首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During oropharyngeal candidiasis (OPC), Candida albicans invades and damages oral epithelial cells, which respond by producing proinflammatory mediators that recruit phagocytes to foci of infection. The ephrin type-A receptor 2 (EphA2) detects β-glucan and plays a central role in stimulating epithelial cells to release proinflammatory mediators during OPC. The epidermal growth factor receptor (EGFR) also interacts with C. albicans and is known to be activated by the Als3 adhesin/invasin and the candidalysin pore-forming toxin. Here, we investigated the interactions among EphA2, EGFR, Als3 and candidalysin during OPC. We found that EGFR and EphA2 constitutively associate with each other as part of a heteromeric physical complex and are mutually dependent for C. albicans-induced activation. Als3-mediated endocytosis of a C. albicans hypha leads to the formation of an endocytic vacuole where candidalysin accumulates at high concentration. Thus, Als3 potentiates targeting of candidalysin, and both Als3 and candidalysin are required for C. albicans to cause maximal damage to oral epithelial cells, sustain activation of EphA2 and EGFR, and stimulate pro-inflammatory cytokine and chemokine secretion. In the mouse model of OPC, C. albicans-induced production of CXCL1/KC and CCL20 is dependent on the presence of candidalysin and EGFR, but independent of Als3. The production of IL-1α and IL-17A also requires candidalysin but is independent of Als3 and EGFR. The production of TNFα requires Als1, Als3, and candidalysin. Collectively, these results delineate the complex interplay among host cell receptors EphA2 and EGFR and C. albicans virulence factors Als1, Als3 and candidalysin during the induction of OPC and the resulting oral inflammatory response.  相似文献   

2.
Candida glabrata is the second most common organism isolated from women with vulvovaginal candidiasis (VVC), particularly in women with uncontrolled diabetes mellitus. However, mechanisms involved in the pathogenesis of C. glabrata-associated VVC are unknown and have not been studied at any depth in animal models. The objective of this study was to evaluate host responses to infection following efforts to optimize a murine model of C. glabrata VVC. For this, various designs were evaluated for consistent experimental vaginal colonization (i.e., type 1 and type 2 diabetic mice, exogenous estrogen, varying inocula, and co-infection with C. albicans). Upon model optimization, vaginal fungal burden and polymorphonuclear neutrophil (PMN) recruitment were assessed longitudinally over 21 days post-inoculation, together with vaginal concentrations of IL-1β, S100A8 alarmin, lactate dehydrogenase (LDH), and in vivo biofilm formation. Consistent and sustained vaginal colonization with C. glabrata was achieved in estrogenized streptozotocin-induced type 1 diabetic mice. Vaginal PMN infiltration was consistently low, with IL-1β, S100A8, and LDH concentrations similar to uninoculated mice. Biofilm formation was not detected in vivo, and co-infection with C. albicans did not induce synergistic immunopathogenic effects. This data suggests that experimental vaginal colonization of C. glabrata is not associated with an inflammatory immunopathogenic response or biofilm formation.  相似文献   

3.
Candida albicans and Candida glabrata account for the majority of candidiasis cases worldwide. Although both species are in the same genus, they differ in key virulence attributes. Within this work, live cell imaging was used to examine the dynamics of neutrophil activation after confrontation with either C. albicans or C. glabrata. Analyses revealed higher phagocytosis rates of C. albicans than C. glabrata that resulted in stronger PMN (polymorphonuclear cells) activation by C. albicans. Furthermore, we observed differences in the secretion of chemokines, indicating chemotactic differences in PMN signalling towards recruitment of further immune cells upon confrontation with Candida spp. Supernatants from co‐incubations of neutrophils with C. glabrata primarily attracted monocytes and increased the phagocytosis of C. glabrata by monocytes. In contrast, PMN activation by C. albicans resulted in recruitment of more neutrophils. Two complex infection models confirmed distinct targeting of immune cell populations by the two Candida spp.: In a human whole blood infection model, C. glabrata was more effectively taken up by monocytes than C. albicans and histopathological analyses of murine model infections confirmed primarily monocytic infiltrates in C. glabrata kidney infection in contrast to PMN‐dominated infiltrates in C. albicans infection. Taken together, our data demonstrate that the human opportunistic fungi C. albicans and C. glabrata are differentially recognized by neutrophils and one outcome of this differential recognition is the preferential uptake of C. glabrata by monocytes.  相似文献   

