首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Summary Diel soil water potential fluctuations reflected daytime depletion and nocturnal resupply of water in upper soil layers. Transpiration suppression experiments demonstrated that water absorption by roots caused the daytime depletion. The soil water potential data and experimental results suggest that at night water absorbed from moist soil by deeper roots is transported to and lost from roots into drier upper soil layers. The deeper roots appear to absorb and transport water both day and night. Implications for the efficiency of deep roots and water storage, nutrient uptake and water parasitism in upper soil layers are discussed.  相似文献   

2.
Abstract Water flow and water storage were investigated for Agave deserti, a desert succulent showing crassulacean acid metabolism (CAM). The anatomy and water relations of the peripheral chlorenchyma, where CAM occurs, and the central water-storage parenchyma were investigated for its massive leaves so that these tissues could be incorporated as discrete elements into an electrical-circuit analogue of the whole plant. The daily cycling of osmotic pressure was represented by voltage sources in series with the storage capacitors. With soil water potential and leaf transpiration rate as input variables, axial water flow through the vascular bundles and radial flows into and out of storage during the day/night cycle were determined. The predominantly nocturnal transpiration was coincident with increases in cell osmotic pressure and in titratable acid of the leaf chlorenchyma. In the outer layers of the chlorenchyma, water potential was most negative at the beginning of the night when transpiration was maximum, while the water-storage parenchyma reached its minimal water potential 9 h later. The roots plus stem contributed 7% and the leaves contributed 50% to the total water flow during maximal transpiration; peak water flow from the soil to the roots occurred at dawn and was only 58% of the maximal transpiration rate. Over each 24-h period, 39% of the water lost from the plant was derived from storage, with flow into storage occurring mainly during the daytime. Simulations showed that the acid accumulation rhythm of CAM had little impact on water uptake from the soil under the conditions employed. In the outer chlorenchyma, water potential and water flows were more sensitive to the day/night changes in transpiration than in osmotic pressure. Nevertheless, cell osmotic pressure had a large influence on turgor pressure in this tissue and determined the extent to which storage was recharged during the latter part of the night.  相似文献   

3.
Hydraulic redistribution (HR) is the phenomenon where plant roots transfer water between soil horizons of different water potential. When dry soil is a stronger sink for water loss from the plant than transpiration, water absorbed by roots in wetter soil horizons is transferred toward, and exuded into dry soil via flow reversals through the roots. Reverse flow is a good marker of HR and can serve as a useful tool to study it over the long-term. Seasonal variation of water uptake of a Quercus suber tree was studied from late winter through autumn 2003 at Rio Frio near Lisbon, Portugal. Sap flow was measured in five small shallow roots (diameter of 3–4 cm), 1 to 2 m from the tree trunk and in four azimuths and at different xylem depths at the trunk base, using the heat field deformation method (HFD). The pattern of sap flow differed among lateral roots as soil dried with constant positive flow in three roots and reverse flow in two other roots during the night when transpiration ceased. Rain modified the pattern of flow in these two roots by eliminating reverse flow and substantially increasing water uptake for transpiration during the day. The increase in water uptake in three other roots following rain was not so substantial. In addition, the flux in individual roots was correlated to different degrees with the flux at different radial depths and azimuthal directions in trunk xylem. The flow in outer trunk xylem seemed to be mostly consistent with water movement from surface soil horizons, whereas deep roots seemed to supply water to the whole cross-section of sapwood. When water flow substantially decreased in shallow lateral roots and the outer stem xylem during drought, water flow in the inner sapwood was maintained, presumably due to its direct connection to deep roots. Results also suggest the importance of the sap flow sensor placement, in relation to sinker roots, as to whether lateral roots might be found to exhibit reverse flow during drought. This study is consistent with the dimorphic rooting habit of Quercus suber trees in which deep roots access groundwater to supply superficial roots and the whole tree, when shallow soil layers were dry.  相似文献   

