首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant ontogeny is a common source of variation in defense and herbivory. Yet, few studies have investigated how the induction of physical defense traits changes across plant ontogeny. Physical defense traits are costly to produce, and thus, it was predicted that induction as a cost-saving strategy would be particularly favorable for seedlings, leading to ontogenetic declines in the inducibility of these traits. We tested for induction of three different physical defense traits (prickles, latex and leaf toughness) in response to mechanical defoliation and jasmonic acid application using prickly poppies (Argemone glauca and A. mexicana, Papaveraceae) as a model system. Genetic variation in the induction of physical defenses was tested using maternal sib-ships sampled from multiple populations. Both species induced higher densities of laminar prickles, although the magnitude of induction was much higher in the endemic Hawaiian prickly poppy, A. glauca, than in the cosmopolitan A. mexicana. The magnitude of prickle induction was also higher in young compared to older juvenile plant stages in A. glauca, demonstrating a strong role of ontogeny. Neither latex exudation nor leaf toughness was induced in either species. Although significant genetic variation was detected within and among populations for constitutive expression of physical defense traits in Argemone, there was no evidence for genetic variation in the induction of these traits. This study provides the first evidence for the induction of physical defenses in prickly poppies, emphasizing how an ontogenetically explicit framework can reveal new insights into plant defense. Moreover, this study illustrates how sister species comparisons between island vs. continental plants can provide new insights into plant functional and evolutionary ecology, highlighting a fruitful area for future research on more species pairs.  相似文献   

2.
Little is known about how plants protect flowers—their reproductive organs—against florivory. Additionally, the induced floral defense system has been examined in only a few species. We tested the inducibility of putative floral defenses and investigated the relationship between natural florivory and the floral defenses of 12 naturally growing plant species. The relationships between florivory and four chemical traits (nitrogen, phosphorus, total phenolics, and condensed tannins) were investigated in 12 plant species. We also studied whether flowers induce changes in chemical defenses in response to artificial damage in 10 plant species. A higher concentration of floral nitrogen was associated with a decreasing frequency of florivore attacks. Among the four traits of the 10 plant species studied, no trait changed in response to the artificial damage. We suggest that induced defense systems may not be advantageous for flowers, although it is also possible that these species simply do not use induced defense in any of their plant parts.  相似文献   

3.
On the basis of physiological and ecological costs of defense allocation, most plant defense theories predict the occurrence of trade-offs between resource investment in different types of antiherbivore defenses. To test this prediction, we conducted a meta-analysis of 31 studies published in 1976-2002 that provided data on covariation of different defensive traits in plant genotypes. We found no overall negative association between different defensive traits in plants; instead, the relationship between defensive traits varied from positive to negative depending on the types of co-occurring defenses. Evidence of trade-off was found only between constitutive and induced defenses. Therefore, to a large extent, plants appear to be jacks-of-all-trades, masters of all and may successfully produce several types of defense without paying considerable trade-offs. Our survey thus provides little evidence that genetic trade-offs between defensive traits significantly constrain the evolution of multiple defenses in plants.  相似文献   

4.
Ecological gradients shape the evolution of plant functional traits through variation in climate, abiotic factors, and biological processes. While recent observations highlight elevation clines in functional trait variation, several traits vary independently of others and vary in species-specific manner, thereby hindering community-level generalization. In this study, we examined whether whole plant communities at different elevations independently converge to elevation-specific trait values. Using a combination of field-derived trait quantification and a literature survey, we analyzed eight functional traits relating to plant palatability [specific leaf area (SLA), leaf dry matter content, carbon-to-nitrogen ratio], and defenses (spines, trichomes, silica, and the relative importance of phenolic- or non-phenolic-based chemical defenses in plants) of plants growing along several mountain transects in Switzerland, and computed community-level means for each trait. We observed a general decline of most defense traits in communities at high elevations. The individual traits’ patterns underlined a concerted decline of the physico-chemical defense syndrome at high elevation, and low SLA values at high elevation also indicate investment in the production of leaves with slow turnover rates. In addition, we found that high-elevation plant trait values tend to converge, while at low elevation, to diverge within communities. Our data suggest that community-level defense syndromes along elevation gradients are influenced by ecological filtering. Lower herbivore pressures select for reduced plant defenses, while harsh environmental conditions select for investment in tolerance-related traits. Secondly, since species are highly variable in their functional trait space within communities, niche-partitioning theory might explain which variabilities of the defense functional space are selected within communities, particularly at low elevation.  相似文献   