4.
Candida albicans and Candida glabrata are predominant fungi associated with oral candidiasis. Histatin 5 (Hst 5) is a small cationic human salivary peptide with high fungicidal activity against C. albicans, however many strains of C. glabrata are resistant. Since Hst 5 requires fungal binding to cell wall components prior to intracellular translocation, reduced Hst 5 binding to C. glabrata may be the reason for its insensitivity. C. glabrata has higher surface levels of β-1,3-glucans as compared with C. albicans; however these differences did not account for reduced Hst 5 uptake and killing in C. glabrata. Similarly, the biofilm matrix of C. glabrata contained significantly higher levels of β-1,3-glucans compared with C. albicans, but it did not reduce the percentage of Hst 5 positive fungal cells in the biofilm. Hst 5 enters C. albicans cell through polyamine transporters Dur3p and Dur31p that are uncharacterized in C. glabrata. C. glabrata strains expressing CaDur3 and CaDur31 had two-fold higher killing and uptake of Hst 5. Thus, neither C. glabrata cell surface or biofilm matrix β-1,3-glucan levels affected Hst 5 toxicity; rather the crucial rate limiting step is reduced uptake that can be overcome by expression of C. albicans Dur proteins in C. glabrata.  相似文献   

5.
C. albicans is a commensal yeast of the mucous membranes in healthy humans that can also cause disseminated candidiasis, mainly originating from the digestive tract, in vulnerable patients. It is necessary to understand the cellular and molecular mechanisms of the interaction of C. albicans with enterocytes to better understand the basis of commensalism and pathogenicity of the yeast and to improve the management of disseminated candidiasis. In this study, we investigated the kinetics of tight junction (TJ) formation in parallel with the invasion of C. albicans into the Caco-2 intestinal cell line. Using invasiveness assays on Caco-2 cells displaying pharmacologically altered TJ (i.e. differentiated epithelial cells treated with EGTA or patulin), we were able to demonstrate that TJ protect enterocytes against invasion of C. albicans. Moreover, treatment with a pharmacological inhibitor of endocytosis decreased invasion of the fungus into Caco-2 cells displaying altered TJ, suggesting that facilitating access of the yeast to the basolateral side of intestinal cells promotes endocytosis of C. albicans in its hyphal form. These data were supported by SEM observations of differentiated Caco-2 cells displaying altered TJ, which highlighted membrane protrusions engulfing C. albicans hyphae. We furthermore demonstrated that Als3, a hypha-specific C. albicans invasin, facilitates internalization of the fungus by active penetration and induced endocytosis by differentiated Caco-2 cells displaying altered TJ. However, our observations failed to demonstrate binding of Als3 to E-cadherin as the trigger mechanism of endocytosis of C. albicans into differentiated Caco-2 cells displaying altered TJ.  相似文献   

6.
Streptococcus mutans and Candida albicans are found together in the oral biofilms on dental surfaces, but little is known about the ecological interactions between these species. Here, we studied the effects of S. mutans UA159 on the growth and pathogencity of C. albicans. Initially, the effects of S. mutans on the biofilm formation and morphogenesis of C. albicans were tested in vitro. Next, we investigate the influence of S. mutans on pathogenicity of C. albicans using in vivo host models, in which the experimental candidiasis was induced in G. mellonella larvae and analyzed by survival curves, C. albicans count in hemolymph, and quantification of hyphae in the host tissues. In all the tests, we evaluated the direct effects of S. mutans cells, as well as the indirect effects of the subproducts secreted by this microorganism using a bacterial culture filtrate. The in vitro analysis showed that S. mutans cells favored biofilm formation by C. albicans. However, a reduction in biofilm viable cells and inhibition of hyphal growth was observed when C. albicans was in contact with the S. mutans culture filtrate. In the in vivo study, injection of S. mutans cells or S. mutans culture filtrate into G. mellonella larvae infected with C. albicans increased the survival of these animals. Furthermore, a reduction in hyphal formation was observed in larval tissues when C. albicans was associated with S. mutans culture filtrate. These findings suggest that S. mutans can secrete subproducts capable to inhibit the biofilm formation, morphogenesis and pathogenicity of C. albicans, attenuating the experimental candidiasis in G. mellonella model.  相似文献   