4.
Tange  T.  Yanaga  K.  Osawa  H.  Masumori  M. 《Photosynthetica》2009,47(2):313-316
To examine the hypothesis that stomatal behavior of plants in dry soil is influenced by a slow recovery from daytime water deficit, we studied the effect of repeated wetting of leaves during evening and night in Cryptomeria japonica seedlings grown in dry soil. After 7 and 10 days of leaf wetting treatment the midday leaf water potential decreased and the transpiration rate increased, respectively. Therefore, we suggest that rapid recovery from daytime water deficit could weaken the water conserving stomatal behavior that adapts to drought conditions in the roots.  相似文献   

5.
ermák  Jan  Hru ka  Jiri  Martinková  Milena  Prax  Alois 《Plant and Soil》2000,219(1-2):103-116
Root systems of two mature Field maple trees (Acer campestre L.) growing in both shaded and non-shaded sites, on clay soil in an urban environment, were analyzed by ground penetrating radar (GPR), light microscope and sap flow techniques. The ground surface above the root systems was covered by asphalt. However, a small piece of garden existed near the non-shaded tree, and root area of roots growing in this direction increased significantly, due to a presumed increase in available water and nutrients. However, no garden was present near the shaded tree, therefore roots remaining under the asphalt surface did not increase in area in any particular direction. Maximum rooting depth of shaded and exposed trees, as determined by GPR, was approximately 1.4 and 1.7 m, respectively. The trees utilized relatively large amounts of water for transpiration, i.e. 65–140 l per fine summer day and in average 10 m3 per growing season. However, transpiration expressed per root surface area (and/or whole root system enveloping area) was practically the same in both trees, i.e. 1 dm3 m-2 d-1 or almost 100 dm3 m-2 per growing season. These figures represented about 50% of potential evapotranspiration when considering projected crown areas. Increased transpiration under long-term high evaporation demands may cause occasional local drying of soil around roots, associated with soil shrinking in clay, which can be followed by serious damage to buildings.  相似文献   

6.
Hydraulic lift in drought-tolerant and -susceptible maize hybrids   总被引:9,自引:0,他引:9  
Wan  Changgui  Xu  Wenwei  Sosebee  Ronald E.  Machado  Stephen  Archer  Tom 《Plant and Soil》2000,219(1-2):117-126
Hydraulic lift was investigated in a greenhouse study involving two drought-tolerant maize (Zea mays L.) hybrids (TAES176 and P3223) and a drought-susceptible hybrid (P3225) during the flowering stage. Root systems were grown in two soil compartments – a drier upper soil and a wetter deep soil. The plants were shaded for 3 h during the daytime. Soil volumetric water content (Øv) in the upper pots was measured with time domain reflectometry (TDR) before and after shading. An increase in Øv in the upper pot was detected with TDR in the drought-tolerant hybrids following 3 h of shading, but not in the drought-susceptible hybrid. Furthermore, water exuded from roots in the top soil layers was greater in the more drought-tolerant TAES176 than in P3223 (489 vs. 288 g per pot in 3 h, P<0.005). The sizable amount of water from hydraulic lift allowed TAES176 to reach a peak transpiration rate 27–42% higher than the drought-susceptible hybrid P3225 on the days when the evaporative demand was high. To our knowledge, this is the first experiment that reveals a significant surge of transpiration due to hydraulic lift following midday shading. Hydraulic lift also prevented soil moisture depletion in the upper pots with TAES176, but not with P3223 or P3225. Root characteristics may be responsible for differences in hydraulic lift of the three maize hybrids. There were 2.3–3.3-fold more primary roots in the deep moist soil in P3223 and TAES176 than in P3225 that may enable these hybrids to absorb and transport water at faster rates. Therefore, more water can be exuded into the upper drier soil when transpiration is suppressed by shading. Larger primary roots (20–28% larger diameter) and a higher root volume in the upper soil in TAES176 and P3223 than in P3225 may contribute to higher root hydraulic conductance and greater water efflux from the roots. The negligible hydraulic lift in P3225 may also relate to higher night-time transpiration of the hybrid. This report has documented, for the first time, the existence of genetic variations in hydraulic lift among maize hybrids and links between hydraulic lift and drought tolerance within maize plants. It appears that one of drought tolerance mechanisms in maize may lie in the extent of hydraulic lift.  相似文献   

