首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in levels of isocitrate lyase, malate synthase, and catalase have been investigated during germination of flax (Linum usitatissimum L.) in the presence and absence of itaconate. Germination was accompanied by a rapid increase in these enzymes during the first 3 days. The presence of 38 millimolar itaconate inhibited the incidence of seed germination and the growth of embryo axes as well as the appearance of isocitrate lyase but did not alter the levels of malate synthase, catalase, or NADP+-isocitrate dehydrogenase. The specific activity for the latter enzyme was constant throughout germination. Oxalate or succinate, each at 38 millimolar, had no effect upon germination of flax seeds. Itaconate did not inhibit the activities of malate synthase, catalase, or NADP+-isocitrate dehydrogenase in vitro but was a potent noncompetitive inhibitor of isocitrate lyase (Ki:17 micromolar at 30 C, pH 7.6). Itaconate (at 38 millimolar) did not alter the appearance of malate synthase but reduced the incidence of germination, onset of germination, and growth of the embryo axis as well as the specific activity of isocitrate lyase in seedlings of Zea mays, Vigna glabra, Glycine hispida, Vigna sinensis, Trigonella foenumgraecum, Lens culinaris, and Medicago sativa. The incidence and onset of germination of wheat seeds were unaltered by the same concentration of itaconate but seedlings did not contain isocitrate lyase or malate synthase. The data suggest that itaconate may be isocitrate lyase-directed in inhibiting the germination of fatty seeds.  相似文献   

2.
Endosperm extracts were prepared at various times during germination from intact castor-bean seeds and from seeds from which the embryos had been removed. The sterilized seeds were incubated either on solid water agar or on agar containing 0.3 mM-gibberellic acid. 2. Isocitrate lyase and 3-hydroxyacyl-CoA dehydrogenase had very low activities in the mature seeds, but increased 44-fold and 27-fold respectively during germination. In contrast, the extracts of mature seeds had considerable acid and alkaline lipase activity and this only increased two- to three-fold during the incubation period. 3. Incubation of the seeds with gibberellic acid accelerated the rate of appearance of isocitrate lyase and 3-hydroxyacyl-CoA dehydrogenase. It also increased the total activity attained. However, the application of hormone had, in comparison, little effect on the development of lipase activity. 4. The removal of the embryo had little influence on the development of enzyme activity in the endosperm tissue; only with isocitrate lyase was a decrease in activity observed in the absence of the embryo.  相似文献   

3.
The succinate analog itaconic acid was observed to be a competitive inhibitor of the glyoxylate cycle specific enzyme isocitrate lyase (EC 4.1.3.1) in cell-free extracts of Tetrahymena pyriformis. Itaconic acid also inhibited net in vivo glycogen synthesis from glyoxylate cycle-dependent precursors such as acetate but not from glyoxylate cycle-independent precursors such as fructose. The effect of itaconic acid on the incorporation of 14C into glycogen from various 14C-labeled precursors was also consistent with inhibition of isocitrate lyase by this compound. Another analog of succinate which shares a common metabolic fate with itaconic acid, mesaconic acid, had no effect on isocitrate lyase activity in vitro or on 14C-labeled precursor incorporation into glycogen in vivo. In addition, itaconic acid did not affect gluconeogenesis from lactate in isolated perfused rat livers, a system lacking the enzyme isocitrate lyase. These results are taken as evidence that itaconic acid is an inhibitor of glyoxylate cycle-dependent glyconeogenesis Tetrahymena pyriformis via specific competitive inhibition of isocitrate lyase activity.  相似文献   

4.
Gibberellic acid (GA3) stimulates isocitrate lyase activity of the endosperm during germination of castor bean seeds. Isocitrate lyase from castor bean was purified and an antibody to it was prepared from rabbit serum. This antibody was used to measure the amounts of isocitrate lyase-mRNA using an in vitro translation system. No specific stimulation of isocitrate lyase-mRNA by application of GA3 was detected. The stimulation of isocitrate lyase activity by exogenous GA3 may be accounted for by the action of the growth substance in advancing the overall production of rRNA and mRNA which accelerates the rate of total protein synthesis during germination. The application of Amo 1618 retards the production of isocitrate lyase activity but also retards protein synthesis in general. This suggests that endogenous gibberellins also act non-specifically in the regulation of protein synthesis during castor bean germination.Abbreviations SDS sodium dodecyl sulphate - GA3 gibberellic acid - PAGE polyacrylamide gel electrophoresis  相似文献   