5.
Evolutionary convergence of color pattern in mimetic species is tightly linked with the evolution of chemical defenses. Yet, the evolutionary forces involved in natural variations of chemical defenses in aposematic species are still understudied. Herein, we focus on the evolution of chemical defenses in the butterfly tribe Heliconiini. These neotropical butterflies contain large concentrations of cyanogenic glucosides, cyanide‐releasing compounds acting as predator deterrent. These compounds are either de novo synthesized or sequestered from their Passiflora host plant, so that their concentrations may depend on host plant specialization and host plant availability. We sampled 375 wild Heliconiini butterflies across Central and South America, covering 43% species of this clade, and quantify individual variations in the different CGs using liquid chromatography coupled with tandem mass spectrometry. We detected new compounds and important variations in chemical defenses both within and among species. Based on the most recent and well‐studied phylogeny of Heliconiini, we show that ecological factors such as mimetic interactions and host plant specialization have a significant association with chemical profiles, but these effects are largely explained by phylogenetic relationships. Our results therefore suggest that shared ancestries largely contribute to chemical defense variation, pointing out at the interaction between historical and ecological factors in the evolution of Müllerian mimicry.  相似文献   

6.
How species interactions may modify the effects of environmental change on evolutionary adaptation is poorly understood. Elevated CO2 is known to alter plant–herbivore interactions, but the evolutionary consequences for plant populations have received little attention. We conducted an experiment to determine the effects of elevated CO2 and herbivory by a specialist insect herbivore (Danaus plexippus) on the expression of constitutive and induced plant defense traits in five genotypes of Asclepias syriaca, and assessed the heritability of these traits. We also examined changes in relative fitness among plant genotypes in response to altered CO2 and herbivory. The expression of plant defense traits varied significantly among genotypes. Elevated CO2 increased plant growth and physical defenses (toughness and latex), but decreased investment in chemical defenses (cardenolides). We found no effect of elevated CO2 on plant induction of cardenolides in response to caterpillar herbivory. Elevated CO2 decreased the expression of chemical defenses (cardenolides) to a different extent depending on plant genotype. Differential effects of CO2 on plant defense expression, rather than direct effects on relative fitness, may alter A. syriaca adaptation to changing climate.  相似文献   

7.
Plants have traits against herbivory that may occur together and increase defense efficiency. We tested whether there are defense syndromes in a cerrado community and, if so, whether there is a phylogenetic signal in them. We measured nine defense traits from a woodland cerrado community in southeastern Brazil. We tested the correlation between all pairs of traits and grouped the species into defense syndromes according to their traits. Most pairwise correlations of traits were complementary. Plants with lower specific leaf area also presented tougher leaves, with low nitrogen, more trichomes, and tannins. We found five syndromes: two with low defenses and high nutritional quality, two with high defenses and low nutritional quality, and one with traits compensating each other. There were two predominant strategies against herbivory in cerrado: “tolerance” and “low nutritional quality” syndromes. Phylogeny did not determine the suite of traits species presented. We argue that herbivory exerts significant selection pressure on these plant defense traits.  相似文献   

8.
Plant defense theory suggests that inducible resistance has evolved to reduce the costs of constitutive defense expression. To assess the functional and potentially adaptive value of induced resistance it is necessary to quantify the costs and benefits associated with this plastic response. The ecological and evolutionary viability of induced defenses ultimately depends on the long-term balance between advantageous and disadvantageous consequences of defense induction. Stoloniferous plants can use their inter-ramet connections to share resources and signals and to systemically activate defense expression after local herbivory. This network-specific early-warning system may confer clonal plants with potentially high benefits. However, systemic defense induction can also be costly if local herbivory is not followed by a subsequent attack on connected ramets. We found significant costs and benefits of systemic induced resistance by comparing growth and performance of induced and control plants of the stoloniferous herb Trifolium repens in the presence and absence of herbivores.  相似文献   