7.
Using a fully coupled climate–terrestrial ecosystem model, we demonstrate explicitly that an initial perturbation on vegetation induces not only a direct positive vegetation feedback, but also a significant indirect vegetation–soil moisture feedback. The indirect feedback is generated through either fractional cover change or soil moisture depletion. Both indirect feedback mechanisms are triggered by a vegetation perturbation, but involve subsequent effects of soil moisture and evaporation, indirectly. An increase in vegetation tends to reduce bare‐ground evaporation through either the area reduction in bare ground or the depletion of soil moisture; the reduced evaporation may then counter the initial plant transpiration, favoring a negative net vegetation feedback. Furthermore, grasses are more effective in inducing the indirect vegetation–soil feedbacks, because of their limited plant evapotranspiration and shallower roots that tend to change surface soil moisture, and, in turn, evaporation, effectively. In comparison, trees favor a direct positive vegetation feedback due to their strong plant transpiration on subsurface soil moisture as well as a lower albedo.  相似文献   

8.
This investigation was performed to study the effect on plant water relations and growth when some of roots grow into dry soil. Common spring water (Triticum aestivum) plants were grown from seed in soil in 1.2 m long PVC (polyvinyl chloride) tubes. Some of the tubes had a PVC partition along their center so that plants developed a split root system (SPR). Part of the roots grew in fully irrigated soil on one side of the partition while the rest of the roots grew into a very dry (-4.1 MPa) soil on the other side of the partition. Split root plants were compared with plants grown from emergence on stored soil moisture (STOR) and with plants that were fully irrigated as needed (IRR). The experiment was duplicated over two temperature regimes (10°/20°C and 15°/25°C, night/day temperatures) in growth chambers. Data were collected on root dry matter distribution, soil moisture status, midday leaf water potential (LWP), leaf relative water content (RWC) and parameters of plant growth and yield.Some roots were found in the dry side of SPR already at 21 DAE (days after emergence) at a soil depth of 15 to 25 cm. Soil water potential around these roots was -0.7 to -1.0 MPa at midday, as compared with the initial value of -4.1 MPa. Therefore, water apparently flowed from the plant into the dry soil, probably during the night. Despite having most of their roots (around 2/3 of the total) in wet soil, SPR plants developed severe plant water stress, even in comparison with STOR plants. Already at 21 DAE, SPR plants had a LWP of -1.5 to -2.0 MPa, while IRR and STOR had a LWP of -0.5 MPa or higher. As a consequence of their greater plant water stress, SPR as compared with IRR plants were lower in tiller number, ear number, shoot dry matter, root dry matter, total biomass, plant height and grain yield and had more epicuticular wax on their leaves.It was concluded that the exposure of a relatively small part of a plant root system to a dry soil may result in a plant-to-soil water potential gradient which may cause severe plant water stress, leading to reduced plant growth and yield.  相似文献   