7.
Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.  相似文献   

8.
Candida albicans biofilms are a complex multilayer community of cells that are resistant to almost all classes of antifungal drugs. The bottommost layers of biofilms experience nutrient limitation where C. albicans cells are required to respire. We previously reported that a protein Ndu1 is essential for Candida mitochondrial respiration; loss of NDU1 causes inability of C. albicans to grow on alternative carbon sources and triggers early biofilm detachment. Here, we screened a repurposed library of FDA-approved small molecule inhibitors to identify those that prevent NDU1-associated functions. We identified an antihelminthic drug, Niclosamide (NCL), which not only prevented growth on acetate, C. albicans hyphenation and early biofilm growth, but also completely disengaged fully grown biofilms of drug-resistant C. albicans and Candida auris from their growth surface. To overcome the suboptimal solubility and permeability of NCL that is well known to affect its in vivo efficacy, we developed NCL-encapsulated Eudragit EPO (an FDA-approved polymer) nanoparticles (NCL-EPO-NPs) with high niclosamide loading, which also provided long-term stability. The developed NCL-EPO-NPs completely penetrated mature biofilms and attained anti-biofilm activity at low microgram concentrations. NCL-EPO-NPs induced ROS activity in C. albicans and drastically reduced oxygen consumption rate in the fungus, similar to that seen in an NDU1 mutant. NCL-EPO-NPs also significantly abrogated mucocutaneous candidiasis by fluconazole-resistant strains of C. albicans, in mice models of oropharyngeal and vulvovaginal candidiasis. To our knowledge, this is the first study that targets biofilm detachment as a target to get rid of drug-resistant Candida biofilms and uses NPs of an FDA-approved nontoxic drug to improve biofilm penetrability and microbial killing.

This study shows that encapsulation of the antiparasitic drug Niclosamide in nanoparticles can enhance its pharmaco-availability, prevent the growth and filamentation of Candida, and enhance biofilm penetrability and detachment, both in vitro and in two mouse models of mucosal candidiasis.  相似文献   

9.
10.
Common iatrogenic procedures can result in translocation of the human pathogenic fungus Candida albicans from mucosal surfaces to the bloodstream. Subsequent disseminated candidiasis and infection of deep-seated organs may occur if the fungus is not eliminated by blood cells. In these cases, fungal cells adhere to the endothelial cells of blood vessels, penetrate through endothelial layers, and invade deeper tissue. In this scenario, endothelial adhesion events must occur during circulation under conditions of physiological blood pressure. To investigate the fungal and host factors which contribute to this essential step of disseminated candidiasis, we have developed an in vitro circulatory C. albicans-endothelium interaction model. We demonstrate that both C. albicans yeast and hyphae can adhere under flow at a pressure similar to capillary blood pressure. Serum factors significantly enhanced the adhesion potential of viable but not killed C. albicans cells to endothelial cells. During circulation, C. albicans cells produced hyphae and the adhesion potential first increased, then decreased with time. We provide evidence that a specific temporal event in the yeast-to-hyphal transition, regulated by the G1 cyclin Hgc1, is critical for C. albicans-endothelium adhesion during circulation.Candida albicans is one of only a few fungal species which belong to the normal microbial flora of human beings and, under normal circumstances, exists as a commensal of the skin, gastrointestinal tract, oral cavity, or vagina. Alterations in the host environment, however, can result in the transition from a commensal to a pathogenic relationship. Even relatively mild immune suppression or antibiotic treatment can result in mucosal infections, and these superficial infections are extremely common (24). Candida species are also the most frequent cause of invasive fungal infections in humans, and C. albicans accounts for around 50% of disseminated candidiasis (23). These infections are extremely serious, with attributable mortality rates of 40 to 50%, even with first-line antifungal therapy. Although severe immune suppression—in particular defects in innate immunity, such as neutropenia—is associated with disseminated candidiasis, the major risk factors are common iatrogenic procedures and/or nosocomial conditions such as placement of a central venous catheter and disruption of normal skin barriers or gut mucosa.In these situations, C. albicans can gain access to the bloodstream and, from there, disseminate throughout the body and colonize organs, which may ultimately result in sepsis and multiorgan failure. In order to exit the bloodstream and infect internal organs, however, the fungus must first adhere to and traverse the endothelial lining of blood vessels. Although this critical step in disseminated candidiasis has been the subject of several studies (reviewed in reference 13), the detailed mechanisms underlying it remain poorly understood, and it is likely that C. albicans-endothelium adhesion is mediated by numerous different host and fungal activities. While mostly uncharacterized at the molecular level, C. albicans has been shown to possess integrin-like molecules which mediate the adhesion of yeast cells to the endothelium (15). In addition, the hydrophobicity of the yeast cell surface was also demonstrated to influence adhesion under conditions which mimic the physical pressure of the circulatory system (11) and the glycosylation state of cell wall proteins is likely to play a major role, as a pmt6Δ mutant with defective O-glycosylation of secreted proteins displays attenuated endothelial adhesion (26).The genome of C. albicans contains numerous genes encoding both putative and characterized adhesins (6, 21, 25). Of these, only a small number have been tested for involvement in endothelial interactions and only certain members of the ALS gene family have been demonstrated to play a role in endothelial attachment events. Als2 and Als3 represent multifunctional adhesins with roles in adherence to both endothelial and epithelial cells, while Als1, Als4, and Als9 appear to specifically mediate adhesion to endothelial cells (30, 31).The aims of this study were to develop a circulatory blood vessel model and to characterize factors necessary for C. albicans-endothelium adhesion under physical pressure. A similar model has recently been described by Grubb et al. (14). These authors utilized a novel flow system to determine the relative adhesiveness of different C. albicans morphologies to endothelial cells. The authors found that yeast cells were more adherent under conditions of shear stress, which mimic the physical environment of postcapillary venules.The experimental design of the current study, however, features several differences. Most importantly, we have developed a circulation system, as opposed to linear perfusion, which permitted fungal adaptation within the system and allowed us to monitor morphological and adhesion kinetics during circulation. Furthermore, we have used a pressure which is similar to that found in capillary networks, have quantified the orientation of fungal hyphae relative to flow, and have analyzed the importance of fungal viability, the role of serum factors, and the importance of hypha-associated genes by using mutants lacking regulators of morphogenesis. Similar to Grubb et al. (14), we found that C. albicans yeast and hyphae can rapidly adhere under flow. However, we also found that an adaptation event associated with the yeast-to-hypha transition can greatly enhance C. albicans-endothelium adhesion during circulation. In fact, C. albicans adhered most efficiently at a distinct stage during dimorphism. Furthermore, we found that C. albicans can adhere under relatively high pressure, above 3 dynes/cm2, and that serum factors are important for this process. Finally, we provide molecular evidence that adhesion to endothelial cells under these conditions requires hyphal formation and is specifically mediated by the G1 cyclin encoded by HGC1.  相似文献   