9.
In the absence of coevolved natural enemies, plants are expected to experience selection away from costly herbivore defenses toward growth and reproduction [evolution of increased competitive ability hypothesis (EICA)], yet no one has demonstrated EICA for an indirect defense trait. Likewise, we have little understanding of how constitutive and induced levels of defense vary among native and invasive plant populations. We conducted a greenhouse experiment in the introduced range to test whether invasive populations have reduced constitutive and induced investment in an indirect defense trait, extrafloral nectar (EFN) production, compared to native populations of Chinese tallow tree, Triadica sebifera, through an experimental leaf damage treatment. Overall, native populations invested more in indirect defense: Native populations had a greater number (+16?%) and percentage of leaves producing EFN (35 vs. 28?%), produced more EFN (63?% greater volume), and produced more sugar (+33?%) compared to invasive populations, independent of damage treatment. Of these traits, number of leaves producing EFN and volume of EFN exhibited a trade-off between constitutive and induced investment but these did not depend on plant origin. Our results are the first to support the EICA hypothesis for an indirect defense trait. This suggests that tri-trophic interactions such as indirect defense are under similar selection as direct defense traits within introduced populations. Despite reduced investment in EFN production, invasive populations still retain the ability to produce EFN, which may enable invasive plants to defend against herbivores in the introduced range.  相似文献   

10.
Elevational gradients are useful ecological settings for revealing the biotic and abiotic drivers of plant trait variation and plant–insect interactions. However, most work focusing on plant defences has looked at individual traits and few studies have assessed multiple traits simultaneously, their correlated expression patterns, and abiotic factors associated with such patterns across elevations. To address this knowledge gap, we studied elevational variation in direct (phenolic compounds) and indirect (volatile organic compounds) constitutive defences and their inducibility after feeding by a specialist beetle Altica quercetorum in saplings of 18 wild populations of Quercus pyrenaica. We tested for: 1) clines in each defensive trait individually, 2) their patterns of correlated expression and 3) associations between any such clines and climatic factors. We found that constitutive direct defences (lignins and hydrolysable tannins) decreased with increasing elevation. We observed no elevational gradient for constitutive indirect defences (volatile organic compounds) or the inducibility of direct or indirect defensive traits when looking at groups of compounds. However, at individual tree-level, increased induction of two monoterpenes (α-fenchene and camphene) at higher elevation was shown. Furthermore, we show a significant pattern of co-expression of constitutive and induced phenolics across populations, which weakened with increasing elevation. Finally, we found no evidence that climatic factors were associated with either individual or correlated trait expression patterns across elevations. Overall, these findings call for moving beyond elevational clines in individual plant defences, and argue that assessing elevational shifts in trait correlated expression patterns and their underlying mechanisms can increase our understanding of plant defence evolution and plant–herbivore interactions along environmental gradients.  相似文献   

11.
Host ecological traits may limit exposure to infectious disease, thereby generating the wide variation in disease incidence observed between host populations or species. The exclusion of disease by ecological traits may then allow selection to act against physiological defenses when they are costly to maintain in the absence of disease. This study investigates ecological resistance in the Silene-Microbotryum pathosystem. An estimated 80% of perennial Silene species host the anther-smut disease while no annuals harbor the disease in nature. Artificial inoculations of annual and perennial Silene plants, obtained from both natural and horticultural populations, demonstrate that the absence of disease in annuals is not explained by elevated physiological resistance. The annual habit is thus a powerful form of ecological defense against anther smut. Moreover, the higher susceptibility of annual species to anther smut relative to perennials supports the hypothesis of a loss of costly physiological resistance under ecological protection. The observation in annuals that physiological susceptibility is correlated with lower rates of flowering (i.e., lower fitness) suggests that variation in physiological resistance is costly in the absence of disease, even in a naїve Silene species. The absence of disease in natural populations of annuals combined with their high physiological susceptibility attest to the strength of host ecology in shaping the distribution of disease and to the dynamic nature of disease resistance.  相似文献   

12.
13.
The ‘evolution of increased competitive ability’ (EICA) hypothesis is an extension of optimal defense theory and predicts that reduced pressure from insect herbivores in the introduced range results in evolution of reduced defenses in invading plant populations, allowing greater allocation of resources to competitive traits such as growth rate and reproduction. The EICA hypothesis considered levels of defensive chemistry to be fixed within a particular genotype. In this paper, we propose that if herbivory is reduced in the introduced range, but chemical defenses are inducible in response to herbivory, evolution of reduced defenses and any associated increase competitive ability should not occur. Rather, mean induced and constitutive levels of induced defenses should be similar in introduced and native ranges, but the variance about mean induced levels should be greater in the introduced range. This is predicted because induced levels will occur less frequently in the introduced range where herbivory is reduced, thereby insulating these levels from the stabilizing selection expected in the native range where induced levels occur more frequently. We conducted a preliminary study to examine this by comparing constitutive and induced concentrations of total pyrrolizidine alkaloids (PAs) from native (European) and introduced (western North America) populations of Cynoglossum officinale L. The mean constitutive and induced concentrations of PAs did not differ between continents, but the variability of the induced concentrations was significantly greater for plants from the introduced range. Although our study with C. officinale is provisional due to a small sample size, it supports our predictions for evolution of inducible defenses in introduced ranges where herbivore pressure is reduced. Most chemical defenses in plants have been found to be inducible, so similar patterns may occur widely. If so, this weakens the generality of EICA’s predictions concerning chemical defenses. The effects of inducible defenses should be considered in cross-continent comparisons of other invasive plant species.  相似文献   