9.
Hydraulic lift among native plant species in the Mojave Desert   总被引:9,自引:1,他引:8  
Yoder  Carolyn K.  Nowak  Robert S. 《Plant and Soil》1999,215(1):93-102
Hydraulic lift was investigated among native plants in the Mojave Desert using in situ thermocouple psychrometers. Night lighting and day shading experiments were used to verify the phenomenon. Hydraulic lift was detected for all species examined: five shrub species with different rooting depths and leaf phenologies and one perennial grass species. This study was the first to document hydraulic lift for a CAM species, Yucca schidigera. The pattern of diel flux in soil water potential for the CAM species was temporally opposite to that of C3 species: for the CAM plant, soil water potential increased in shallow soils during the day when the plant was not transpiring and decreased at night when transpiration began. Because CAM plants transport water to shallow soils during the day when surrounding C3 and C4 plants transpire, CAM species that hydraulically lift water may influence water relations of surrounding species to a greater extent than hydraulically lifting C3 or C4 species. A strong, negative relationship between the percent sand in the study site soils at the 0.35 m soil depth and the frequency that hydraulic lift was observed at that depth suggests that the occurrence of hydraulic lift is negatively influenced by coarse-textured soils, perhaps due to less root–soil contact in sandy soils relative to finer-textured soils. Differences in soil texture among study sites may explain, in part, differences in the frequency that hydraulic lift was detected among these species. Further investigations are needed to elucidate species versus soil texture effects on hydraulic lift. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
A study was conducted during the 1996–97 crop growth season at ICARDA in northern Syria, to investigate the influence of wheat canopy architecture on the partitioning of moisture between soil evaporation and crop transpiration, on a soil with high hydraulic conductivity. The study was conducted on the long-term two course wheat-lentil rotation trial, established on a swelling clay soil (Calcixerollic xerochrept). The wheat canopy architecture was manipulated by sowing the crop at either of two row-spacings, 0.17 or 0.30 m, both at a constant sowing rate equivalent to 120 kg ha–1. In this study, evapotranspiration from the crop was inferred from changes in soil moisture content over time, evaporation and rainfall interception were measured daily using microlysimetry, drainage was estimated as being the difference between potential daily evapotranspiration, and the evapotranspiration estimated from the soil water deficit. Between sowing and day 80 (tillering stage), evapotranspiration was calculated to consist mainly of soil evaporation. However, after day 80, transpiration became an increasingly dominant component of evapotranspiration. For both row-spacings, cumulative evapotranspiration over the season was approximately 373 mm. In the narrow-row crop, transpiration and soil evaporation were approximately 185 mm and 183 mm of water respectively. Conversely for the wide row-spaced crop, 172 mm of water was transpired while about 205 mm of water evaporated from the soil surface. While green leaf area index did not differ between row-spacings, the architecture of the crops as a result of sowing affected solar radiation penetration such that more incident radiation was intercepted at the soil surface of the wide row-spaced crop. This is likely to have made some contribution to the elevated levels of evaporation from the soil beneath the canopy of the wide-sown crop.  相似文献   

11.
The significance of soil water redistribution facilitated by roots (an extension of "hydraulic lift", here termed hydraulic redistribution) was assessed for a stand of Artemisia tridentata using measurements and a simulation model. The model incorporated water movement within the soil via unsaturated flow and hydraulic redistribution and soil water loss from transpiration. The model used Buckingham-Darcy's law for unsaturated flow while hydraulic redistribution was developed as a function of the distribution of active roots, root conductance for water, and relative soil-root (rhizosphere) conductance for water. Simulations were conducted to compare model predictions with time courses of soil water potential at several depths, and to evaluate the importance of root distribution, soil hydraulic conductance and root xylem conductance on transpiration rates and the dynamics of soil water. The model was able to effectively predict soil water potential during a summer drying cycle, and the rapid redistribution of water down to 1.5 m into the soil column after rainfall events. Results of simulations indicated that hydraulic redistribution could increase whole canopy transpiration over a 100-day drying cycle. While the increase was only 3.5% over the entire 100-day period, hydraulic redistribution increased transpiration up to 20.5% for some days. The presence of high soil water content within the lower rooting zone appears to be necessary for sizeable increases in transpiration due to hydraulic redistribution. Simulation results also indicated that root distributions with roots concentrated in shallow soil layers experienced the greatest increase in transpiration due to hydraulic redistribution. This redistribution had much less effect on transpiration with more uniform root distributions, higher soil hydraulic conductivity and lower root conductivity. Simulation results indicated that redistribution of water by roots can be an important component in soil water dynamics, and the model presented here provides a useful approach to incorporating hydraulic redistribution into larger models of soil processes.  相似文献   

