首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pax: a murine multigene family of paired box-containing genes.   总被引:31,自引:0,他引:31  
A murine multigene family has been identified that shares a conserved sequence motif, the paired box, with developmental control and tissue-specific genes of Drosophila. To date five murine paired box-containing genes (Pax genes) have been described and one, Pax-1, has been associated with the developmental mutant phenotype undulated. Here we describe the paired boxes of three novel Pax genes, Pax-4, Pax-5, and Pax-6. Comparison of the eight murine paired domains of the mouse, the five Drosophila paired domains, and the three human paired domains shows that they fall into six distinct classes: class I comprises Pox meso, Pax-1, and HuP48; class II paired, gooseberry-proximal, gooseberry-distal, Pax-3, Pax-7, HuP1, and HuP2; class III Pax-2, Pax-5, and Pax-8; class IV Pax-4; class V Pox neuro; and class VI Pax-6. Pax-1 and the human gene HuP48 have identical paired domains, as do Pax-3 and HuP2 as well as Pax-7 and HuP1, and are likely to represent homologous genes in mouse and man. Identical intron-exon structure and extensive sequence homology of their paired boxes suggest that several Pax genes represent paralogs. The chromosomal location of all novel Pax genes and of Pax-3 and Pax-7 has been determined and reveals that they are not clustered.  相似文献   

2.
3.
Pax9, a recently identified mouse paired-box-containing gene, is highly homologous to Pax1 and belongs to the same subfamily as Pax1, Hup48, PAX9, and pox meso. Two overlapping cDNA clones spanning the entire coding region of Pax9 were isolated and sequenced. A comparison of the Pax1 and -9 protein sequences reveals a high degree of similarity even outside the paired box, while the carboxy-terminus of the two proteins diverges completely. We demonstrate that Pax9 can bind to the e5 sequence from the Drosophila even skipped promoter, which is also recognized by Pax1. We analyzed the expression of Pax9 during embryo-genesis of wildtype, Undulated short-tail (Uns), and Danforth's short tail (Sd) mice. In wildtype embryos Pax9 is expressed in the pharyngeal pouches and their derivatives, the developing vertebral column, the tail, the head, and the limbs. Expression of Pax9 is unaffected in Uns embryos, in which the Pax1 gene is deleted, arguing that expression of Pax9 is not dependent on Pax1. The expression of Pax9 is lost in the caudal part of Sd homozygous embryos, suggesting that expression of Pax9 in the vertebral column independent on the notochord. These results indicate that both Pax9 and -1 may act in parallel during morphogenesis of the vertebral column.  相似文献   

4.
5.
6.
The mouse Pax-3 gene encodes a protein that is a member of the Pax family of DNA binding proteins. Pax-3 contains two DNA binding domains: a paired domain (PD) and a paired type homeodomain (HD). Both domains are separated by 53 amino acids and interact synergistically with a sequence harboring an ATTA motif (binding to the HD) and a GTTCC site (binding to the PD) separated by 5 base pairs. Here we show that the interaction of Pax-3 with these two binding sites is independent of their angular orientation. In addition, the protein spacer region between the HD and the PD can be shortened without changing the spatial flexibility of the two DNA binding domains which interact with DNA. Furthermore, by using circular permutation analysis we determined that binding of Pax-3 to a DNA fragment containing a specific binding site causes conformational changes in the DNA, as indicated by the different mobilities of the Pax-3-DNA complexes. The ability to change the conformation of the DNA was found to be an intrinsic property of the Pax-3 PD and of all Pax proteins that we tested so far. These in vitro studies suggest that interaction of Pax proteins with their specific sequences in vivo may result in an altered DNA conformation.  相似文献   

7.
 Vertebrate Pax-6 and its Drosophila homolog eyeless play central roles in eye specification, although it is not clear if this represents the ancestral role of this gene class. As the most ”primitive” animals with true nervous systems, the Cnidaria may be informative in terms of the evolution of the Pax gene family. For this reason we surveyed the Pax gene complement of a representative of the basal cnidarian class (the Anthozoa), the coral Acropora millepora. cDNAs encoding two coral Pax proteins were isolated. Pax-Aam encoded a protein containing only a paired domain, whereas Pax-Cam also contained a homeodomain clearly related to those in the Pax-6 family. The paired domains in both proteins most resembled the vertebrate Pax-2/5/8 class, but shared several distinctive substitutions. As in most Pax-6 homologs and orthologs, an intron was present in the Pax-Cam locus at a position corresponding to residues 46/47 in the homeodomain. We propose a model for evolution of the Pax family, in which the ancestor of all of the vertebrate Pax genes most resembled Pax-6, and arose via fusion of a Pax-Aam-like gene (encoding only a paired domain) with an anteriorly-expressed homeobox gene resembling the paired -like class. Received: 25 February 1998/Accepted: 23 March 1998  相似文献   

