1. Conversely, replication-associated 2-fold dilution of H4K20me2 promotes the release of the 53BP1-RIF1-MAD2L2 complex and favours the access of BRCA1. Thus, the differential H4K20 methylation status between pre-replicative and post-replicative DNA represents an intrinsic mechanism that locally ensures appropriate recruitment of the 53BP1-RIF1-MAD2L2 complex at DNA DSBs, to engage the correct DNA repair pathway.  相似文献   

17.
DNA double strand breaks (DSBs) are a particularly cytotoxic variety of DNA lesion that can be repaired by homologous recombination (HR) or nonhomologous end-joining (NHEJ). HR utilises sequences homologous to the damage DNA template to facilitate repair. In contrast, NHEJ does not require homologous sequences for repair but instead functions by directly re-joining DNA ends. These pathways are critical to resolve DSBs generated intentionally during processes such as meiotic and site-specific recombination. However, they are also utilised to resolve potentially pathological DSBs generated by mutagens and errors during DNA replication. The importance of DSB repair is underscored by the findings that defects in these pathways results in chromosome instability that contributes to a variety of disease states including malignancy. The general principles of NHEJ are conserved in eukaryotes. As such, relatively simple model organisms have been instrumental in identifying components of these pathways and providing a mechanistic understanding of repair that has subsequently been applied to vertebrates. However, certain components of the NHEJ pathway are absent or show limited conservation in the most commonly used invertebrate models exploited to study DNA repair. Recently, however, it has become apparent that vertebrate DNA repair pathway components, including those involved in NHEJ, are unusually conserved in the amoeba Dictyostelium discoideum. Traditionally, this genetically tractable organism has been exploited to study the molecular basis of cell type specification, cell motility and chemotaxis. Here we discuss the use of this organism as an additional model to study DNA repair, with specific reference to NHEJ.  相似文献   

18.
In the present study, the activity of Topoisomerase IIβ (TopoIIβ) is evaluated during peroxide induced double stranded DNA breaks (DSBs) repair in primary neurons. The results showed that the TopoIIβ levels were enhanced during recovery from peroxide mediated damage (PED) along with Ku70, PARP-1, pol beta, and WRN helicase. Furthermore, siRNA mediated knock-down of TopoIIβ in primary neurons conferred enhanced susceptibility to PED in neurons. DSBs in neurons are repaired through two pathways, one promoted by Ku70, while the other is by PARP-1 dependent manner. Participation of TopoIIβ in both pathways was assessed by analysis of the interaction of TopoIIβ with Ku70 and PARP-1 using co-immunoprecipitation experiments in extracts of neurons under peroxide treatment and recovery. The results of these studies showed a strong interaction of TopoIIβ with Ku70 as well as PARP-1 suggesting that TopoIIβ is associated both in Ku70 and PARP-dependent pathways in DSBs repair in primary neurons. The study has thus established that TopoIIβ is an essential component in DSBs repair in primary neurons in both Ku70 and PARP-1 dependent pathways. We suppose that the interaction of TopoIIβ may provide stabilization of the repair complex, which may assist in maintenance of tensional integrity in genomic DNA.  相似文献   

19.
Since DNA double-strand breaks (DSBs) contribute to the genomic instability that drives cancer development, DSB repair pathways serve as important mechanisms for tumor suppression. Thus, genetic lesions, such as BRCA1 and BRCA2 mutations, that disrupt DSB repair are often associated with cancer susceptibility. In addition, recent evidence suggests that DSB “mis-repair”, in which DSBs are resolved by an inappropriate repair pathway, can also promote genomic instability and presumably tumorigenesis. This notion has gained currency from recent cancer genome sequencing studies which have uncovered numerous chromosomal rearrangements harboring pathological DNA repair signatures. In this perspective, we discuss the factors that regulate DSB repair pathway choice and their consequences for genome stability and cancer.  相似文献   

20.
Double-strand breaks (DSBs) are repaired through two major pathways, homology-directed recombination (HDR) and non-homologous end joining (NHEJ). The choice between these two pathways is largely influenced by cell cycle phases. HDR can occur only in S/G2 when sister chromatid can provide homologous templates, whereas NHEJ can take place in all phases of the cell cycle except mitosis. Central to NHEJ repair is the Ku70/80 heterodimer which forms a ring structure that binds DSB ends and serves as a platform to recruit factors involved in NHEJ. Upon completion of NHEJ repair, DNA double strand-encircling Ku dimers have to be removed. The removal depends on ubiquitylation and proteasomal degradation of Ku80 by the ubiquitin E3 ligases RNF8. Here we report that RNF8 is a substrate of APCCdh1 and the latter keeps RNF8 level in check at DSBs to prevent premature turnover of Ku80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号