12.
Prater MR  Obrist D  Arnone JA  DeLucia EH 《Oecologia》2006,146(4):595-607
Invasion of non-native annuals across the Intermountain West is causing a widespread transition from perennial sagebrush communities to fire-prone annual herbaceous communities and grasslands. To determine how this invasion affects ecosystem function, carbon and water fluxes were quantified in three, paired sagebrush and adjacent postfire communities in the northern Great Basin using a 1-m3 gas exchange chamber. Most of the plant cover in the postfire communities was invasive species including Bromus tectorum L., Agropyron cristatum (L.) Gaertn and Sisymbrium altissimum L. Instantaneous morning net carbon exchange (NCE) and evapotranspiration (ET) in native shrub plots were greater than either intershrub or postfire plots. Native sagebrush communities were net carbon sinks (mean NCE 0.2–4.3 μmol m−2 s−1) throughout the growing season. The magnitude and seasonal variation of NCE in the postfire communities were controlled by the dominant species and availability of soil moisture. Net C exchange in postfire communities dominated by perennial bunchgrasses was similar to sagebrush. However, communities dominated by annuals (cheatgrass and mustard) had significantly lower NCE than sagebrush and became net sources of carbon to the atmosphere (NCE declined to −0.5 μmol m−2 s−1) with increased severity of the summer drought. Differences in the patterns of ET led to lower surface soil moisture content and increased soil temperatures during summer in the cheatgrass-dominated community compared to the adjacent sagebrush community. Intensive measurements at one site revealed that temporal and spatial patterns of NCE and ET were correlated most closely with changes in leaf area in each community. By altering the patterns of carbon and water exchange, conversion of native sagebrush to postfire invasive communities may disrupt surface-atmosphere exchange and degrade the carbon storage capacity of these systems.  相似文献   

13.
C3 plants dominate many landscapes and are critically important for ecosystem water cycling. At night, plant water losses can include transpiration (Enight) from the canopy and hydraulic redistribution (HR) from roots. We tested whether Enight limits the magnitude of HR in a greenhouse study using Artemisia tridentata , Helianthus anomalus and Quercus laevis . Plants were grown with their roots split between two compartments. HR was initiated by briefly withholding all water, followed by watering only one rooting compartment. Under study conditions, all species showed substantial Enight and HR (highest minus lowest soil water potential [ Ψ s] during a specified diel period). Suppressing Enight by canopy bagging increased HR during the nightly bagging period (HRN) for A. tridentata and H. anomalus by 73 and 33% respectively, but did not affect HRN by Q. laevis . Total daily HR (HRT) was positively correlated with the Ψ s gradient between the rooting compartments, which was correlated with light and/or atmospheric vapour pressure deficit (VPDa) the prior day. For A. tridentata , HRT was negatively correlated with night-time VPDa. Ecological implications of the impact of Enight on HR may include decreased plant productivity during dry seasons, altered ecosystem water flux patterns and reduced nutrient cycling in drying soils.  相似文献   

14.
During two seasons, ABA concentrations were monitored in roots, leaves and xylem sap of field-grown maize. The water status of soil and plant was also measured. Plants were grown on plots with compacted or non-compacted soil, which were irrigated or remained unwatered. ABA concentration in the xylem sap before dawn and in the roots increases 25-fold and five-fold, respectively, as the soil dried, with a close correlation with the soil water status, but with no clear effect of the soil structure. In contrast to the results of several laboratory experiments, no appreciable increase in xylem [ABA] and reduction in stomatal conductance were observed with dehydration of the part of the root system located in soil upper layers. These responses only occurred when the water reserve of the whole soil profile was close to depletion and the transpiration declined. Xylem [ABA] measured during the day was appreciably higher in the compacted treatment than in non-compacted treatment, unlike that measured before dawn. Since a mechanical message is unlikely to undergo such day-night alterations, we suggest that this was due to a faster decrease in root water potential and water flux in the compacted treatment, linked to the root spatial arrangement. These results raise the possibility that ABA concentration in the xylem sap could be controlled by two coexisting mechanisms: (1) the rate of ABA synthesis in the roots linked to the soil or root water status, as shown in laboratory experiments; (2) the dilution of ABA in the water flow from roots, which could be an overriding mechanism in field conditions. This second mechanism would allow the plant to sense the water flux through the root system.  相似文献   