14.
野火对松属植物的进化和分布有重要的影响。在与野火长期抗争中,松属植物形成了一系列性状提高在易火生境中的适合度,维持种群生存与繁衍。西南地区是中国野火高发区,作为这一地区特有松树,云南松、思茅松和高山松具有一些典型的火适应性状,如厚树皮。以这3种松树和东部常见的马尾松为研究对象,比较4种松树的火适应对策。结果表明:4种松树的火适应性状存在一定的差异。与火适应相关的13项性状主成分分析显示,4个种在空间上总体是分离的,也表现出一些重叠。其中云南松火适应生活史对策是火耐受型和火依赖型的中间类型,适应会发生林冠火的生境。高山松、思茅松和马尾松都是火耐受型,通过快速高生长、厚树皮等性状适应生境不同频度的地表火。四种松树火适应对策与分布区火险基本相符。表明野火在这一区域广泛存在,并对植物进化和森林格局有重要影响。野火在西南地区松属分布和种群维持中的生态作用应被给予足够重视。  相似文献   

15.
Throughout the course of their evolution, plants have acquired a wide range of chemical and mechanical defenses to protect against herbivores. Ehrlich & Raven's coevolutionary theory suggests that this diversification of defensive traits is driven by the strong impact of novel traits on insect herbivores. However, the impact of plant defenses on insects is difficult to compare between related plant species due to variation in environmental and biotic conditions. We standardized these factors as far as possible by analyzing the effects of chemical and mechanical defensive traits on insects in a local community of 11 Salicaceae species growing in sympatry, and their leaf‐chewing herbivores. Defensive traits (salicylates, flavonoids, tannins, trichomes, and leaf toughness) were generally not inter‐correlated, with the exception of a negative correlation between salicylates and trichomes. The content of salicylates, a novel group of defensive metabolites in the Salicaceae, was correlated with low herbivore diversity and high host specificity. Despite these effects, the phylogeny of the studied species shows loss of salicylates in some Salix species instead of their further diversification. This could be due to salicylates not decreasing the overall abundance of herbivores, despite accounting for up to 22% of the dry leaf mass and therefore being costly. The defense of low‐salicylate willow species is thus probably maintained by other defensive traits, such as trichomes. Our study shows that the balance between costs and benefits of defensive traits is not necessarily in favor of novel compounds and illustrates a process, which may lead to the reduction in a defensive trait.  相似文献   

16.
A number of plant traits influence the success of fertilization and reproduction in plants. Collectively these traits represent ecological syndromes that are of evolutionary significance. However, while an association between mating system and colonizing ability has been proposed, the existence of a broader relationship between mating system and a species’ position in ecological succession has not been extensively investigated. Grime's CSR theory stresses that an ecological succession can involve changes from colonizing to either competitive or stress‐tolerant strategies. How distinct dimensions of competitiveness and stress tolerance covary with mating systems has still not been considered. We designed a comparative approach to evaluate the link between mating system, life form and CSR strategies for 1996 herbaceous and woody species. We found that CSR strategies are significantly related to mating systems. Ruderal species – colonizers in early succession – were mostly selfers while more competitive species were more often outcrossers. On the other hand, greater physiological stress tolerance was associated with mixed mating systems. Outcrossing is classically expected to be advantageous for most life history strategies other than colonizers, but we suggest that reproductive assurance can counterbalance this effect in stressful environments where populations are sparse and pollinators are rare. Therefore, our results emphasize that competition and abiotic stresses are not equivalent selective pressures on the evolution of mating systems. Finally, we found plant life span to convey additional information on mating system variation, supporting its role for mating system evolution. These findings encourage further investigation of the evolutionary role of ecological strategies as syndromes of traits and suggest that the emergence of large databases of plant traits will help address the major evolutionary hypotheses on such syndromes.  相似文献   

