首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The pssB gene of Rhizobium leguminosarum bv. trifolii encodes a protein of 284 amino acids with sequence similarity to eukaryotic inositol monophosphatases. The gene was cloned and overexpressed in Escherichia coli. The purified gene product of pssB showed inositol monophosphatase activity with a Km of 0.23 mM, and a Vmax of 3.27 mumol Pi min-1 (mg protein)-1. Its substrate specificity, Mg+2 requirement, Li+ inhibition, and subunit association (dimerization) were studied and compared to those of other inositol monophosphatases. Western immunoblotting with anti-PssB antibodies showed the presence of PssB in R. leguminosarum bv. trifolii strain TA1 and lack of this protein in the pssB mutant strain Rt12A. The presence of PssB protein in R. leguminosarum bv. trifolii TA1 was correlated with phosphatase activity with myo-inositol 1-phosphate as a substrate. Evidence for a regulatory function of PssB protein in exopolysaccharide (EPS) synthesis is presented. The mutation in pssB caused EPS overproduction, and introduction of pssB into the wild-type TA1 strain reduced EPS synthesis. The changes in the level of EPS production were correlated with a non-nitrogen-fixing phenotype of rhizobia.  相似文献   

3.
4.
The protein expression profiles of Rhizobium leguminosarum strains in response to specific genetic perturbations in exopolysaccharide (EPS) biosynthesis genes were examined using two-dimensional gel electrophoresis. Lesions in either pssA, pssD, or pssE of R. leguminosarum bv. viciae VF39 or in pssA of R. leguminosarum bv. trifolii ANU794 not only abolished the capacity of these strains to synthesize EPS but also had a pleiotropic effect on protein synthesis levels. A minimum of 22 protein differences were observed for the two pssA mutant strains. The differences identified in the pssD and pssE mutants of strain VF39 were a distinct subset of the same protein synthesis changes that occurred in the pssA mutant. The pssD and pssE mutant strains shared identical alterations in the proteins synthesized, suggesting that they share a common function in the biosynthesis of EPS. In contrast, a pssC mutant that produces 38% of the EPS level of the parental strain showed no differences in its protein synthesis patterns, suggesting that the absence of EPS itself was contributing to the changes in protein synthesis and that there may be a complex interconnection of the EPS biosynthetic pathway with other metabolic pathways. Genetic complementation of pssA can restore wild-type protein synthesis levels, indicating that many of the observed differences in protein synthesis are also a specific response to a dysfunctional PssA. The relevance of these proteins, which are grouped as members of the pssA mutant stimulon, remains unclear, as the majority lacked a homologue in the current sequence databases and therefore possibly represent a novel functional network(s). These findings have illustrated the potential of proteomics to reveal unexpected higher-order processes of protein function and regulation that arise from mutation. In addition, it is evident that enzymatic pathways and regulatory networks are more interconnected and more sensitive to structural changes in the cell than is often appreciated. In these cases, linking the observed phenotype directly to the mutated gene can be misleading, as the phenotype could be attributable to downstream effects of the mutation.  相似文献   

5.
The type I protein secretion system of Rhizobium leguminosarum bv. viciae encoded by the prsD and prsE genes is responsible for secretion of the exopolysaccharide (EPS)-glycanases PlyA and PlyB. The formation of a ring of biofilm on the surface of the glass in shaken cultures by both the prsD and prsE secretion mutants was greatly affected. Confocal laser scanning microscopy analysis of green-fluorescent-protein-labeled bacteria showed that during growth in minimal medium, R. leguminosarum wild type developed microcolonies, which progress to a characteristic three-dimensional biofilm structure. However, the prsD and prsE secretion mutants were able to form only an immature biofilm structure. A mutant disrupted in the EPS-glycanase plyB gene showed altered timing of biofilm formation, and its structure was atypical. A mutation in an essential gene for EPS synthesis (pssA) or deletion of several other pss genes involved in EPS synthesis completely abolished the ability of R. leguminosarum to develop a biofilm. Extracellular complementation studies of mixed bacterial cultures confirmed the role of the EPS and the modulation of the biofilm structure by the PrsD-PrsE secreted proteins. Protein analysis identified several additional proteins secreted by the PrsD-PrsE secretion system, and N-terminal sequencing revealed peptides homologous to the N termini of proteins from the Rap family (Rhizobium adhering proteins), which could have roles in cellular adhesion in R. leguminosarum. We propose a model for R. leguminosarum in which synthesis of the EPS leads the formation of a biofilm and several PrsD-PrsE secreted proteins are involved in different aspects of biofilm maturation, such as modulation of the EPS length or mediating attachment between bacteria.  相似文献   