15.
16.
Hydraulic lift: consequences of water efflux from the roots of plants   总被引:29,自引:0,他引:29  
Hydraulic lift is the passive movement of water from roots into soil layers with lower water potential, while other parts of the root system in moister soil layers, usually at depth, are absorbing water. Here, we review the brief history of laboratory and field evidence supporting this phenomenon and discuss some of the consequences of this below-ground behavior for the ecology of plants. Hydraulic lift has been shown in a relatively small number of species (27 species of herbs, grasses, shrubs, and trees), but there is no fundamental reason why it should not be more common as long as active root systems are spanning a gradient in soil water potential (Ψs) and that the resistance to water loss from roots is low. While the majority of documented cases of hydraulic lift in the field are for semiarid and arid land species inhabiting desert and steppe environments, recent studies indicate that hydraulic lift is not restricted to these species or regions. Large quantities of water, amounting to an appreciable fraction of daily transpiration, are lifted at night. This temporary partial rehydration of upper soil layers provides a source of water, along with soil moisture deeper in the profile, for transpiration the following day and, under conditions of high atmospheric demand, can substantially facilitate water movement through the soil-plant-atmosphere system. Release of water into the upper soil layers has been shown to afford the opportunity for neighboring plants to utilize this source of water. Also, because soils tend to dry from the surface downward and nutrients are usually most plentiful in the upper soil layers, lifted water may provide moisture that facilitates favorable biogeochemical conditions for enhancing mineral nutrient availability, microbial processes, and the acquisition of nutrients by roots. Hydraulic lift may also prolong or enhance fine-root activity by keeping them hydrated. Such indirect benefits of hydraulic lift may have been the primary selective force in the evolution of this process. Alternatively, hydraulic lift may simply be the consequence of roots not possessing true rectifying properties (i.e., roots are leaky to water). Finally, the direction of water movement may also be downward or horizontal if the prevailing Ψs gradient so dictates, i.e., inverse, or lateral, hydraulic lift. Such downward movement through the root system may allow growth of roots in otherwise dry soil at depth, permitting the establishment of many phreatophytic species. Received: 2 June 1997 / Accepted: 24 September 1997  相似文献   

17.
The status of water in soil and vegetation was monitored in a stand of crested wheatgrass (Agropyron cristatum) and a nearby shortgrass steppe during a growing season. This was done to determine if water use and losses were similar among two very different communities in a similar climate. Precipitation was similar throughout the study period for both the crested wheatgrass and native shortgrass communities. However, the native shortgrass community with greater root biomass had consistently greater soil water depletion in the deeper soil horizons than was found in the crested wheatgrass community. Greater depletion of soil water by native shortgrass species suggests that they might be more competitive than crested wheatgrass in a water-limited environment.Crested wheatgrass maintained high leaf water potential early in the season, but lower water potential during the latter part of the growing season as compared with the major species of the shortgrass steppe, blue grama (Bouteloua gracilis) and western wheatgrass (Agropyron smithii). Leaf conductance was lower for crested wheatgrass than for the native grasses during the later part of the growing season. Consequently, seasonal transpiration for crested wheatgrass was lower when compared with blue grama or western wheatgrass. Lower conductance allowed crested wheatgrass to maintain relatively high internal water potential and may have accounted for less soil water use at deeper soil depths during the latter part of the growing season.Water loss through transpiration was less for western wheatgrass than for either blue grama or crested wheatgrass because western wheatgrass had less leaf area. However, western wheatgrass was as efficient as the other species in its use of water. Crested wheatgrass transpired more water than blue grama early in the growing season, but less than either native species for the remainder of the growing season. Estimated seasonal transpiration loss was greater in the shortgrass ecosystem than in the established crested wheatgrass stand.  相似文献   