5.
Glyoxysomes in megagamethophyte of germinating ponderosa pine seeds   总被引:15,自引:11,他引:4       下载免费PDF全文
Ching TM 《Plant physiology》1970,46(3):475-482
Decoated ponderosa pine (Pinus ponderosa Laws) seeds contained 40% lipids, which were mainly stored in megagametophytic tissue and were utilized or converted to sugars via the glyoxylate cycle during germination. Mitochondria and glyoxysomes were isolated from the tissue by sucrose density gradient centrifugation at different stages of germination. It was found that isocitrate lyase, malate synthase, and catalase were mainly bound in glyoxysomes. Aconitase and fumarase were chiefly localized in mitochondria, whereas citrate synthase was common for both. Both organelles increased in quantity and specific activity of their respective marker enzymes with the advancement of germination. When the megagametophyte was exhausted at the end of germination, the quantity of these organelles and the activity of their marker enzymes decreased abruptly. At the stage of highest lipolysis, the isolated mitochondria and glyoxysomes were able to synthesize protein from labeled amino acids. Both organellar fractions contained RNA and DNA. Some degree of autonomy in glyoxysomes is indicated.  相似文献   

6.
The presence and some properties of the key enzymes of the glyoxylate cycle, isocitrate lyase (threo-Ds-isocitrate glyoxylate-lyase, EC 4.1.3.1) and malate synthase (L-malate glyoxylate-lyase (CoA-acetylating) EC 4.1.3.2), were investigated in Leptospira biflexa. Isocitrate lyase activity was found for the first time in the organism. The enzyme was induced by ethanol but not by acetate. The optimum pH was 6.8. The activity was inhibited by phosphoenolpyruvate, a specific inhibitor of isocitrate lyase. The optimum pH of malate synthase of L. biflexa was about 8.5. The Km value for glyoxylate was 3.0 × 10?3 M and the activity was inhibited by glycolate, the inhibitor. The results strongly suggested the presence of a glyoxylate cycle in Leptospira. The possibility that the glyoxylate cycle plays an essential role in the synthesis of sugars, amino acids and other cellular components as an anaplerotic pathway of the tricarboxylic acid cycle in Leptospira was discussed.  相似文献   

7.
The changes of isocitrate lyase levels with respect to the catabolism of triglycerides have been studied during the germination of Pinus pinea seeds. We studied the effects of octanoate, oleate, and inhibitors of protein synthesis on isocitrate lyase during germination. Pyruvate kinase, glucose-6-P-dehydrogenase, malate dehydrogenase, and isocitrate dehydrogenase were also assayed. Octanoate and oleate inhibited the isocitrate lyase activity, similarly to cycloheximide, chloramphenicol, and actinomycin, inhibitors of protein biosynthesis. This inhibitory effect is not specific but is strikingly evident with isocitrate lyase. This inhibition was not proportional to the concentration but was proportional to the chain length of oleate and octanoate.  相似文献   

8.
Bertold Hock 《Planta》1970,93(1):26-38
Summary Previously, it was deduced from inhibitor experiments that isocitrate lyase (EC 4.1.3.1.) is synthesized de novo in watermelon cotyledons during the first 3 days of germination, which explains the sharp increase of activity during this period. The following decrease of activity was interpreted as the result of a limited half life of the enzyme molecule (Hock and Beevers, 1966).This hypothesis has been confirmed now by density labeling experiments of isocitrate lyase with deuterium. Seedlings grown from day 0 on D2O (80 vol. %) contained a heavier enzyme at the time of maximum activity than control seedlings grown on H2O (Fig. 6). No incorporation of deuterium into isocitrate lyase, however, was detectable when the cotyledons were labeled only from day 3 1/2 on, i.e. after the stage of maximum activity had been passed (Fig. 10), in spite of the fact that D2O was taken up from the cotyledons in considerable quantities. —These results prove at the same time that density labeling of the isocitrate lyase during early stages of germination was a result of de novo synthesis rather than a mere artifact produced by isotopic exchange.An improved method for the purification of isocitrate lyase from higher plants is introduced.  相似文献   

9.
The level of isocitrate lyase, an enzyme of glyoxylate cycle, in Candida tropicalis was enhanced at the later period of growth when the yeast was cultivated in a semisynthetic glucose medium. On the other hand, such increase in the enzyme activity was not observed in C. lipolytica grown under the same conditions. In the case of C. tropicalis, high concentrations of glucose remaining in the medium permitted the increase in the enzyme activity and the addition of ethanol, one of the major products from glucose, to the glucose medium did not stimulate the enzyme formation, indicating that the enhanced enzyme level in the yeast was not merely attributable to the release from the repression by glucose or to the induction by ethanol. Biotin, one of the growth-stimulating factors for C. tropicalis, affected markedly the level of isocitrate lyase. That is, the supplementation of biotin to the synthetic glucose medium inhibited completely the increase in the enzyme activity, and reversely the absence of biotin stimulated the enzyme formation in the glucose-assimilating cells. Thiamine, another growth-stimulating factor for C. tropicalis, did not show any effect on the level of isocitrate lyase in the yeast. The level of isocitrate lyase in C. lipolytica growing on glucose was not affected by biotin added exogenously.  相似文献   