6.
Genes of Rhizobium leguminosarum bv. viciae VF39 coding for the regulatory elements NifA, FixL and FixK were isolated, sequenced and genetically analysed. The fixK–fixL region is located upstream of the fixNOQP operon on the non-nodulation plasmid pRleVF39c. The deduced amino acid sequence of FixL revealed an unusual structure in that it contains a receiver module (homologous to the N-terminal domain of response regulators) fused to its transmitter domain. An oxygen-sensing haem-binding domain, found in other FixL proteins, is conserved in R. leguminosarum bv. viciae FixL. R. leguminosarum bv. viciae possesses a second fnr -like gene, designated fixK , whose encoded gene product is very similar to Rhizobium meliloti and Azorhizobium caulinodans FixK. Individual R. leguminosarum bv. viciae fixK and fixL insertion mutants displayed a Fix+ phenotype. A reduced nitrogen-fixation activity was found for a R. leguminosarum bv. viciae fnrN -deletion mutant, whereas no nitrogen-fixation activity was detectable for a fixK / fnrN double mutant. The R. leguminosarum bv. viciae nifA gene is expressed independently of FixL and FixK under aerobic and microaerobic conditions, whereas fixL gene expression is induced under microaerobiosis. Another orf was identified downstream of fixK–fixL and encodes a product which has homology to pseudoazurins from different species. Mutation of this azu gene showed that it is dispensable for nitrogen fixation.  相似文献   

7.
AIMS: To isolate the cellulase gene from Rhizobium leguminosarum bv. trifolii 1536. METHODS AND RESULTS: By the shot-gun method a clone (cel8A) harbouring 3.1 kb genomic DNA fragment from R. leguminosarum bv. trifolii 1536 was obtained. The cel8A gene coded 348 amino acids and it belongs to the glycosyl hydrolase family 8. The molecular mass of Cel8A protein induced from Escherichia coli DH5alpha, appeared to be 35 kDa. The optimum pH and optimum temperature was 7.0, and about 30 degrees C for its enzymatic activity respectively. CONCLUSIONS: R. leguminosarum bv. trifolii 1536 had cel8A gene having an open reading frame of 1047 bp coded for the activity of hydrolyzation of carboxymethyl cellulose. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of celluloytic enzyme by R. leguminosarum bv. trifolii was confirmed, which would play specific roles in rhizobia. Future study should focus on its role in the infection and nodulation phenomena.  相似文献   

8.
Insertion mutagenesis identified two negatively acting gene loci which restrict the ability of Rhizobium leguminosarum bv. trifolii TA1 to infect the homologous host Trifolium subterraneum cv. Woogenellup. One locus was confirmed by DNA sequence analysis as the nodM gene, while the other locus, designated csn-1 (cultivar-specific nodulation), is not located on the symbiosis plasmid. The presence of these cultivar specificity loci could be suppressed by the introduction of the nodT gene from ANU843, a related R. leguminosarum bv. trifolii strain. Other nod genes, present in R. leguminosarum bv. viciae (including nodX) and R. meliloti, were capable of complementing R. leguminosarum bv. trifolii TA1 for nodulation on cultivar Woogenellup. Nodulation studies conducted with F2 seedlings from a cross between cultivar Geraldton and cultivar Woogenellup indicated that a single recessive gene, designated rwt1, is responsible for the Nod- association between strain TA1 and cultivar Woogenellup. Parallels can be drawn between this association and gene-for-gene systems common in interactions between plants and biotrophic pathogens.  相似文献   

9.
10.
The genetic structure of a population of nonsymbiotic Rhizobium leguminosarum strains was determined by the electrophoretic mobilities of eight metabolic enzymes. Nonsymbiotic strains were isolated from the rhizosphere of bean plants and characterized by growth on differential media and at different temperatures, intrinsic antibiotic resistance, the lack of homology to a nifH probe, and their inability to form nodules on bean roots. All the isolates clustered with R. leguminosarum bv. phaseoli reference strains and did not encompass any other Rhizobium taxa. Their rRNA operon restriction fragment length polymorphisms and the nucleotide sequence of a fragment of the 16S rRNA gene were also found to be identical to those of R. leguminosarum bv. phaseoli reference strains. When complemented with an R. leguminosarum bv. phaseoli symbiotic plasmid (p42d), the nonsymbiotic isolates were able to fix nitrogen in symbiosis with bean roots at levels similar to those of the parental strain. The symbiotic isolates were found at a relative frequency of 1 in 40 nonsymbiotic R. leguminosarum strains.  相似文献   