18.
This article reports on quantified soil water gains and their possible effects on summer water relationships in a semiarid Stipa tenacissima L. grasslands located in SE Spain. We believe that the net soil water gains detected using minilysimeters could be from soil water vapour adsorption (WVA). Our study of high water-stress showed stomatal conductance (21.8–43.1 mmol H2O m−2 s−1) in S. tenacissima leaves unusual for the summer season, and the evapotranspiration from S. tenacissima grassland, estimated by a multi-source sparse evapotranspiration model, closely corresponding to total WVA. This highlights the importance of summer soil WVA to stomatal conductance and vital transpiration in S. tenacissima. This study measured pre-dawn leaf water potential (ψ) response to sporadic light rainfall, finding that a light summer rainfall (1.59 mm day−1) was sufficient to vary ψ in S. tenacissima from −3.8 (close to the turgour loss point) to −2.7 MPa. We hypothesize that soil WVA can supply vegetation with water vital to its survival in seasons with a severe water deficit, giving rise to a close relationship between soil water dynamics and plant water response.  相似文献   

19.
To investigate root distribution with depth, which can affect competition for water, surface areas of young and old roots were determined in 4-cm-thick soil layers for the C3 subshrub Encelia farinosa Torrey and A. Gray, the C4 bunchgrass Pleuraphis rigida Thurber, and the CAM (crassulacean acid metabolism) leaf succulent Agave deserti Engelm. At a site in the northwestern Sonoran Desert these codominant perennials had mean rooting depths of only 9-10 cm for isolated plants. Young roots had mean depths of 5-6 cm after a winter wet period, but 11-13 cm after a summer wet period. Young roots were most profuse in the winter for E. farinosa, which has the lowest optimum temperature for root growth, and in the summer for P. rigida, which has the highest optimum temperature. Roots for interspecific pairs in close proximity averaged 2-3 cm shallower for A. deserti and a similar distance deeper for the other two species compared with isolated plants, suggesting partial spatial separation of their root niches when the plants are in a competitive situation. For plants with a similar root surface area, the twofold greater leaf area and twofold higher maximal transpiration rate of E. farinosa were consistent with its higher root hydraulic conductivity, leading to a fourfold higher estimated maximal water uptake rate than for P. rigida. Continuous water uptake accounted for the shoot water loss by A. deserti, which has a high shoot water-storage capacity. A lower minimum leaf water potential for P. rigida than for A. deserti indicates greater ability to extract water from a drying soil, suggesting that temporal niche separation for water uptake also occurs.  相似文献   

20.
Differences in ammonium net uptake by the roots of beech (Fagus sylvatica L.) and spruce (Picea abies (L.) Karst) trees between day and night were examined during the growing seasons in 1995 and 1996 using the depletion technique. In addition, diurnal courses of ammonium net uptake of both species were analysed in five sets of uptake experiments in May and September 1997 and were related (1) to the content of carbohydrates, organic acids and total soluble non protein N (TSNN) in the fine roots, and (2) to xylem flow densities and soil temperature. During the growing seasons 1995 and 1996, ammonium net uptake of beech was significantly lower during the night than during the day at 5 of 8 dates of measurement. On average, uptake rates during the night amounted to 50% of the uptake rates during the day. In spruce, the mean values of ammonium net uptake rates determined were similar between day and night during both growing seasons. In beech, the assessment of diurnal courses showed highest ammonium uptake rates during noon and in the afternoon and minima at midnight. In May 1997, comparable, but less pronounced diurnal patterns of ammonium uptake were observed in spruce, whereas in September 1997, ammonium uptake by spruce was constant during the day. Since no distinct differences in carbohydrate and organic acid contents in fine roots were observed during the diurnal courses and since the addition of sucrose into the artificial soil solutions root tips were exposed to did not alter ammonium uptake, depression of uptake by C- and/or energy limitation during night could be excluded. The TSNN contents in the fine roots of beech (May and September 1997) and spruce (May 1997) showed a diurnal pattern inverse to ammonium uptake. It is concluded that the enrichment of TSNN compounds during night that is apparently caused by a reduction of xylem transport is responsible for the down-regulation of ammonium net-uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号