首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

2.
Listeria monocytogenes is a Gram-positive bacterium commonly associated with foodborne diseases. Due its ability to survive under adverse environmental conditions and to form biofilm, this bacterium is a major concern for the food industry, since it can compromise sanitation procedures and increase the risk of post-processing contamination. Little is known about the interaction between L. monocytogenes and Gram-negative bacteria on biofilm formation. Thus, in order to evaluate this interaction, Escherichia coli and L. monocytogenes were tested for their ability to form biofilms together or in monoculture. We also aimed to evaluate the ability of L. monocytogenes 1/2a and its isogenic mutant strain (ΔprfA ΔsigB) to form biofilm in the presence of E. coli. We assessed the importance of the virulence regulators, PrfA and σB, in this process since they are involved in many aspects of L. monocytogenes pathogenicity. Biofilm formation was assessed using stainless steel AISI 304 #4 slides immersed into brain heart infusion broth, reconstituted powder milk and E. coli preconditioned medium at 25 °C. Our results indicated that a higher amount of biofilm was formed by the wild type strain of L. monocytogenes than by its isogenic mutant, indicating that prfA and sigB are important for biofilm development, especially maturation under our experimental conditions. The presence of E. coli or its metabolites in preconditioned medium did not influence biofilm formation by L. monocytogenes. Our results confirm the possibility of concomitant biofilm formation by L. monocytogenes and E. coli, two bacteria of major significance in the food industry.  相似文献   

3.

Key message

Arabidopsis det1 mutants exhibit salt and osmotic stress resistant germination. This phenotype requires HY5, ABF1, ABF3, and ABF4.

Abstract

While DE-ETIOLATED 1 (DET1) is well known as a negative regulator of light development, here we describe how det1 mutants also exhibit altered responses to salt and osmotic stress, specifically salt and mannitol resistant germination. LONG HYPOCOTYL 5 (HY5) positively regulates both light and abscisic acid (ABA) signalling. We found that hy5 suppressed the det1 salt and mannitol resistant germination phenotype, thus, det1 stress resistant germination requires HY5. We then queried publically available microarray datasets to identify genes downstream of HY5 that were differentially expressed in det1 mutants. Our analysis revealed that ABA regulated genes, including ABA RESPONSIVE ELEMENT BINDING FACTOR 3 (ABF3), are downregulated in det1 seedlings. We found that ABF3 is induced by salt in wildtype seeds, while homologues ABF4 and ABF1 are repressed, and all three genes are underexpressed in det1 seeds. We then investigated the role of ABF3, ABF4, and ABF1 in det1 phenotypes. Double mutant analysis showed that abf3, abf4, and abf1 all suppress the det1 salt/osmotic stress resistant germination phenotype. In addition, abf1 suppressed det1 rapid water loss and open stomata phenotypes. Thus interactions between ABF genes contribute to det1 salt/osmotic stress response phenotypes.
  相似文献   

4.
5.
6.

Background

The ability to respond rapidly to fluctuations in environmental changes is decisive for cell survival. Under these conditions trehalose has an essential protective function and its concentration increases in response to enhanced expression of trehalose synthase genes, TPS1, TPS2, TPS3 and TSL1. Intriguingly, the NTH1 gene, which encodes neutral trehalase, is highly expressed at the same time. We have previously shown that trehalase remains in its inactive non-phosphorylated form by the action of an endogenous inhibitor. Recently, a comprehensive two-hybrid analysis revealed a 41-kDa protein encoded by the YLR270w ORF, which interacts with NTH1p.

Results

In this work we investigate the correlation of this Trehalase Associated Protein, in trehalase activity regulation. The neutral trehalase activity in the ylr270w mutant strain was about 4-fold higher than in the control strain. After in vitro activation by PKA the ylr270w mutant total trehalase activity increased 3-fold when compared to a control strain. The expression of the NTH1 gene promoter fused to the heterologous reporter lacZ gene was evaluated. The mutant strain lacking YLR270w exhibited a 2-fold increase in the NTH1-lacZ basal expression when compared to the wild type strain.