11.
12.
Disseminated candidiasis is associated with 30–40% mortality in severely immunocompromised patients. Among the causal agents, Candida albicans is the dominant one. Various animal models have been developed for investigating gene functions in C. albicans. Zebrafish injection models have increasingly been applied in elucidating C. albicans pathogenesis because of the conserved immunity, prolific fecundity of the zebrafish and the low costs of care systems. In this study, we established a simple, noninvasive zebrafish egg bath infection model, defined its optimal conditions, and evaluated the model with various C. albicans mutant strains. The deletion of SAP6 did not have significant effect on the virulence. By contrast, the deletion of BCR1, CPH1, EFG1, or TEC1 significantly reduced the virulence under current conditions. Furthermore, all embryos survived when co-incubated with bcr1/bcr1, cph1/cph1 efg1/efg1, efg1/efg1, or tec1/tec1 mutant cells. The results indicated that our novel zebrafish model is time-saving and cost effective.  相似文献   

13.
Candida albicans adhesins have amyloid-forming sequences. In Als5p, these amyloid sequences cluster cell surface adhesins to create high avidity surface adhesion nanodomains. Such nanodomains form after force is applied to the cell surface by atomic force microscopy or laminar flow. Here we report centrifuging and resuspending S. cerevisiae cells expressing Als5p led to 1.7-fold increase in initial rate of adhesion to ligand coated beads. Furthermore, mechanical stress from vortex-mixing of Als5p cells or C. albicans cells also induced additional formation of amyloid nanodomains and consequent activation of adhesion. Vortex-mixing for 60 seconds increased the initial rate of adhesion 1.6-fold. The effects of vortex-mixing were replicated in heat-killed cells as well. Activation was accompanied by increases in thioflavin T cell surface fluorescence measured by flow cytometry or by confocal microscopy. There was no adhesion activation in cells expressing amyloid-impaired Als5pV326N or in cells incubated with inhibitory concentrations of anti-amyloid dyes. Together these results demonstrated the activation of cell surface amyloid nanodomains in yeast expressing Als adhesins, and further delineate the forces that can activate adhesion in vivo. Consequently there is quantitative support for the hypothesis that amyloid forming adhesins act as both force sensors and effectors.  相似文献   