10.
The activity of isocitrate lyase (EC 4.1.3.1) in the cotyledons of germinating soybean is controlled by the embryonic axis. Plant growth regulators like gibberellic acid, indole acetic acid and 2,4-dichlorophenoxy acetic acid are able to increase the enzyme activity in cotyledons of whole seedlings but not in dissected cotyledons. The control of induction of the enzyme activity during germination by the embryo could be mediated by the elaboration of kinetin.  相似文献   

11.
Isocitrate lyase was partially purified from germinating spores of the fern Anemia phyllitidis. The enzyme requires Mg2+ and thiol compounds for maximal activity and has a pH optimum between 6.5 and 7.5. The Km of the enzyme for threo-Δs-isocitrate is 0.5 mM. Succinate inhibits the enzyme non-competitively (Ki. 1.8 mM). The increase of isocitrate lyase activity is closely correlated with the induction of the germination process. The fall of enzyme activity during germination is associated with the decline in triglyceride reserves.  相似文献   

12.
Isocitrate lyase was purified partially from n-alkane-grown cells and glucose-grown cells of Candida tropicalis by means of ammonium sulfate fractionation and DEAE-cellulose column chromatography. The preparation from alkane-grown cells showed one peak of the enzyme activity, while that from glucose-grown cells showed two distinct peaks of the activity, on DEAE-cellulose column chromatography. These enzymes, having the similar pH optima (around 7.0) and Km values with dl-isocitrate (1.2 ~ 1.7 mm), were inhibited by various metabolic intermediates, such as 6-phosphogluconate and phosphoenolpyruvate.

Time-course changes in the activities of isocitrate lyase and isocitrate dehydrogenases of C. tropicalis during the growth indicated that the lyase would participate preferentially in alkane assimilation and NAD-linked isocitrate dehydrogenase in glucose utilization of the yeast.

Regulation of isocitrate metabolism in C. tropicalis through glyoxylate cycle and tricarboxylic acid cycle is discussed based on the kinetic properties, cellular localization and time- course changes in the levels of isocitrate lyase and NAD-linked and NADP-linked isocitrate dehydrogenases.  相似文献   

13.
14.
Isocitrate lyase was purified to homogeneity from ethanol-grown Euglena gracilis. The specific activity was 0.26 μmol/min/mg protein. The molecular mass of the enzyme was calculated to be 380 kDa by gel filtration on a Superose 6 column. The subunit molecular mass of the enzyme was 116 kDa as determined by SDS-polyacrylamide gel electrophoresis. These results showed that the native form of this enzyme was a trimer composed of three identical subunits. The pH optimum for cleavage and condensation reactions was 6.5 and 7.0, respectively. The Km values for isocitrate, glyoxylate and succinate were 3.8, 1.3 and 7.7 mM, respectively. Isocitrate lyase absolutely required Mg for enzymatic activity. This is the first report of the purification of isocitrate lyase to homogeneity from Euglena gracilis.  相似文献   

15.
Bertold Hock 《Planta》1969,85(4):340-350
Summary The isocitrate lyase activity (E.C. 4.1.3.1.) from watermelon cotyledons (Citrullus vulgaris Schrad.) is inhibited by white light (Fig. 5). To exclude artefacts during enzyme preparation the following experiments were performed (Table 1 and 2): 1. Mixing of raw extracts from cotyledons of light and dark grown seedlings. 2. Joint homogenization a) of cotyledons from light and dark grown seedlings, b) of purified isocitrate lyase together with cotyledons from light or dark grown seedlings. The total activity corresponded to an amount which was expected for the sum of the individual activities. The results justify the conclusion that the inhibition of the isocitrate lyase by light is real, and that the measured enzyme activities are close to the true enzyme concentrations in the plant tissue. — The relatively slow inhibition of the enzyme activity caused by light seems to be correlated with the formation of the photosynthetic apparatus.  相似文献   