Conclusions

These results strongly indicate a central role for Ylr270p in inhibiting trehalase activity, as well as in the regulation of its expression preventing a wasteful futile cycle of synthesis-degradation of trehalose.
  相似文献   

7.
Fusarium verticillioides is one of the main pathogens of maize, causing ear and stalk rots. This fungus is also able to produce high levels of fumonisins, which have been linked to various illnesses in humans and animals. Previous studies have shown that maize hybrids genetically modified with the cry genes from the bacterium Bacillus thuringiensis (Bt) presented lower incidence of F. verticillioides and fumonisin levels, presumably through the reduction of insects, which could act as vectors of fungi. The aim of this study was to assess the incidence of F. verticillioides and the concentration of fumonisins in Bt and isogenic non-Bt hybrids (2B710Hx, 30F35YG, 2B710, and 30F35, respectively). The samples of 2B710Hx and 30F35YG presented lower F. verticillioides frequency than 2B710 and 30F35 samples. However, there was no statistical difference between fumonisin contamination when Bt and non-Bt samples were compared (P > 0.05). The results suggest that other environmental parameters could possibly trigger fumonisin production during plant development in the field; consequently, other management strategies should be applied to aid controlling fumonisin contamination in maize.  相似文献   

8.
L-Lactate cytochrome c oxidoreductase (flavocytochrome b 2, FC b 2) from the thermotolerant methylotrophic yeast Hansenula polymorpha (Pichia angusta) is, unlike the enzyme form baker’s yeast, a thermostable enzyme potentially important for bioanalytical technologies for highly selective assays of L-lactate in biological fluids and foods. This paper describes the construction of flavocytochrome b 2 producers with over-expression of the H. polymorpha CYB2 gene, encoding FC b 2. The HpCYB2 gene under the control of the strong H. polymorpha alcohol oxidase promoter in a plasmid for multicopy integration was transformed into the recipient strain H. polymorpha C-105 (grc1 catX), impaired in glucose repression and devoid of catalase activity. A method was developed for preliminary screening of the transformants with increased FC b 2 activity in permeabilized yeast cells. The optimal cultivation conditions providing for the maximal yield of the target enzyme were found. The constructed strain is a promising FC b 2 producer characterized by a sixfold increased (to 3 μmol min?1 mg?1 protein in cell-free extract) activity of the enzyme.  相似文献   

9.

Key message

A novel dwarf cucumber mutant, scp-2, displays a typical BR biosynthesis-deficient phenotype, which is due to a mutation in CsDET2 for a steroid 5-alpha-reductase.

Abstract

Brassinosteroids (BRs) are a group of plant hormones that play important roles in the development of plant architecture, and extreme dwarfism is a typical outcome of BR-deficiency. Most cucumber (Cucumis sativus L.) varieties have an indeterminate growth habit, and dwarfism may have its value in manipulation of plant architecture and improve production in certain production systems. In this study, we identified a spontaneous dwarf mutant, super compact-2 (scp-2), that also has dark green, wrinkle leaves. Genetic analyses indicated that scp-2 was different from two previously reported dwarf mutants: compact (cp) and super compact-1 (scp-1). Map-based cloning revealed that the mutant phenotype was due to two single nucleotide polymorphism and a single-base insertion in the CsDET2 gene that resulted in a missense mutation in a conserved amino acid and thus a truncated protein lacking the conserved catalytic domains in the predicted steroid 5α-reductase protein. Measurement of endogenous hormone levels indicated a reduced level of brassinolide (BL, a bioactive BR) in scp-2, and the mutant phenotype could be partially rescued by the application of epibrassinolide (EBR). In addition, scp-2 mutant seedlings exhibited dark-grown de-etiolation, and defects in cell elongation and vascular development. These data support that scp-2 is a BR biosynthesis-deficient mutant, and that the CsDET2 gene plays a key role in BR biosynthesis in cucumber. We also described the systemic BR responses and discussed the specific BR-related phenotypes in cucumber plants.
  相似文献   

10.
11.
The interaction of the mutant genes wellhaarig (we) and waved alopecia (wal) in mice was earlier demonstrated in our laboratory. The we gene significantly accelerates the appearance of alopecia in double we/wewal/wal homozygotes as compared to that in single +/+wal/wal homozygotes. It has been found in this work that the mutant gene angora-Y (Fgf5 go-Y ) weakens the effect of interaction of the we and wal genes. The first signs of alopecia appear in mice of the we/wewal/wal genotype at the age of 14 days, in triple Fgf5 go-Y /Fgf5 go-Y we/wewal/wal homozygotes alopecia is observed seven days later, i. e., in 21-day-old animals. The progression of alopecia in triple homozygotes is expressed to a lesser degree than in double +/+we/wewal/wal homozygotes. A single dose of the Fgf5 go-Y gene also decreases the effect of interaction of the we and wal genes, but less than a double dose of this gene. The first signs of alopecia in mice of the +/Fgf5 go-Y we/wewal/wal genotype appear only three days later than in double +/+we/wewal/wal homozygotes. The data obtained demonstrate that the Fgf5 go-Y gene is a powerful modifier of mutant genes determining the process of alopecia.  相似文献   