17.
Saponins occur constitutively in many plant species as part of their defense system. However, saponin content in plants seems to be dynamic, responding to many external factors including various biotic stimuli connected to herbivory attack and pathogenic infection, as well as involved in plant mutualistic symbioses with rhizobial bacteria and mycorrhizal fungi. Thus, not only saponins influence the living organisms interacting with plants, but in turn, all these interactions can impact the plant saponin content. According to their constitutive occurrence in plants, saponins are regarded mainly as phytoanticipins. Nevertheless, some presented data clearly point out to induced biosynthesis of saponins, especially in plant response to insect herbivory or inoculation with root symbionts, while the best studied examples of interactions between plants and their microbial pathogens show rather qualitative change of saponin composition based on chemical modifications of preformed, pre-infectional precursors. Simultaneously, despite evident inducibility of saponin production in plant cell cultures, the possible role of these compounds as phytoalexins synthesized in intact plants after pathogen infection is still not well documented. Some practical patterns and ecological consequences of biotic factors influencing saponin content in plants are briefly highlighted, with the special attention paid to microbial inoculants applied for optimisation of saponin synthesis in cultivated medicinal plants.  相似文献   

18.
A tremendous diversity of plants exude sticky and toxic latex upon tissue damage, and its production has been widely studied as a defensive adaptation against insect herbivores. Here, we address variation in latex production and its constituent chemical properties (cardenolides and cysteine proteases) in 53 milkweeds [Asclepias spp. (Apocynaceae)], employing a phylogenetic approach to test macroevolutionary hypotheses of defense evolution. Species were highly variable for all three traits, and they showed little evidence for strong phylogenetic conservatism. Latex production and the constituent chemical defenses are thus evolutionarily labile and may evolve rapidly. Nonetheless, in phylogenetically independent analyses, we show that the three traits show some correlations (and thus share a correlated evolutionary history), including a positive correlation between latex exudation and cysteine protease activity. Conversely, latex exudation and cysteine protease activity both showed a trade‐off with cardenolide concentrations in latex. We also tested whether these traits have increased in their phenotypic values as the milkweeds diversified, as predicted by plant defense escalation theory. Alternative methods of testing this prediction gave conflicting results – there was an overall negative correlation between amount of evolutionary change and amount of latex exudation; however, ancestral state reconstructions indicated that most speciation events were associated with increases in latex. We conclude by (i) summarizing the evidence of milkweed latex itself as a multivariate defense including the amount exuded and toxin concentrations within, (ii) assessing the coordinated evolution of latex traits and how this fits with our previous notion of ‘plant defense syndromes’, and finally, (iii) proposing a novel hypothesis that includes an ‘evolving community of herbivores’ that may promote the escalation or decline of particular defensive strategies as plant lineages diversify.  相似文献   

19.
Theories of plant defense expression are typically based on the concepts of tradeoffs among traits and of phylogenetic conservatism within clades. Here, I review recent developments in phylogenetic approaches to understanding the evolution of plant defense strategies and plant-herbivore coevolutionary interactions. I focus particularly on multivariate defense against insect herbivores, which is the simultaneous deployment of multiple traits, often arranged as convergently evolved defense syndromes. Answering many of the outstanding questions in the biology of plant defense will require generating broad hypotheses that can be explicitly tested by using comparative approaches and interpreting phylogenetic patterns. The comparative approach has wide-spread potential to reinvigorate tests of classic hypotheses about the evolution of interspecific interactions.  相似文献   

20.
Comparing related organisms with differing ecological requirements and evolutionary histories can shed light on the mechanisms and drivers underlying genetic adaptation. Here, by examining a common set of hundreds of loci, we compare patterns of nucleotide diversity and molecular adaptation of two European conifers (Scots pine and maritime pine) living in contrasted environments and characterized by distinct population genetic structure (low and clinal in Scots pine, high and ecotypic in maritime pine) and demographic histories. We found higher nucleotide diversity in Scots pine than in maritime pine, whereas rates of new adaptive substitutions (ωa), as estimated from the distribution of fitness effects, were similar across species and among the highest found in plants. Sample size and population genetic structure did not appear to have resulted in significant bias in estimates of ωa. Moreover, population contraction–expansion dynamics for each species did not affect differentially the rate of adaptive substitution in these two pines. Several methodological and biological factors may underlie the unusually high rate of adaptive evolution of Scots pine and maritime pine. By providing two new case studies with contrasting evolutionary histories, we contribute to disentangling the multiple factors potentially affecting adaptive evolution in natural plant populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号