16.
When acetate-adapted cultures of Chlorella fusca were transferred to nitrogen-free medium containing glucose, isocitrate lyase activity was lost over a period of about 25 h. Using a combination of in vivo isotope labelling and immunoprecipitation with anti-isocitrate lyase IgG it was shown that: 1. The onset of loss of enzyme activity preceeded the complete cessation of enzyme synthesis. 2. Disappearance of isocitrate lyase activity was accompanied by loss of enzyme protein, without accumulation of antigenic protein distinguishable from the normal subunit polypeptide of the enzyme, as judged by SDS gel electrophoresis of immunoprecipitated samples from supernatant cell-free extracts. 3. SDS gel electrophoresis of immunoprecipitated isocitrate lyase revealed the presence of antigenic protein bands of Mr about twice that of the normal subunit polypeptide, but the appearance of these apparent dimer forms did not obviously correlate with enzyme degradation. 4. Isoelectric focusing of immunoprecipitated isocitrate lyase showed that the enzyme became progressively more oxidised during the period of its degradation in vivo. 5. By titrating crude broken cell suspensions with anti-isocitrate lyase antibody, preliminary evidence was obtained for transfer of the enzyme from the soluble fraction to an insoluble form as part of the process of disappearance.  相似文献   

17.
The glyoxylate cycle enzyme, isocitrate lyase (EC 4.1.3.1) was purified from cotyledons of Citrullus vulgaris (watermelon). The final preparation, which had been 97-fold purified with a specific activity of 16.1 units/mg protein in a yield of 36%, was homogeneous by gel- and immunoelectrophoretic criteria. The tetrameric enzyme had: a molecular weight of 277 000, a sedimentation coefficient of 12.4 s, and a Km for Ds-isocitrate equal to 0.25 mM. Isocitrate lyase from this source is not a glycoprotein as shown by total carbohydrate content after precipitation by trichloroacetic acid of the purified enzyme. Reduction of the enzyme with thiols increased activity and maximal activity was obtained with at least 5 mM dithiothreitol. EDTA partially substituted for thiol in freshly isolated enzyme. Watermelon isocitrate lyase was also protected against thermal denaturation at 60° for at least 1 hr by 5 mM Mg2+ plus 5 mM oxalate. Oxalate was a competitive inhibitor with respect to isocitrate (Ki: 1.5 μM, pH 7.5, 30°).  相似文献   

18.
The enzymes of the glyoxylate cycle, isocitrate lyase (EC.4.1.3.1) and malate synthase (EC.4.1.3.2), were measured in cell-free extracts from the cyanobacterium Anacystis nidulans Drouet during photoautotrophic growth in medium aerated with ordinary air (0.03% CO2). Isocitrate lyase had an average specific activity of 112 nmoles·min?1·mg protein?1 whereas malate synthase had an average specific activity of 12.5 nmoles·min?1·mg protein?1. Unpurified isocitrate lyase showed classical Michaelis kinetics with a Km of 8 mM. Isocitrate lyase activity was strongly inhibited by numerous cellular metabolites at 10 mM concentration. The previously reported low specific activity for isocitrate lyase may be due to metabolite inhibition caused by growth in high CO2 concentrations. The activities reported for isocitrate lyase and malate synthase suggest the operation of the glyoxylate cycle in Anacystis nidulans under CO2-limiting growth conditions.  相似文献   

19.
Bacillus caldotenax was cultivated in chemostat experiments at 65°C with a chemically defined minimal medium. Glycolysis, tricarboxylic acid cycle, pentose phosphate pathway and the respiratory chain were active as demonstrated by measuring the corresponding enzymes. No enzyme activity of the Entner-Doudoroff pathway could be detected. The specific activities of the citrate cycle enzymes were up to 10 times higher as compared to the enzymes of glycolysis. At dilution rates between 0.3 and 2.2 h-1 none of the main metabolic pathways was regulated. In contrast the isocitrate lyase was regulated (drop of activity with increasing growth rates). As a result of a batch culture with glucose and acetate as carbon sources a regulation model was proposed: glucose, or a metabolite of glucose, represses the isocitrate lyase; in the absence of glucose acetate acts as an inducer.Abbreviations DCIP dichlorphenol indophenol - ED Entner-Doudoroff pathway - EMP Emden-Meyerhof-Parnas pathway - ICL isocitrate lyase - PP pentose phosphate pathway - TCC tricarbonic acid cycle  相似文献   

20.
Hara  Sayuri  Falk  Heinz  Kleinig  Hans 《Planta》1985,164(3):303-307
During somatic embryogenesis in Papaver orientale tissue cultures a permanent starch accumulation and a transient triacylglycerol accumulation were observed. The degradation of the lipids during plantlet development from embryoids was paralleled by an activity increase of the glyoxylate-cycle enzymes malate synthase (EC 4.1.3.2) and isocitrate lyase (EC 4.1.3.1). Fat accumulation and breakdown was interpreted as a reflection of seed formation and germination during normal development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号