11.
The patterns of O-acetylation of the exopolysaccharide (EPS) from the Sym plasmid-cured derivatives of Rhizobium leguminosarum bv. trifolii strain LPR5, R. leguminosarum bv. trifolii strain ANU843 and R. leguminosarum bv. viciae strain 248 were determined by 1H and 13C NMR spectroscopy. Beside a site indicative of the chromosomal background, these strains have one site of O-acetylation in common, namely residue b of the repeating unit. The O-acetyl esterification pattern of EPS of the Sym plasmid-cured derivatives of strains LPR5, ANU843, and 248 was not altered by the introduction of a R. leguminosarum bv. viciae Sym plasmid or a R. leguminosarum bv. trifolii Sym plasmid. The induction of nod gene expression by growth of the bacteria in the presence of Vicia sativa plants or by the presence of the flavonoid naringenin, produced no significant changes in either amount or sites of O-acetyl substitution. Furthermore, no such changes were found in the EPS from a Rhizobium strain in which the nod genes are constitutively expressed. The substitution pattern of the exopolysaccharide from R. leguminosarum is, therefore, determined by the bacterial genome and is not influenced by genes present on the Sym plasmid. This conclusion is inconsistent with the suggestion of Philip-Hollingsworth et al. (Philip-Hollingsworth, S., Hollingsworth, R. I., Dazzo, F. B., Djordjevic, M. A., and Rolfe, B. G. (1989) J. Biol. Chem. 264, 5710-5714) that nod genes of R. leguminosarum bv. trifolii, by influencing the acetylation pattern of EPS, determine the host specificity of nodulation.  相似文献   

12.
The genetic structure of a population of nonsymbiotic Rhizobium leguminosarum strains was determined by the electrophoretic mobilities of eight metabolic enzymes. Nonsymbiotic strains were isolated from the rhizosphere of bean plants and characterized by growth on differential media and at different temperatures, intrinsic antibiotic resistance, the lack of homology to a nifH probe, and their inability to form nodules on bean roots. All the isolates clustered with R. leguminosarum bv. phaseoli reference strains and did not encompass any other Rhizobium taxa. Their rRNA operon restriction fragment length polymorphisms and the nucleotide sequence of a fragment of the 16S rRNA gene were also found to be identical to those of R. leguminosarum bv. phaseoli reference strains. When complemented with an R. leguminosarum bv. phaseoli symbiotic plasmid (p42d), the nonsymbiotic isolates were able to fix nitrogen in symbiosis with bean roots at levels similar to those of the parental strain. The symbiotic isolates were found at a relative frequency of 1 in 40 nonsymbiotic R. leguminosarum strains.  相似文献   

13.
14.
DNA sequencing of the nodIJ region from Rhizobium leguminosarum biovar trifolii revealed the nodT gene immediately downstream of nodJ. DNA hybridizations using a nodT-specific probe showed that nodT is present in several R. leguminosarum strains. Interestingly, a flavonoid-inducible nodT gene homologue in R. leguminosarum bv. viciae is not in the nodABCIJ operon but is located downstream of nodMN. The sequence of the nodT gene from bv. viciae was determined and a comparison of the predicted amino-acid sequences of the two nodT genes shows them to be conserved; the predicted protein sequences appear to have a potential transit sequence typical of outer-membrane proteins. Mutations affecting nodT in either biovar had no observed effect on nodulation of the legumes tested.  相似文献   

15.
16.
The comparative analysis of the symbiotic genes nifD, nifH, nodA of wild-growing Lathyrus L. species (Fabaceae) connected by genes sequences of 16S aRNA to Rhizobium leguminosarum bv. viceae, Rhizobium tropici, Agrobacterium sp., and Phyllobacterium sp. was carried out. It was demonstrated that all tested genes of strains taken for analysis had high degree of homology with analogous genes of Rhizobium leguminosarum bv. viceae. It was suggested that symbiotic genes were introduced into Rhizobium tropici, Agrobacterium sp., and Phyllobacterium sp. strains by means of horizontal gene transfer over from Rhizobium leguminosarum bv. viceae strain. The recombinant strains were formed, capable to nodulate Lathyrus L. species that earlier was not considered characteristic for these plants.  相似文献   