14.
Candida albicans is the most common human fungal pathogen and can grow as yeast or filaments, depending on the environmental conditions. The filamentous form is of particular interest because it can play a direct role in adherence and pathogenicity. Therefore, the purpose of this study was to evaluate the effects of three clinical strains of Lactobacillus on C. albicans filamentation as well as their probiotic potential in pathogen-host interactions via an experimental candidiasis model study in Galleria mellonella. We used the reference strain Candida albicans ATCC 18804 and three clinical strains of Lactobacillus: L. rhamnosus strain 5.2, L. paracasei strain 20.3, and L. fermentum strain 20.4. First, the capacity of C. albicans to form hyphae was tested in vitro through association with the Lactobacillus strains. After that, we verified the ability of these strains to attenuate experimental candidiasis in a Galleria mellonella model through a survival curve assay. Regarding the filamentation assay, a significant reduction in hyphae formation of up to 57% was observed when C. albicans was incubated in the presence of the Lactobacillus strains, compared to a control group composed of only C. albicans. In addition, when the larvae were pretreated with Lactobacillus spp. prior to C. albicans infection, the survival rate of G. mellonela increased in all experimental groups. We concluded that Lactobacillus influences the growth and expression C. albicans virulence factors, which may interfere with the pathogenicity of these microorganisms.  相似文献   

15.
As TLRs are expressed by hematopoietic stem and progenitor cells, these receptors may play a role in hematopoiesis in response to pathogens during infection. We showed here that inactivated yeasts and hyphae of Candida albicans induce in vitro the proliferation of purified murine hematopoietic stem and progenitor cells (Linc-Kit+ Sca-1+) as well as their differentiation to lineage positive cells, through a MyD88-dependent pathway. These results indicate that TLR-mediated recognition of C. albicans by hematopoietic stem and progenitor cells may augment the host capability for rapidly replenishing the innate immune system during candidiasis.  相似文献   

16.
An important initial step in biofilm development and subsequent establishment of fungal infections by the human pathogen Candida glabrata is adherence to a surface. Adherence is mediated through a large number of differentially regulated cell wall-bound adhesins. The fungus can modify the incorporation of adhesins in the cell wall allowing crucial adaptations to new environments. In this study, expression and cell wall incorporation of C. glabrata adhesins were evaluated in biofilms cultured in two different media: YPD and a semi-defined medium SdmYg. Tandem mass spectrometry of isolated C. glabrata cell walls identified 22 proteins including six adhesins: the novel adhesins Awp5 and Awp6, Epa3 and the previously identified adhesins Epa6, Awp2 and Awp4. Regulation of expression of these and other relevant adhesin genes was investigated using real-time qPCR analysis. For most adhesin genes, significant up-regulation was observed in biofilms in at least one of the culturing media. However, this was not the case for EPA6 and AWP2, which is consistent with their gene products already being abundantly present in planktonic cultures grown in YPD medium. Furthermore, most of the adhesin genes tested also show medium-dependent differential regulation. These results underline the idea that many adhesins in C. glabrata are involved in biofilm formation and that their expression is tightly regulated and dependent on environmental conditions and growth phase. This may contribute to its potential to form resilient biofilms and cause infection in various host tissues.  相似文献   

17.
Candidemia is a growing problem in hospitals all over the world. Despite advances in the medical support of critically ill patients, candidiasis leads to prolonged hospitalization, and has a crude mortality rate around 50%. We conducted a multicenter surveillance study in 16 hospitals distributed across five regions of Brazil to assess the incidence, species distribution, antifungal susceptibility, and risk factors for bloodstream infections due to Candida species. From June 2007 to March 2010, we studied a total of 2,563 nosocomial bloodstream infection (nBSI) episodes. Candida spp. was the 7th most prevalent agent. Most of the patients were male, with a median age of 56 years. A total of 64 patients (46.7%) were in the ICU when candidemia occurred. Malignancies were the most common underlying condition (32%). The crude mortality rate of candidemia during the hospital admission was 72.2%. Non-albicans species of Candida accounted for 65.7% of the 137 yeast isolates. C. albicans (34.3%), Candida parapsilosis (24.1%), Candida tropicalis (15.3%) and Candida glabrata (10.2%) were the most prevalent species. Only 47 out of 137 Candida isolates were sent to the reference laboratory for antifungal susceptibility testing. All C. albicans, C. tropicalis and C. parapsilosis isolates were susceptible to the 5 antifungal drugs tested. Among 11 C. glabrata isolates, 36% were resistant to fluconazole, and 64% SDD. All of them were susceptible to anidulafungin and amphotericin B. We observed that C. glabrata is emerging as a major player among non-albicans Candida spp. and fluconazole resistance was primarily confined to C. glabrata and C. krusei strains. Candida resistance to echinocandins and amphotericin B remains rare in Brazil.Mortality rates remain increasingly higher than that observed in the Northern Hemisphere countries, emphasizing the need for improving local practices of clinical management of candidemia, including early diagnosis, source control and precise antifungal therapy.  相似文献   