8.
9.
10.
We present here the fine genetic mapping of the proximal part of mouse Chromosome (Chr) 12 between D12Mit54 and D12Mit4. This chromosomal region contains three loci, Pax9, Tcf3a, and Acrodysplasia (Adp), which seem to play an important role in pattern formation during mouse embryogenesis. The Adp mutation, which was created by transgene integration, causes skull, paw, and tail deformities. Pax9, which is expressed in the face, paws, and tail, once qualified as a possible candidate for the Adp locus. We analyzed 997 interspecific backcross progeny for recombination between the markers D12Mit54 and D12Mit4; we recovered 117 recombinants, which were further typed for Pax9, Tcf3a, Adp, D12Mit88, D12Nds1, D12Mit36, and D12Mit34. This study represents the first instance in which all the above loci have been included in a single analysis, thereby allowing unambiguous determination of the genetic order and distance between D12Mit54 and D12Mit4. From our results, we conclude that the Adp locus is distinct from either Pax9 or Tcf3a.  相似文献   

11.
Several mouse genes designated 'Pax genes' contain a highly conserved DNA sequence homologous to the paired box of Drosophila. Here we describe the isolation of Pax8, a novel paired box containing clone from an 8.5 day p.c. mouse embryo cDNA library. An open reading frame of 457 amino acids (aa) contains the 128 aa paired domain near the amino terminus. Another conserved region present in some other paired box genes, the octapeptide Tyr-Ser-Ile-Asn-Gly-Leu-Leu-Gly, is located 43 aa C-terminal to the paired domain. Using an interspecies backcross system, we have mapped the Pax8 gene within the proximal portion of mouse chromosome 2 in a close linkage to the surf locus. Several developmental mutations are located in this region. In situ hybridization was used to determine the pattern of Pax8 expression during mouse embryogenesis. Pax8 is expressed transiently between 11.5 and 12.5 days of gestation along the rostrocaudal axis extending from the myelencephalon throughout the length of the neural tube, predominantly in two parallel regions on either side of the basal plate. We also detected Pax8 expression in the developing thyroid gland beginning at 10.5 days of gestation, during the thyroid evagination. In the mesonephros and metanephros the expression of Pax8 was localized to the mesenchymal condensations, which are induced by the nephric duct and ureter, respectively. These condensations develop to functional units, the nephrons, of the kidney. These data are consistent with a role for Pax8 in the induction of kidney epithelium. The embryonic expression pattern of Pax8 is compared with that of Pax2, another recently described paired box gene expressed in the developing excretory system.  相似文献   

12.
13.
14.
Pax-6, a murine paired box gene, is expressed in the developing CNS.   总被引:65,自引:0,他引:65  
A multigene family of paired-box-containing genes (Pax genes) has been identified in the mouse. In this report, we describe the expression pattern of Pax-6 during embryogenesis and the isolation of cDNA clones spanning the entire coding region. The Pax-6 protein consists of 422 amino acids as deduced from the longest open reading frame and contains, in addition to the paired domain, a paired-type homeodomain. Beginning with day 8 of gestation, Pax-6 is expressed in discrete regions of the forebrain and the hindbrain. In the neural tube, expression is mainly confined to mitotic active cells in the ventral ventricular zone along the entire anteroposterior axis starting at day 8.5 of development. Pax-6 is also expressed in the developing eye, the pituitary and the nasal epithelium.  相似文献   

15.
16.
17.
18.
19.
Combinatorial association of DNA-binding proteins on composite binding sites enhances their nucleotide sequence specificity and functional synergy. As a paradigm for these interactions, Pax-5 (BSAP) assembles ternary complexes with Ets proteins on the B cell-specific mb-1 promoter through interactions between their respective DNA-binding domains. Pax-5 recruits Ets-1 to bind the promoter, but not the closely related Ets protein SAP1a. Here we show that, while several different mutations increase binding of SAP1a to an optimized Ets binding site, only conversion of Val68 to an acidic amino acid facilitates ternary complex assembly with Pax-5 on the mb-1 promoter. This suggests that enhanced DNA binding by SAP1a is not sufficient for recruitment by Pax-5, but instead involves protein–protein interactions mediated by the acidic side chain. Recruitment of Ets proteins by Pax-5 requires Gln22 within the N-terminal β-hairpin motif of its paired domain. The β-hairpin also participates in recognition of a subset of Pax-5-binding sites. Thus, Pax-5 incorporates protein–protein interaction and DNA recognition functions in a single motif. The Caenorhabditis elegans Pax protein EGL-38 also binds specifically to the mb-1 promoter and recruits murine Ets-1 or the C.elegans Ets protein T08H4.3, but not the related LIN-1 protein. Together, our results define specific amino acid requirements for Pax–Ets ternary complex assembly and show that the mechanism is conserved between evolutionarily related proteins of diverse animal species. Moreover, the data suggest that interactions between Pax and Ets proteins are an important mechanism that regulates fundamental biological processes in worms and humans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号