17.
Symbiotic nitrogen-fixing bacteria Rhizobium leguminosarum by. viciae VF39 secrete an acidic heteropolysaccharide, the biosynthesis of which involves the stage of polyprenyl diphosphate octasaccharide formation, with its carbohydrate fragment corresponding to the repeating polymer unit. The amino acid analysis of the product of the pssA gene, we have earlier identified, showed its homology to bacterial polyisoprenyl phosphate hexose 1-phosphate transferases catalyzing the formation of phosphodiester bonds between polyprenyl phosphates and hexose 1-phosphates, whose donors are nucleotide sugars. The immunoblotting demonstrated that Rhizobium cells synthesize a protein with a molecular mass of 25 kDa, which implies the translation of the open reading frame occurring from the second initiating codon followed by the protein processing. It was shown that PssA is an integral membrane-bound protein involved in glucose 1-phosphate transfer from UDP-glucose to polyprenyl phosphate to form polyprenyl diphosphate glucose. These results suggest that the pssA gene encodes UDP-glucose:polyprenyl phosphate-glucosyl phosphotransferase.  相似文献   

18.
Rhizobium leguminosarum bv. viciae Exo- mutant strains RBL5523,exo7::Tn5,RBL5523,exo8::Tn5 and RBL5523,exo52::Tn5 are affected in nodulation and in the syntheses of lipopolysaccharide, capsular polysaccharide, and exocellular polysaccharide. These mutants were complemented for nodulation and for the syntheses of these polysaccharides by plasmid pMP2603. The gene in which these mutants are defective is functionally homologous to the exoB gene of Rhizobium meliloti. The repeating unit of the residual amounts of EPS still made by the exoB mutants of R. leguminosarum bv. viciae lacks galactose and the substituents attached to it. The R. leguminosarum bv. viciae and R. meliloti exoB mutants fail to synthesize active UDP-glucose 4'-epimerase.  相似文献   

19.
Monospecific polyclonal antisera raised against Rhizobium leguminosarum bv. trifolii R39, a bacterium which was isolated originally from red clover nodules, were used to study the colonization of roots of leguminous and nonleguminous plants (Pisum sativum, Lupinus albus, Triticúm aestivum, and Zea mays) after inoculation. Eight weeks after inoculation of soil-grown plants, between 0.1 and 1% of the total bacterial population in the rhizospheres of all inoculated plants were identified as R. leguminosarum bv. trifolii R39. To characterize the associative colonization of the nonleguminous plants by R.leguminosarum bv. trifolii R39 in more detail, a time course study was performed with inoculated roots of Z. mays. R. leguminosarum bv. trifolii R39 was found almost exclusively in the rhizosphere soil and on the rhizoplane 4 weeks after inoculation. Colonization of inner root tissues was detected only occasionally at this time. During the process of attachment of R. leguminosarum bv. trifolii R39 to the rhizoplane, bacterial lipopolysaccharides were overexpressed, and this may be important for plant-microbe interaction. Fourteen weeks after inoculation, microcolonies of R. leguminosarum bv. trifolii R39 were detected in lysed cells of the root cortex as well as in intracellular space of central root cylinder cells. At the beginning of flowering (18 weeks after inoculation), the number of R. leguminosarum bv. trifolii R39 organisms decreased in the rhizosphere soil, rhizoplane, and inner root tissue.  相似文献   

20.
Y Zhu  L S Pierson  rd    M C Hawes 《Plant physiology》1997,115(4):1691-1698
Reporter strains of soil-borne bacteria were used to test the hypothesis that chemicals released by root border cells can influence the expression of bacterial genes required for the establishment of plant-microbe associations. Promoters from genes known to be activated by plant factors included virE, required for Agrobacterium tumefaciens pathogenesis, and common nod genes from Rhizobium leguminosarum bv viciae and Rhizobium meliloti, required for nodulation of pea (Pisum sativum) and alfalfa (Medicago sativum), respectively. Also included was phzB, an autoinducible gene encoding the biosynthesis of antibiotics by Pseudomonas aureofaciens. The virE and nod genes were activated to different degrees, depending on the source of border cells, whereas phzB activity remained unaffected. The homologous interaction between R. leguminosarum bv viciae and its host, pea, was examined in detail. Nod gene induction by border cells was dosage dependent and responsive to environmental signals. The highest levels of gene induction by pea (but not alfalfa) border cells occurred at low temperatures, when little or no bacterial growth was detected. Detached border cells cultured in distilled water exhibited increased nod gene induction (ini) in response to signals from R. leguminosarum bv viciae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号