12.
13.
14.
15.
The high molecular weight insecticidal toxin complexes (Tcs), including four toxin-complex loci (tca, tcb, tcc and tcd), were first identified in Photorhabdus luminescens W14. Each member of tca, tcb or tcc is required for oral toxicity of Tcs. However, the sequence sources of the C-termini of tccC3, tccC4, tccC6 and tccC7 are unknown. Here, we performed a whole genome survey to identify the orthologs of Tc genes, and found 165 such genes in 14 bacterial genomes, including 40 genes homologous to tccC1-7 in P. luminescens TT01. The sequence sources of the C-termini of tccC2-6 were determined by sequence analysis. Further phylogenetic investigations suggested that the C-termini of 6 tccC genes experienced horizontal gene transfer events.  相似文献   

16.
17.
18.
Eukaryotic cells possess a special mechanism for the degradation of mRNAs containing premature termination codons (PTCs), referred to as NMD (nonsense-mediated mRNA decay). The strength of this pathway depends on the recognition of the PTCs by translational machinery and the interaction of translation termination factors eRF1 and eRF3 with Upf1, Upf2 and Upf3 proteins in Sachromyces cerevisiae yeast. Previously, we have shown that the decrease of eRF1 protein amounts in sup45 nonsense mutants leads to the impairment of NMD. Here we show that the deletion of UPF1 or UPF2 genes leads to an increase in the viability of sup45 mutants, while the effect of UPF3 gene deletion is allele-specific. Two-hybrid data have shown that amino acid residues 1–555 of Upf1 protein interact with eRF1. Any UPF gene deletion leads to allosupression of the adel1-14 mutation without a change in eRF1 content. The Upf1 depletion does not influence the synthetic lethality of sup45 mutations and the [PSI +] prion. It is possible that the absence of Upf1 (or its activator Upf2) leads to a more effective formation of the translation termination complex and consequently to the increased viability of the cells containing mutant termination factors.  相似文献   

19.
A stably inherited petal degeneration mutant pdm of the Chinese cabbage was obtained from its wild-type ‘FT’ by radiation treatment (60Co γ-rays) and isolated microspore culture. Petals of the pdm mutant were observed to be shriveled, degenerated, not fully expanded, and darker at the flowering stage than those of ‘FT.’ The pdm mutant phenotype was found to be controlled by a single recessive nuclear gene. For linkage analysis and gene mapping, 1419 recessive homozygous individuals with the pdm phenotype of the F2 generation were investigated as the mapping population. Results showed that the pdm was located between markers Indelhsn26 and SSRhsn123 at a genetic distance of 0.04 and 0.04 cM, respectively, on linkage group A01. Physical distance between Indelhsn26 and SSRhsn123, the two most closely linked markers, was estimated to be approximately 285.2 kb. Twenty-eight genes were predicted in the target region. Using RNA-seq, Bra040093 was predicted to be the most likely candidate gene for pdm. Based on gene annotation, Bra040093 encodes a peroxisomal acyl-coenzyme A oxidase 1 (ACX1). Comparison of the sequences in pdm and ‘FT’ revealed two single-nucleotide polymorphisms in pdm. Expression patterns of Bra040093 between pdm and ‘FT’ were analyzed using quantitative real-time PCR, and the expression level was dramatically higher in ‘FT’ than in pdm. These findings provide a solid foundation and valuable resources for map-based cloning, identification, and functional analysis of pdm and facilitate the understanding of floral development processes in the Chinese cabbage.  相似文献   

20.
The sequences of the PsSst1 and PsIgn1 genes of pea (Pisum sativum L.) homologous to the symbiotic LjSST1 and LjIGN1 genes of Lotus japonicus (Regel.) K. Larsen are determined. The expression level of PsSst1 and PsIgn1 genes is determined by real-time PCR in nodules of several symbiotic mutants and original lines of pea. Lines with increased (Sprint-2Fix (Pssym31)) and decreased (P61 (Pssym25)) expression level of both genes are revealed along with the lines characterized by changes in the expression level of only one of these genes. The revealed features of the PsSst1 and PsIgn1 expression allow us to expand the phenotypic characterization of pea symbiotic mutants. In addition, PsSst1 and PsIgn1 cDNA is sequenced in selected mutant lines, characterized by a decreased expression level of these genes in nodules, but no mutations are found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号