18.
Candida glabrata is an apparently asexual haploid yeast that is phylogenetically closer to Saccharomyces cerevisiae than to Candida albicans. Its genome contains three MAT-like cassettes, MAT, which encodes either MATa or MATalpha information in different strains, and the additional loci, HML and HMR. The genome also contains an HO gene homolog, but this yeast has never been shown to switch mating-types spontaneously, as S. cerevisiae does. We have recently sequenced the genomes of the five species that, together with C. glabrata, make up the Nakaseomyces clade. All contain MAT-like cassettes and an HO gene homolog. In this work, we express the HO gene of all Nakaseomyces and of S. cerevisiae in C. glabrata. All can induce mating-type switching, but, despite the larger phylogenetic distance, the most efficient endonuclease is the one from S. cerevisiae. Efficient mating-type switching in C. glabrata is accompanied by a high cell mortality, and sometimes results in conversion of the additional cassette HML. Mortality probably results from the cutting of the HO recognition sites that are present, in HML and possibly HMR, contrary to what happens naturally in S. cerevisiae. This has implications in the life-cycle of C. glabrata, as we show that efficient MAT switching is lethal for most cells, induces chromosomal rearrangements in survivors, and that the endogenous HO is probably rarely active indeed.  相似文献   

19.
The incidence of candidiasis due to non-albicans Candida species (especially Candida glabrata) has significantly increased in recent decades. Candida glabrata often invades immunocompromised hosts and causes systemic or mucosal infections, whereas cutaneous infections are rarely reported. We present a rare case of cutaneous infection caused by C. glabrata and review all similar cases available in the PubMed database. A patient was admitted to the hospital with a 2-month history of a plaque on the face. Histopathological examination displayed typical infectious granulomas in the deep dermis, and the pathogen was finally confirmed as C. glabrata using a series of microbial examinations (fungal culture, biochemical test, and PCR-directed sequencing). The patient was completely cured after 4 months of treatment with oral itraconazole combined with topical terbinafine. We reviewed similar reports of cutaneous infection caused by C. glabrata. All the data suggested that an accurate diagnosis of cutaneous candidiasis depends mainly on histological and fungal examinations, especially molecular biological assays. Antifungal agents based on microbial susceptibility tests are the first-line treatment choice for C. glabrata infection, but the prognosis might be more dependent on the basic condition of the host.  相似文献   

20.
The fungal pathogen Candida albicans causes lethal systemic infections in humans. To better define how pathogens resist oxidative attack by the immune system, we examined a family of four Flavodoxin-Like Proteins (FLPs) in C. albicans. In agreement with previous studies showing that FLPs in bacteria and plants act as NAD(P)H quinone oxidoreductases, a C. albicans quadruple mutant lacking all four FLPs (pst1Δ, pst2Δ, pst3Δ, ycp4Δ) was more sensitive to benzoquinone. Interestingly, the quadruple mutant was also more sensitive to a variety of oxidants. Quinone reductase activity confers important antioxidant effects because resistance to oxidation was restored in the quadruple mutant by expressing either Escherichia coli wrbA or mammalian NQO1, two distinct types of quinone reductases. FLPs were detected at the plasma membrane in C. albicans, and the quadruple mutant was more sensitive to linolenic acid, a polyunsaturated fatty acid that can auto-oxidize and promote lipid peroxidation. These observations suggested that FLPs reduce ubiquinone (coenzyme Q), enabling it to serve as an antioxidant in the membrane. In support of this, a C. albicans coq3Δ mutant that fails to synthesize ubiquinone was also highly sensitive to oxidative stress. FLPs are critical for survival in the host, as the quadruple mutant was avirulent in a mouse model of systemic candidiasis under conditions where infection with wild type C. albicans was lethal. The quadruple mutant cells initially grew well in kidneys, the major site of C. albicans growth in mice, but then declined after the influx of neutrophils and by day 4 post-infection 33% of the mice cleared the infection. Thus, FLPs and ubiquinone are important new antioxidant mechanisms that are critical for fungal virulence. The potential of FLPs as novel targets for antifungal therapy is further underscored by their absence in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号